JPH0347720B2 - - Google Patents

Info

Publication number
JPH0347720B2
JPH0347720B2 JP59162948A JP16294884A JPH0347720B2 JP H0347720 B2 JPH0347720 B2 JP H0347720B2 JP 59162948 A JP59162948 A JP 59162948A JP 16294884 A JP16294884 A JP 16294884A JP H0347720 B2 JPH0347720 B2 JP H0347720B2
Authority
JP
Japan
Prior art keywords
water
condensate
storage tank
condensate storage
emergency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59162948A
Other languages
Japanese (ja)
Other versions
JPS6141998A (en
Inventor
Kazuo Oowada
Masayuki Izumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP16294884A priority Critical patent/JPS6141998A/en
Publication of JPS6141998A publication Critical patent/JPS6141998A/en
Publication of JPH0347720B2 publication Critical patent/JPH0347720B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、原子力発電プラントの補給水系に係
り、特に放射性廃液の環境放水量低減に好適な復
水貯蔵設備に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a make-up water system for a nuclear power plant, and particularly to a condensate storage facility suitable for reducing the amount of radioactive waste water discharged into the environment.

〔発明の背景〕[Background of the invention]

まず、原子力発電プラントの水の収支について
以下に説明する。
First, the balance of water in nuclear power plants will be explained below.

原子力発電プラント内へ水を供給するものとし
ては、第2図の如くプラント外の貯水池1等か
ら、前処理装置2を通してろ過した後、ろ過水タ
ンク3に貯わえられ、このろ過水タンク3からプ
ラント内各機器10へ供給するろ過水系4と、前
記、ろ過水タンク3から純水製造装置5を通して
脱塩された後、純水タンク6に貯わえられ、この
純水タンク6からプラント内各機器10へ供給す
る純水補給水系7の2つがある。
As shown in Fig. 2, water is supplied into the nuclear power plant from a reservoir 1 outside the plant, filtered through a pretreatment device 2, and then stored in a filtered water tank 3. A filtered water system 4 is supplied from the filtered water tank 3 to each device 10 in the plant, and after being desalinated from the filtered water tank 3 through the pure water production device 5, it is stored in a pure water tank 6, and from this pure water tank 6 is supplied to the plant. There are two make-up water systems 7 for supplying pure water to each device 10.

この2つの補給水系のうち、ろ過水系4につい
ては、その主な供給先が海水取扱い機器への洗浄
であるため、使用後の廃液は放射性を含むことが
なく、そのまま放水路14へ放出され放射性廃液
の環境放出には関係がない。
Of these two make-up water systems, the filtrate water system 4 is mainly supplied to wash equipment that handles seawater, so the waste liquid after use does not contain any radioactivity, and is directly discharged into the water discharge channel 14 and becomes radioactive. It is not related to the release of waste liquid into the environment.

もう一つの純水補給水系7については、その主
な供給先が機器・配管の洗浄、除洗であるため、
使用後の廃液は大部分放射性を含むものになる。
As for the other pure water make-up water system 7, its main supply destination is cleaning and dewashing of equipment and piping.
Most of the waste liquid after use will contain radioactivity.

つまり、純水補給水系での供給量は、蒸発等を
考えなければ、すべて放射性廃液として処理する
ことになる。
In other words, the amount supplied by the pure water make-up water system will be completely treated as radioactive waste, unless evaporation is taken into account.

また、原子力発電プラント内には、復水貯蔵タ
ンク8を水源とする復水補給水系9がある。
Further, within the nuclear power plant, there is a condensate make-up water system 9 that uses a condensate storage tank 8 as a water source.

この復水補給水系9は、原子力発電プラント内
で発生する放射性廃液の処理水を水源としてお
り、また、使用後の廃液も放射性廃液として処理
するため、復水補給水系の供給量は放射性廃液の
環境放出には影響がない。
This condensate make-up water system 9 uses treated radioactive waste water generated within the nuclear power plant as its water source, and waste liquid after use is also treated as radioactive waste liquid, so the supply amount of the condensate make-up water system is limited to There is no effect on environmental releases.

