JPH0347930A - Production of nb-ti alloy - Google Patents

Production of nb-ti alloy

Info

Publication number
JPH0347930A
JPH0347930A JP1182235A JP18223589A JPH0347930A JP H0347930 A JPH0347930 A JP H0347930A JP 1182235 A JP1182235 A JP 1182235A JP 18223589 A JP18223589 A JP 18223589A JP H0347930 A JPH0347930 A JP H0347930A
Authority
JP
Japan
Prior art keywords
mixture
semi
molten
alloy
semimolten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1182235A
Other languages
Japanese (ja)
Other versions
JP2583313B2 (en
Inventor
Yasuzo Tanaka
田中 靖三
Shoji Shiga
志賀 章二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP1182235A priority Critical patent/JP2583313B2/en
Publication of JPH0347930A publication Critical patent/JPH0347930A/en
Application granted granted Critical
Publication of JP2583313B2 publication Critical patent/JP2583313B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain an alloy ingot free from segregation of Ti and voids and having fine crystalline grains by heating a mixed pressed body of Nb and Ti, turning the resulting semimolten part and unsemimolten part in directions reverse to each other, moving the semimolten part through the pressed body, and performing solidification. CONSTITUTION:A mixture formed by mixing at least pure Nb powder and pure Ti powder materials is pressed into a pressed body. This mixture 11 is set in a vacuum vessel 13, and an induction coil 14 around the mixture 11 is electrified and the mixture 11 in the vicinity of the induction coil 14 is heated into a semimolten state, and then, a rotating shaft 12' is turned and a rotating shaft 12 is turned in a reverse direction. The coil 14 and the semimolten part 15 are kept at the prescribed positions, and a solidified alloy is cooled by means of water cooled tubes 16 and pulled down.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明はN b −T i系合金の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an Nb-Ti alloy.

C従来の技術〕 従来、超電導材料などとして利用されるNbTi系合金
のインゴントは、以下のような方法により製造されてい
る。すなわち、 イ)第2図に示すように、細いニオブ棒と細いチタン棒
を所望組成比、例えば、5Qwt%: 5011t%に
なるように束ねて混合体(1)を構成し、この混合体(
1)と水冷鋳型(2)を真空容器(3)中にセツトシ、
電源(4)を操作して混合体(1)と水冷鋳型(2)と
の間でアク(5)を発生させ、その熱で混合体(1)を
溶融して形成された合金ドロップ(6)を水冷鋳型(2
)中のプール部(7)に落下させ、凝固させて合金イン
ゴット(8)を形成するアーク溶解法。
C. Prior Art Conventionally, ingons of NbTi-based alloys used as superconducting materials have been manufactured by the following method. That is, a) As shown in Fig. 2, thin niobium rods and thin titanium rods are bundled in a desired composition ratio, for example, 5Qwt%: 5011t% to form a mixture (1), and this mixture (
Set 1) and water-cooled mold (2) in a vacuum container (3),
The power source (4) is operated to generate scum (5) between the mixture (1) and the water-cooled mold (2), and the heat melts the mixture (1) to form an alloy drop (6). ) into a water-cooled mold (2
) into a pool (7) and solidified to form an alloy ingot (8).

口)上述の混合体に電子ビームを照射し、その熱で混合
体を溶融して形成された合金ドロップを水冷鋳型中のプ
ール部に落下させ、凝固させて合金インゴットを形成す
る電子ビーム溶解法。
(1) An electron beam melting method in which the above-mentioned mixture is irradiated with an electron beam and the mixture is melted by the heat, and the formed alloy drop is dropped into a pool in a water-cooled mold and solidified to form an alloy ingot. .