以上より、純水補給水系の供給量を少なくし、
復水補給水系の供給、廃液処理及び回収を有効に
行なうことで、放射性廃液の環境放出量を低減す
ることができる。
Based on the above, the supply amount of the pure water make-up water system is reduced,
By effectively supplying the condensate make-up water system, treating and recovering waste liquid, it is possible to reduce the amount of radioactive waste liquid released into the environment.

ここで、放射性廃液の回収についても第2図を
用いて説明する。
Here, the recovery of radioactive waste liquid will also be explained using FIG. 2.

放射性廃液には、低電導度廃液(以下LCWと
略称)と、高電導度廃液(以下HCWと略称)の
2種類がある。
There are two types of radioactive waste liquid: low conductivity waste liquid (hereinafter abbreviated as LCW) and high conductivity waste liquid (hereinafter abbreviated as HCW).

まず、LCWについては、プラント内で発生す
る通常低電導度高放射能の廃液であり、イオン交
換処理を経済的に行なえるもので、主に以下のも
のである。
First, regarding LCW, it is usually a low-conductivity, high-radiation waste liquid generated within a plant, which can be economically processed by ion exchange treatment, and mainly includes the following:

(i) 炉水,復水,給水等を内蔵する機器・配管か
らのドレン (ii) 炉水の余剰水 これらの廃液は、LCW処理系11にて処理さ
れた後、復水貯蔵タンク8へ回収され復水補給水
系9の水源として再利用する。
(i) Drains from equipment and piping containing reactor water, condensate, water supply, etc. (ii) Surplus water from reactor water After being treated in the LCW treatment system 11, these waste liquids are sent to the condensate storage tank 8. It is recovered and reused as a water source for the condensate make-up water system 9.

もう一つのHCWについては、プラント内で発
生する通常高電導度低放射能の廃液であり、イオ
ン交換処理を経済的に行なえないもので、主に以
下のものである。
The other type of HCW is waste liquid with high conductivity and low radioactivity that is normally generated within the plant and cannot be economically processed by ion exchange treatment, mainly the following:

(i) 床ドレン (ii) サプレツシヨンプール水 (iii) 除染廃液 これらの廃液は、HCW処理系12にて処理さ
れた後、HCW貯留槽13に貯えられ、復水貯蔵
タンク8へ回収するか、放水路14へ導びき放出
する。
(i) Floor drain (ii) Suppression pool water (iii) Decontamination waste liquid After being treated in the HCW treatment system 12, these waste liquids are stored in the HCW storage tank 13 and collected in the condensate storage tank 8. Or, it can be guided to the water discharge channel 14 and discharged.

このHCW貯留槽13に貯えられたHCWの廃
液を、すべて復水貯蔵タンク8へ回収することが
できれば、放射性廃液の環境放出をなくすことが
できる。
If all of the HCW waste liquid stored in the HCW storage tank 13 can be collected into the condensate storage tank 8, it is possible to eliminate the release of radioactive waste liquid into the environment.

このHCW廃液の回収先の判断は、HCW貯留
槽13の水位が高となつた時に、復水貯蔵タンク
8の水位を確認し、回収できる容量をもつていれ
ば復水貯蔵タンク8へ回収し、容量不足の場合に
は、放水路14へ放出する。
To determine where to collect this HCW waste liquid, check the water level in the condensate storage tank 8 when the water level in the HCW storage tank 13 becomes high, and collect it in the condensate storage tank 8 if it has the capacity to collect it. If the capacity is insufficient, the water will be discharged to the spillway 14.

ここで、復水貯蔵タンクの水位制御について、
第3図を用いて説明する。
Here, regarding the water level control of the condensate storage tank,
This will be explained using FIG.

復水貯蔵タンク8の水位は、以下の5つのレベ
ルスイツチ(以下LSと略称)にて管理する。
The water level of the condensate storage tank 8 is managed by the following five level switches (hereinafter abbreviated as LS).