ハ)ニオブ粉とチクンわ)より圧縮混合体を形成し、真
空容器中で加熱圧縮し、冷却して合金インゴ・ノドを形
成する粉末法。
c) A powder method in which a compressed mixture is formed from niobium powder and chikunwa), heated and compressed in a vacuum container, and cooled to form an alloy ingot.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述のNb−Ti系合金の製造方法には
次のような問題点があった。すなわら、イ)アーク溶解
法では、プール部の鋳型近傍と中央部間に大きな温度勾
配が生しるため、Tiが偏析し、インゴット外周部では
Ti温度が高く、結晶粒が大きくなる。
However, the above-mentioned method for manufacturing the Nb-Ti alloy has the following problems. In other words, (a) in the arc melting method, a large temperature gradient occurs between the vicinity of the mold and the center of the pool, so Ti segregates, and the Ti temperature is high at the outer periphery of the ingot, resulting in large crystal grains.

口)電子ビーム溶解法では、高真空を動作要件とするた
め、Tiの歩留りが悪く、またプール部の温度勾配によ
りインゴット外周部ではTifi度が高く、結晶粒が大
きくなる。
In the electron beam melting method, since a high vacuum is required for operation, the yield of Ti is poor, and the Tifi degree is high in the outer peripheral part of the ingot due to the temperature gradient in the pool part, resulting in large crystal grains.

ハ)粉末法では、Ti濃度に大きな変動は生しないが、
ボイドが多く、結晶粒については、混粒や粗大粒が多く
なる。
C) Although the powder method does not cause large fluctuations in Ti concentration,
There are many voids, and the crystal grains include many mixed grains and coarse grains.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明は上記問題点を解決したNb−Ti系合金の製造
方法を提供するもので、少なくとも純ニオブと純チタン
の二種類の原料を混合して混合体を形成する工程と、該
混合体を圧縮して圧縮体を形成する工程と、該圧縮体を
加熱してその一部分を半溶融体とし、該半溶融体部と非
半溶融体部とを相対的に回転させる工程と、前記半溶融
体部を圧縮体中で移動させ、冷却し凝固させる工程とを
有することを第1発明とし、半溶融体部と非半溶融体部
の相対的回転速度が1100rp以上であることを第2
発明とし、半溶融体部の凝固速度が1℃/min以上で
あることを第3発明とするものである。
The present invention provides a method for producing a Nb-Ti alloy that solves the above-mentioned problems, and includes at least a step of mixing two types of raw materials, pure niobium and pure titanium, to form a mixture; a step of compressing to form a compressed body; a step of heating the compressed body to make a part of it into a semi-molten body; and a step of relatively rotating the semi-molten body part and the non-semi-molten body part; The first invention includes a step of moving the body part in a compressed body, cooling and solidifying the body part, and the second invention is that the relative rotational speed of the semi-molten body part and the non-semi-molten body part is 1100 rpm or more.
A third aspect of the present invention is that the solidification rate of the semi-molten portion is 1° C./min or more.

本発明は最近開発された半凝固加工法を応用したもので
ある。半凝固加工法は、溶融状態の金属と固体化した金
属が共存した状態で、機械的に強力にかくはんすること
により、生成する樹枝状晶を破壊して金属の粒子と液体
が混在するスラリーを造り、それを成形加工する方法で
ある。半凝固加工法により製造された合金は、偏析など
の欠陥がなく、結晶粒が微細化しているという特徴があ
る。
The present invention applies a recently developed semi-solid processing method. In the semi-solid processing method, molten metal and solidified metal coexist and are mechanically stirred strongly to destroy the generated dendrites and create a slurry containing a mixture of metal particles and liquid. It is a method of making and molding it. Alloys manufactured using the semi-solid processing method are free from defects such as segregation and have fine grains.

上述のように、純ニオブと純チタンを混合して形成され
た圧縮体を加熱して部分的に半溶融体とし、半溶融体部
と非半溶融体部を相対的に回転させると、NbTiのス
ラリーが作られる。この際に、回転速度を1100rp
以上にすると結晶粒を1胴以下に微細化することができ
る。また、半溶融体部を移動させ、冷却する際に、冷却
速度をビC/min以上にすることにより、さらに結晶
粒を微細化することができる。この冷却速度を下部ると
粒は粗大化するが偏析は少ない状態となる。しかし結晶
粒の粗大化は後の加工性を阻害するため好ましくない。
As mentioned above, when a compressed body formed by mixing pure niobium and pure titanium is heated to partially become a semi-molten body, and the semi-molten body part and the non-semi-molten body part are relatively rotated, NbTi slurry is made. At this time, increase the rotation speed to 1100 rpm.
If the amount is above, the crystal grains can be made finer than one grain. In addition, when moving and cooling the semi-molten material, the crystal grains can be further refined by setting the cooling rate to at least BiC/min. When the cooling rate is lowered, the grains become coarser, but there is less segregation. However, coarsening of crystal grains is not preferable because it impairs subsequent workability.

〔実施例〕〔Example〕

以下、図面に示した実施例に基づいて本発明を説明する
The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明にがかる一実施例の説明図であり、真空
容器(13)中に混合体(11)が、上端を回転軸(1
2’)に固定し下端を回転方向が逆の回転軸(12)に
連結してセットされている。この混合体(11)は、2
00メツシユのニオブとスポンジチタンをN b−46
,5wt%Tiになるように配合し、直径100III
IIlφの円柱状に圧縮して冷間成型し、次いで、7 
tonO熱間静水圧機中で1650°C,10分間保持
後冷却し、大気中に取出したものである。真空容器(1
3)中にセットされた混合体(11)の周囲には固定し
た誘導コイル(14)が配置されている。この誘導コイ
ル(14)に通電し、誘導コイル(14)近傍の混合体
(11)を1989°Cになるまで加熱して半溶融体と
し、上部回転軸(12’)を回転し、下部の回転軸(1
2)を逆方向に1 rpn+で回転させる。誘導コイル
(14)と、半溶融体部(15)は一定位置に保たれ凝
固した合金が水冷管(16)により冷却されて下方に引
き下げられる。
FIG. 1 is an explanatory diagram of an embodiment according to the present invention, in which a mixture (11) is placed in a vacuum container (13) with its upper end connected to a rotating shaft (1).
2'), and the lower end is connected to a rotating shaft (12) whose rotation direction is opposite. This mixture (11) has 2
00 mesh niobium and sponge titanium Nb-46
, 5 wt% Ti, diameter 100III
Compressed and cold-molded into a cylinder of IIlφ, then 7
After being held at 1650°C for 10 minutes in a tonO hot isostatic pressure machine, it was cooled and taken out into the atmosphere. Vacuum container (1
3) A fixed induction coil (14) is placed around the mixture (11) set in the container. The induction coil (14) is energized, the mixture (11) near the induction coil (14) is heated to 1989°C to form a semi-molten substance, the upper rotating shaft (12') is rotated, and the lower Rotating axis (1
2) is rotated in the opposite direction at 1 rpn+. The induction coil (14) and the semi-molten body part (15) are kept at a fixed position, and the solidified alloy is cooled by the water-cooled tube (16) and pulled downward.

以上のようにして製造されたNb−Ti合金インゴット
試料と、従来のアーク溶解法および熱間静水圧処理を3
時間施した粉末法により製造されたインゴット試料につ
いて、その検査結果を第1表に示す。
The Nb-Ti alloy ingot sample produced as described above was subjected to conventional arc melting method and hot isostatic pressure treatment.
Table 1 shows the test results for the ingot samples produced by the powder method that were subjected to the test.

この結果より、本実施例の試料のTi濃度は外周部と中
央部では七んと変わらず、偏析が生しておらず、従来の
アーク法および粉末法より改善されていることがわかる
。また、結晶粒の大きさについては、本実施例において
回転速度を1oOrprn以上、冷却速度を1℃/mi
n以上にすることにより、結晶粒の大きさは1+nm以
下となり、回転速度および冷却速度を上げるほど結晶粒
が小さくなることがわかる。さらに、アーク法および粉
末法ではボイド′が発生するが、本実施例ではボイドが
見出されなかった。
From this result, it can be seen that the Ti concentration of the sample of this example is the same at 7 between the outer periphery and the center, no segregation occurs, and is improved over the conventional arc method and powder method. Regarding the size of crystal grains, in this example, the rotation speed was set to 1 oOrprn or more, and the cooling rate was set to 1°C/mi.
It can be seen that by setting the value to be n or more, the size of the crystal grains becomes 1+nm or less, and the crystal grains become smaller as the rotation speed and cooling rate are increased. Furthermore, although voids occur in the arc method and the powder method, no voids were found in this example.