(i) LSHH31……警報 (ii) LSH32……純水補給停止 (iii) LSL33……純水補給開始 (iv) LSLL34……警報 (v) LSLLL35……非常用炉心冷却系の水源切替及
び驚報 このうち、(i)のLSHH31は復水貯蔵タンク8の
オーバーフローライン21よりオーバーフローす
る前に警報を発するように設定する。
(i) LS HH 31...Alarm (ii) LS H 32...Stop pure water supply (iii) LS L 33...Start pure water supply (iv) LS LL 34...Alarm (v) LS LLL 35... Emergency core cooling system water source switching and surprise alarm Among these, LS HH 31 (i) is set to issue an alarm before overflowing from the overflow line 21 of the condensate storage tank 8.

(iv)のLSLL34は、復水補給水系9の吸込部への
空気巻き込み防止として警報を発するように設定
する。
The LS LL 34 in (iv) is set to issue an alarm to prevent air from being drawn into the suction section of the condensate make-up water system 9.

(v)のLSLLL35は、復水貯蔵タンク8が非常用炉
心冷却系の水源になつていることより、非常用炉
心冷却系吸込配管22へ空気を巻き込む水位まで
低下すると、本LSにて水源をサプレツシヨンチ
エンバへ切替えるとともに、警報を発するように
設定する。
LS LLL 35 in (v) is, since the condensate storage tank 8 is the water source for the emergency core cooling system, when the water level drops to a level that draws air into the emergency core cooling system suction pipe 22, this LS Switch the water source to the suppression chamber and set it to issue an alarm.

(ii)のLSH32は、(i)のLSHH31から本LSHまでの容
積を、放射性廃液のうちLCW処理系11の処理
水を回収できる容積となるように設定する。
The LS H 32 in (ii) is set so that the volume from the LS HH 31 in (i) to the main LS H is a volume that can collect the treated water of the LCW treatment system 11 from among the radioactive waste liquid.

これは、LCW処理水の回収先が復水貯蔵タン
クのみであることより、いつでも回収できるよう
通常時空けておく必要がある。
This is because the condensate storage tank is the only place where LCW treated water can be collected, so it must be kept open at normal times so that it can be collected at any time.

(iii)のLSL34は、復水貯蔵タンク8の水位確保の
ため、水位が低下した場合に純水の補給を開始さ
せるものであり、(iv)のLSLL以上に設定する。
LS L 34 in (iii) is to ensure the water level in the condensate storage tank 8 and starts replenishment of pure water when the water level drops, and is set to LS LL or higher in (iv).

また、復水貯蔵タンク8は非常用炉心冷却系の
水源となつていることから、原子炉通常運転中に
は非常時必要な容積を確保する必要があるので、
非常用炉心冷却系吸込配管22から復水補給水系
9の吸込口までの間には、他の配管を設けないよ
うにし、配管破断等により非常時に必要な容積が
流出することがないようにする。
In addition, since the condensate storage tank 8 serves as the water source for the emergency core cooling system, it is necessary to secure the necessary capacity for emergencies during normal reactor operation.
No other piping should be installed between the emergency core cooling system suction piping 22 and the suction port of the condensate make-up water system 9 to prevent the necessary volume from leaking out in an emergency due to piping rupture, etc. .

以上より、復水貯蔵タンク8の通常水位は、(ii)
のLSHから(iii)のLSLの間であり、復水貯蔵タンク
8からプラント内各機器10へ供給し、水位が
LSLまで低下すると自動的に純水補給水系7の純
水供給弁23が開し純水の供給を開始し、水位が
LSHまで上昇すると純水供給弁23が閉し純水の
供給を停止する。
From the above, the normal water level of the condensate storage tank 8 is (ii)
It is between LS H of (iii) and LS L of (iii), and the water level is
When the water level drops to LS L , the pure water supply valve 23 of the pure water make-up water system 7 automatically opens and starts supplying pure water, and the water level rises.
When the water rises to LS H , the pure water supply valve 23 closes to stop the supply of pure water.

次に、復水貯蔵タンク8から、プラント内各機
器10へ供給する復水補給水系9の供給量につい
ては、原子炉通常運転中に連続で使用する量はご
く少量であり、間歇的な使用先についても供給量
は少なく、廃棄物処理系にて処理され復水貯蔵タ
ンクに回収されるまでの時間を考えても、復水貯
蔵タンク容量に十分余裕がある。
Next, regarding the supply amount of the condensate make-up water system 9 from the condensate storage tank 8 to each device 10 in the plant, the amount that is continuously used during normal reactor operation is very small, and it is only used intermittently. As for the above, the supply amount is small, and even considering the time it takes for the waste to be processed in the waste treatment system and collected in the condensate storage tank, there is sufficient capacity in the condensate storage tank.

復水補給水系の最大供給量は、プラント定検時
(原子炉停止中)の、原子炉ウエル及び蒸気乾燥
器気水分離器ピツトへの水張りであり、また、定
検中は各機器の分解点検時の洗浄水として供給量
は多くなる。
The maximum amount of water supplied to the condensate make-up water system is the amount of water that is filled into the reactor well and the steam dryer steam separator pit during plant regular inspections (while the reactor is shut down), and the amount of water that is supplied to the reactor well and the steam dryer steam separator pit during regular plant inspections. The amount of water supplied will increase as it is used for cleaning during inspections.

以上が、従来の方式であり、これによると、非
常用炉心冷却系の水源確保の必要がなく、かつ、
復水供給量が最も多く必要となる定検中に、復水
貯蔵タンクの復水補給水系吸込配管以下の復水
は、プラント用水として使用することができない
構成であり、これにより、純水供給の可能性が高
くなり、放射性廃液の環境放出量が多くなる欠点
があつた。
The above is the conventional method, which eliminates the need to secure a water source for the emergency core cooling system, and
During regular inspections when the largest amount of condensate supply is required, the condensate below the condensate make-up water system suction piping of the condensate storage tank cannot be used as plant water; This has the disadvantage of increasing the possibility of radioactive waste being released into the environment.

放射性廃液の環境放出量を低減する同一目的の
例として、特開昭53−43199号、特開昭53−
143899号がある。
As an example of the same purpose of reducing the amount of radioactive waste released into the environment, JP-A-53-43199 and JP-A-53-
There is number 143899.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、原子力発電所特有の放射性廃
液をプラント内用水として有効に使用できるよう
にして放射性廃液の環境放出量を低減できる設備
を提供することにある。
An object of the present invention is to provide equipment that can effectively use radioactive waste fluid peculiar to nuclear power plants as water for use within the plant, thereby reducing the amount of radioactive waste fluid released into the environment.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために本発明は、原子力発
電プラント特有の放射性廃液の処理水である復水
をタンクに貯蔵しプラント用水として再利用する
復水貯蔵設備において、前記タンクをその上部
夫々にベント配管を接続した常用タンクと非常用
タンクとに分けて設置し、前記常用タンクの底部
近傍から前記非常用タンクの底部近傍までを連絡
管により連結すると共に、この連絡管の最上部が
通常運転時の前記常用タンクの水位よりも低い位
置となるように前記連絡管を配設し、更に、前記
連絡管の最上部にこの連絡管のサイフオン作用を
制御する開閉弁を有するベント配管を接続したも
のである。
In order to achieve the above object, the present invention provides a condensate storage facility in which condensate, which is treated water of radioactive waste liquid peculiar to nuclear power plants, is stored in a tank and reused as water for the plant. It is installed separately into a regular tank and an emergency tank with connected piping, and a connecting pipe connects the vicinity of the bottom of the regular tank to the vicinity of the bottom of the emergency tank, and the top of the connecting pipe is connected during normal operation. The connecting pipe is arranged so that the water level is lower than the water level of the regular tank, and further, a vent pipe having an on-off valve for controlling the siphon action of the connecting pipe is connected to the top of the connecting pipe. It is.

つまり、通常運転時は前記連絡管の最上部に接
続されたベント配管に備えられた開閉弁を開ける
ことにより、サイフオン作用を有する前記連絡管
はこのベント配管から空気を吸入するため非常用
タンクの水を吸み上げることはなく、非常用タン
クの水位は変化しない。
In other words, during normal operation, by opening the on-off valve provided in the vent pipe connected to the top of the connecting pipe, the connecting pipe, which has a siphon effect, sucks air from this vent pipe, so the emergency tank is closed. It does not suck up water, and the water level in the emergency tank does not change.