次に、他の実施例として、Nb  311t%Tiにな
るように配合した混合体を用い、他は前記実施例と同一
条件で製造したNb−Ti合金インゴット試料について
、電子ビーム法および粉末法によるインゴット試料との
比較データを第2表に示す。
Next, as another example, a Nb-Ti alloy ingot sample manufactured under the same conditions as in the previous example, using a mixture containing Nb 311t%Ti, was subjected to electron beam method and powder method. Comparison data with ingot samples are shown in Table 2.

第2表の結果からも、本実施例のNb−Ti合金インゴ
ットは、従来の製造方法により製造されたインゴットに
比較して、Tiの偏析がなくなり、結晶粒は微細化し、
ボイドはなくなるという優れた性質を示している。
The results in Table 2 also show that in the Nb-Ti alloy ingot of this example, Ti segregation was eliminated and the crystal grains were refined, compared to ingots manufactured by conventional manufacturing methods.
It shows the excellent property of eliminating voids.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、純ニオブと純チタ
ンの原料を混合して圧縮体を形成し、次いで、該圧縮体
を加熱してその一部分を半溶融体とし、半溶融体部と非
半溶融体部とを相対的に回転させ、次いで、半溶融体部
を圧縮体中で移vJさせ、冷却し凝固させるため、Ti
の偏析がなく、結晶粒が微細化され、ボイドのないNb
−Ti合金インゴットが得られるという優れた効果があ
る。
As explained above, according to the present invention, raw materials of pure niobium and pure titanium are mixed to form a compressed body, and then the compressed body is heated to make a part of it into a semi-molten body, and a semi-molten body part is formed. Ti
Nb with no segregation, fine grains, and no voids
-There is an excellent effect that a Ti alloy ingot can be obtained.

Nb−Ti系合金としてTa、Hf、Zrなどの第3.
第4元素を添加したものにも同様に適用できるものであ
る。
Third types of Nb-Ti alloys such as Ta, Hf, Zr, etc.
It can be similarly applied to those to which a fourth element is added.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかるNb−Ti系合金の製造方法の
一実施例の説明図、第2図は同製造方法の−従来例の説
明図である。 1.11・・・混合体、 2・・・水冷鋳型、真空容器
、 4・・・電源、 5−アーク、金ドロップ、  7
・・・プール部、  8・・・イ12、12’・・・回
転軸、 14・・・誘導コイル、溶融体部、 16・・
・水冷管。
FIG. 1 is an explanatory diagram of an embodiment of the method for manufacturing an Nb-Ti alloy according to the present invention, and FIG. 2 is an explanatory diagram of a conventional example of the same manufacturing method. 1.11...Mixture, 2...Water-cooled mold, vacuum container, 4...Power source, 5-Arc, gold drop, 7
... Pool part, 8... A12, 12'... Rotating shaft, 14... Induction coil, molten body part, 16...
・Water cooling pipe.