これに対し、定期点検等の非常用炉心冷却系の
水源確保の必要性がない原子炉停止中は、前記開
閉弁を閉じることにより、常用タンクの水位が低
下してくると、前記連絡管のサイフオン効果によ
り非常用タンクからも給水が可能となる。
On the other hand, during reactor shutdown, when there is no need to secure a water source for the emergency core cooling system such as during periodic inspections, by closing the on-off valve, when the water level in the regular tank decreases, the connecting pipe Due to the siphon effect, water can also be supplied from the emergency tank.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described with reference to FIG.

非常用復水貯蔵タンク41と常用復水貯蔵タン
ク42の2基を設置する。
Two units, an emergency condensate storage tank 41 and a regular condensate storage tank 42, are installed.

この2基のタンクを一本の連絡管43にて接続
する。
These two tanks are connected by one communication pipe 43.

この連絡管43は、非常用復水貯蔵タンク41
の底部から常用復水貯蔵タンク42の底部まで導
き、非常用復水貯蔵タンク41からの連絡管43
出口位置は、タンク上部から出すものとする。
This connecting pipe 43 connects to the emergency condensate storage tank 41
A connecting pipe 43 leads from the bottom of the normal condensate storage tank 42 to the bottom of the emergency condensate storage tank 41.
The exit location shall be from the top of the tank.

また、非常用復水貯蔵タンク41及び連絡管4
3のハイポイント部にベント管44,46を設
け、常用復水貯蔵タンク42のベント管24と同
一レベルで開放する。
In addition, an emergency condensate storage tank 41 and a connecting pipe 4
Vent pipes 44 and 46 are provided at the high point portion of No. 3 and are opened at the same level as the vent pipe 24 of the regular condensate storage tank 42.

連絡管43のハイポイント部に設けたベント管
44には、止め弁45を設ける。
A stop valve 45 is provided in the vent pipe 44 provided at the high point portion of the communication pipe 43.

また、放射性廃液の処理系であるLCW処理系
11、HCW処理系12の戻り配管及び純水補給
水系7は、非常用復水貯蔵タンク41へ戻す。
In addition, the return piping of the LCW processing system 11 and HCW processing system 12, which are radioactive waste liquid processing systems, and the pure water make-up water system 7 are returned to the emergency condensate storage tank 41.

次に、非常用復水貯蔵タンク41、常用復水貯
蔵タンク42の水位制御用LSは、以下の4つの
LSにて管理する。
Next, the following four LSs for water level control of the emergency condensate storage tank 41 and the regular condensate storage tank 42 are used.
Managed by LS.

(i) LSHH31……警報 (ii) LSH32……純水補給停止 (iii) LSL33……純水補給開始及び警報 (iv) LSLL34……非常用炉心冷却系の水源切替及
び警報 それぞれの設置位置は、(i)LSHH31は、常用復
水貯蔵タンク31のオーバーフローライン21よ
りオーバーフローする前に警報を発するように設
置する。
(i) LS HH 31... Alarm (ii) LS H 32... Pure water supply stop (iii) LS L 33... Pure water supply start and alarm (iv) LS LL 34... Water source for emergency core cooling system Switching and Alarm The respective installation positions are as follows: (i) LS HH 31 is installed so as to issue an alarm before overflow from the overflow line 21 of the regular condensate storage tank 31.

(iii) LSL33は、常用復水貯蔵タンク31の復水補
給水系9の吸込部への空気巻き込み防止として
警報を発するように設置し、また、純水補給を
開始するようにする。
(iii) The LS L 33 is installed to issue an alarm to prevent air from being entrained in the suction section of the condensate make-up water system 9 of the regular condensate storage tank 31, and also to start replenishing pure water.

(iv) LSLL34は、非常用炉心冷却系吸込配管22
へ空気を巻き込む水位まで低下すると、水源を
サプレツシヨンチエンバへ切替えるとともに、
警報を発するようにする。
(iv) LS LL 34 is the emergency core cooling system suction pipe 22
When the water level drops to a level that entrains air, the water source is switched to the suppression chamber, and
Make sure to issue an alarm.

(ii)LSH32は、(i)LSHH31からの容積を放射性廃液
のうちLCW処理系11の処理水を回収できるよ
うに設定する。
(ii) The volume of LS H 32 from (i) LS HH 31 is set so that the treated water of the LCW treatment system 11 can be recovered from the radioactive waste liquid.

以上より、通常運転中は連絡管43のハイポイ
ント部に設けたベント管44の止め弁45を開け
ておくことにより、復水補給水系9より各供給先
に復水を供給し、常用復水貯蔵タンク42の水位
が低下してきても、連絡管43はベント管44よ
り空気が入ることで非常用復水貯蔵タンク41水
位は変化せず、非常用炉心冷却系の水源として復
水を確保することができる。
From the above, by keeping the stop valve 45 of the vent pipe 44 installed at the high point of the communication pipe 43 open during normal operation, condensate is supplied from the condensate make-up water system 9 to each supply destination, and the regular condensate Even if the water level of the storage tank 42 decreases, air enters the communication pipe 43 from the vent pipe 44, so the water level of the emergency condensate storage tank 41 does not change, and condensate is secured as a water source for the emergency core cooling system. be able to.

また、通常運転中の復水の供給量は少なく、廃
棄物処理系のLCW処理系11とHCW処理系12
からの戻り水を期待することができるため、LSL
33まで水位が低下することはない。
In addition, the amount of condensate supplied during normal operation is small, and the LCW treatment system 11 and HCW treatment system 12 of the waste treatment system
Since we can expect return water from LS L
The water level will never drop below 33.

次に、定検中については、ベント管44の止め
弁45を全閉することにより、復水補給水系9よ
り各供給先に復水を供給し、常用復水貯蔵タンク
42の水位が低下してくると、連絡管43サイフ
オン効果により、非常用復水貯蔵タンク41内の
復水も復水補給水系9より供給可能となる。
Next, during regular inspections, by fully closing the stop valve 45 of the vent pipe 44, condensate is supplied from the condensate make-up water system 9 to each supply destination, and the water level in the regular condensate storage tank 42 is lowered. Then, due to the siphon effect of the communication pipe 43, the condensate in the emergency condensate storage tank 41 can also be supplied from the condensate make-up water system 9.

ここで、連絡管43はサイフオン効果を利用す
る為、常用復水貯蔵タンク42及び非常用復水貯
蔵タンク41内の連絡管43の吸込口レベルよ
り、連絡管ハイポイント部レベルまでの高さの差
は、最大でも10m以内とする必要がある。
Here, since the communication pipe 43 utilizes the siphon effect, the height is from the suction port level of the communication pipe 43 in the regular condensate storage tank 42 and the emergency condensate storage tank 41 to the level of the high point of the communication pipe. The difference must be within 10m at maximum.

また、非常用復水貯蔵タンク42は、非常用炉
心冷却系の水源として通常運転中確保しなければ
ならない。これについては、連絡管43を非常用
復水貯蔵タンク42の上部より取り出すことで連
絡管43が破断してもタンク内の復水が流出する
ことはない。
Furthermore, the emergency condensate storage tank 42 must be secured during normal operation as a water source for the emergency core cooling system. Regarding this, by taking out the connecting pipe 43 from the upper part of the emergency condensate storage tank 42, even if the connecting pipe 43 breaks, the condensate in the tank will not flow out.

また、LCW処理系11、HCW処理系12の戻
り配管及び純水補給水系9の接続位置を、非常用
復水貯蔵タンク41の非常用炉心冷却系に必要な
容積よりも上部にすることで破断を考えても問題
はない。また、これらの配管を非常用復水貯蔵タ
ンク41へ接続し、オーバーフロー分を常用復水
貯蔵タンク42へ流すことで、通常運転中には、
非常用復水貯蔵タンク41内は満水状態となる。
In addition, the connection position of the return piping of the LCW treatment system 11, the HCW treatment system 12, and the pure water make-up water system 9 is set above the capacity of the emergency condensate storage tank 41 required for the emergency core cooling system. There is no problem in thinking about it. In addition, by connecting these pipes to the emergency condensate storage tank 41 and flowing the overflow to the regular condensate storage tank 42, during normal operation,
The inside of the emergency condensate storage tank 41 becomes full of water.