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも純ニオブと純チタンの二種類の原料を
混合して混合体を形成する工程と、該混合体を圧縮して
圧縮体を形成する工程と、該圧縮体を加熱してその一部
分を半溶融体とし、該半溶融体部と非半溶融体部とを相
対的に回転させる工程と、前記半溶融体部を圧縮体中で
移動させ、冷却し凝固させる工程とを有することを特徴
とするNb−Ti系合金の製造方法。
(1) A step of mixing at least two types of raw materials, pure niobium and pure titanium, to form a mixture, a step of compressing the mixture to form a compressed body, and a step of heating the compressed body to form a part thereof. is a semi-molten body, the process includes a step of relatively rotating the semi-molten body part and a non-semi-molten body part, and a process of moving the semi-molten body part in a compressed body, cooling and solidifying it. A method for producing a featured Nb-Ti alloy.
(2)半溶融体部と非半溶融体部の相対的回転速度が1
00rpm以上であることを特徴とする請求項1記載の
Nb−Ti系合金の製造方法。
(2) The relative rotational speed of the semi-molten part and the non-semi-molten part is 1
2. The method for producing a Nb-Ti alloy according to claim 1, wherein the speed is 00 rpm or more.
(3)半溶融体の凝固速度が1℃/min以上であるこ
とを特徴とする請求項1記載のNb−Ti系合金の製造
方法。
(3) The method for producing a Nb-Ti alloy according to claim 1, wherein the solidification rate of the semi-molten material is 1° C./min or more.
JP1182235A 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy Expired - Lifetime JP2583313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1182235A JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1182235A JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Publications (2)

Publication Number Publication Date
JPH0347930A true JPH0347930A (en) 1991-02-28
JP2583313B2 JP2583313B2 (en) 1997-02-19

Family

ID=16114709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1182235A Expired - Lifetime JP2583313B2 (en) 1989-07-14 1989-07-14 Method for producing Nb-Ti alloy

Country Status (1)

Country Link
JP (1) JP2583313B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703757A (en) * 2012-05-18 2012-10-03 宁夏东方钽业股份有限公司 Corrosion resistant niobium-titanium alloy, and method for manufacturing plates and pipes with the same
CN109694136A (en) * 2018-12-29 2019-04-30 苏州凯虹高分子科技有限公司 A kind of scale inhibition pipe and its production technology

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102703757A (en) * 2012-05-18 2012-10-03 宁夏东方钽业股份有限公司 Corrosion resistant niobium-titanium alloy, and method for manufacturing plates and pipes with the same
CN109694136A (en) * 2018-12-29 2019-04-30 苏州凯虹高分子科技有限公司 A kind of scale inhibition pipe and its production technology
CN109694136B (en) * 2018-12-29 2022-05-10 苏州凯虹高分子科技有限公司 Scale inhibition pipe and production process thereof

Also Published As

Publication number Publication date
JP2583313B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
US8668760B2 (en) Method for the production of a β-γ-TiAl base alloy
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
JPS59107041A (en) Method of rendering strength and ductility to intermetallic compound phase
JPH0835029A (en) Cast aluminum alloy with high strength and high ductility and production thereof
JP2002003977A (en) TiB PARTICLE REINFORCED Ti2AlNb INTERMETALLIC COMPOUND MATRIX COMPOSITE MATERIAL AND ITS PRODUCTION METHOD
GB2088409A (en) Dispersion Strengthened Aluminium Alloy Article and Method
CN107400808B (en) A kind of Al-Ti-C-Nd intermediate alloy and its preparation method and application
JPH0347930A (en) Production of nb-ti alloy
JPH06287661A (en) Production of smelted material of refractory metal
JPS61119632A (en) Manufacture of high ductility material
JPS63238268A (en) Production of target for sputtering
JPS6270550A (en) Material for target
JP2003136222A (en) METHOD FOR MANUFACTURING Ni-BASE SUPERALLOY INGOT COMPOSED OF LITTLE COMPONENT SEGREGATION AND UNIFORMLY FINE CRYSTAL GRAIN
JPS6220847A (en) Metallic material having fine crystal grain and its production
JPH03173704A (en) Production of target for sputtering
JPH0114298B2 (en)
JP3279346B2 (en) Method for producing amorphous TiAl-based powder
JPH04183835A (en) Manufacture of ni-ti alloy member
JPH079113A (en) Production of composite material
JPS6217144A (en) Manufacture of al-li alloy
JPS63243208A (en) Production of finer-grained primary crystal si material of hypereutectic al-si alloy
JPH0987771A (en) Production of half-melted aluminum-magnesium alloy
JPS6234818B2 (en)
KR100551851B1 (en) Manufacturing method of material for semi-solid casting
JPS62275561A (en) Production of complex material having excellent high temperature oxidizing resistance and hot workability