本実施例によれば、原子炉通常運転中には、常
用復水貯蔵タンクのみ使用し、非常用復水貯蔵タ
ンクは非常用炉心冷却系の水源として確保してお
くことができ、また、非常用炉心冷却系の水源確
保の必要がない定検中には、常用復水貯蔵タンク
及び非常用復水貯蔵タンクの両方とも、復水補給
水系によりプラント用水として有効に使用するこ
とができる。
According to this embodiment, during normal reactor operation, only the service condensate storage tank is used, and the emergency condensate storage tank can be secured as a water source for the emergency core cooling system. During regular inspections when there is no need to secure a water source for the core cooling system, both the regular condensate storage tank and the emergency condensate storage tank can be effectively used as plant water by the condensate make-up water system.

これにより、プラント外から供給される純水の
量を低減することができ、しいては、原子力発電
プラント全体からの放射性廃液の環境放出量を低
減することができる。
As a result, the amount of pure water supplied from outside the plant can be reduced, and in turn, the amount of radioactive waste liquid released into the environment from the entire nuclear power plant can be reduced.

非常用復水貯蔵タンク内の復水も、プラント内
用水として供給することが可能となることより、
従来、定検時必要量と非常時必要量の合計を復水
貯蔵容積(例として約4000m3)とする必要があつ
たが、本実施例の場合、非常時必要量(例として
約500m3)分だけ少なくすることができる。
The condensate in the emergency condensate storage tank can also be supplied as water for use within the plant.
Conventionally, it was necessary to set the condensate storage capacity as the sum of the amount required for regular inspections and the amount required in an emergency (approximately 4000 m 3 as an example), but in the case of this example, the amount required in an emergency (approximately 500 m 3 as an example) ) can be reduced by the same amount.

また、非常用水源確保の意味から、従来、復水
貯蔵タンク全体を耐震Aクラスとして設計する必
要があつたが、本実施例の場合、タンク寸法が小
さい非常用復水貯蔵タンクをAクラスとし、常用
復水貯蔵タンクをBクラスと分けて設計すること
ができる。
In addition, in order to secure an emergency water source, conventionally the entire condensate storage tank had to be designed as earthquake-resistant A class, but in this example, the emergency condensate storage tank with small tank dimensions is designed as A class. , the regular condensate storage tank can be designed separately from the B class.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、原子力発電所特有の放射性廃
液をプラント用水として有効に使用することによ
り、プラント外からの純水供給量を少なくするこ
とができ、放射性の環境放出量を低減することが
できる。
According to the present invention, by effectively using radioactive waste liquid unique to nuclear power plants as plant water, the amount of pure water supplied from outside the plant can be reduced, and the amount of radioactive released into the environment can be reduced. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の復水貯蔵設備の
水位及び補給を示した構成図、第2図は、原子力
発電プラント全体の水の収支を示した概略構成
図、第3図は、従来の復水貯蔵タンクの水位及び
補給を示した構成図である。 1…貯水池、2…前処理装置、3…ろ過水タン
ク、4…雑用水系、5…純水製造装置、6…純水
タンク、7…純水補給水系、8…復水貯蔵タン
ク、9…復水補給水系、10…プラント内各機
器、11…低電導度処理系、12…高電導度処理
系、13…HCW貯留槽、14…放水路、15…
HCW貯留ポンプ、21…オーバーフローライ
ン、22…非常用炉心冷却系吸込配管、23…純
水供給弁、41…非常用復水貯蔵タンク、42…
常用復水貯蔵タンク。
Fig. 1 is a block diagram showing the water level and replenishment of condensate storage equipment according to an embodiment of the present invention, Fig. 2 is a schematic block diagram showing the water balance of the entire nuclear power plant, and Fig. 3 is a block diagram showing the water balance of the entire nuclear power plant. , is a configuration diagram showing the water level and replenishment of a conventional condensate storage tank. 1... Reservoir, 2... Pre-treatment device, 3... Filtered water tank, 4... Miscellaneous water system, 5... Pure water production device, 6... Pure water tank, 7... Pure water makeup water system, 8... Condensate storage tank, 9... Condensate make-up water system, 10...Each device in the plant, 11...Low conductivity treatment system, 12...High conductivity treatment system, 13...HCW storage tank, 14...Discharge channel, 15...
HCW storage pump, 21... Overflow line, 22... Emergency core cooling system suction piping, 23... Pure water supply valve, 41... Emergency condensate storage tank, 42...
Regular condensate storage tank.

Claims (1)

【特許請求の範囲】 1 原子力発電プラント特有の放射性廃液の処理
水である復水をタンクに貯蔵しプラント用水とし
て再利用する復水貯蔵設備において、 前記タンクをその上部夫々にベント配管を接続
した常用タンクと非常用タンクとに分けて設置
し、 前記常用タンクの底部近傍から前記非常用タン
クの底部近傍までを連絡管により連結すると共
に、この連絡管の最上部が通常運転時の前記常用
タンクの水位よりも低い位置となるように前記連
絡管を配設し、 更に、前記連絡管の最上部にこの連絡管のサイ
フオン作用を制御する開閉弁を有するベント配管
を接続したことを特徴とする復水貯蔵設備。
[Scope of Claims] 1. In a condensate storage facility in which condensate, which is treated water of radioactive liquid waste peculiar to nuclear power plants, is stored in tanks and reused as plant water, vent piping is connected to the upper part of each of the tanks. A regular tank and an emergency tank are installed separately, and a connecting pipe connects the vicinity of the bottom of the regular tank to the vicinity of the bottom of the emergency tank, and the top of the connecting pipe connects to the regular tank during normal operation. The communication pipe is arranged so that the water level is lower than the water level of the communication pipe, and further, a vent pipe having an on-off valve for controlling the siphon action of the communication pipe is connected to the top of the communication pipe. Condensate storage equipment.
JP16294884A 1984-08-03 1984-08-03 Condensate storage facility Granted JPS6141998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16294884A JPS6141998A (en) 1984-08-03 1984-08-03 Condensate storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16294884A JPS6141998A (en) 1984-08-03 1984-08-03 Condensate storage facility

Publications (2)

Publication Number Publication Date
JPS6141998A JPS6141998A (en) 1986-02-28
JPH0347720B2 true JPH0347720B2 (en) 1991-07-22

Family

ID=15764304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16294884A Granted JPS6141998A (en) 1984-08-03 1984-08-03 Condensate storage facility

Country Status (1)

Country Link
JP (1) JPS6141998A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251258B1 (en) * 2011-11-03 2013-04-10 기아자동차주식회사 Cup holder of console box for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251258B1 (en) * 2011-11-03 2013-04-10 기아자동차주식회사 Cup holder of console box for vehicle

Also Published As

Publication number Publication date
JPS6141998A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
JPS6020187A (en) Safety cooling device for reactor
JPH0347720B2 (en)
CN105905981A (en) Noble metal automatic activation ion exchange resin column set system
KR100266506B1 (en) Reactor cavity flooding system
CN211547900U (en) Building fire-fighting water tank system
CN216689569U (en) Waste water recycling system
JP3020573B2 (en) Spent fuel pool cooling system
US5289223A (en) Chemical recycler for photo processing machine
CN217925124U (en) Offshore floating type hotel swimming pool circulating system
JP2670352B2 (en) Control rod drive water equipment
JP2000206284A (en) Condensate reservoir equipment and its operation control method
CN214287454U (en) Tail gas emptying and leaching system
JP2918353B2 (en) Reactor containment vessel
JPS5818197A (en) Reactor building floor drain processing system
JPS62263499A (en) Condensate storage tank device
JP2733615B2 (en) Water supply method in automatic processor
JPH0325200Y2 (en)
JPS6212472Y2 (en)
KR800000189B1 (en) Treating method for waste plating-water
JP3148569B2 (en) Bathtub equipment
SU635352A1 (en) Automatic draining-off device
JP2624756B2 (en) How to clean the culture tank
Go et al. A Study on the Application of Ion Crystallization Technology to the APR 1400 Liquid Waste Management System
JPH0783805A (en) Method for supplying zero water for far ultraviolet ray absorbance meter
JP2000355800A (en) Recycling system of plating waste water