JPH034768Y2 - - Google Patents

Info

Publication number
JPH034768Y2
JPH034768Y2 JP1983171337U JP17133783U JPH034768Y2 JP H034768 Y2 JPH034768 Y2 JP H034768Y2 JP 1983171337 U JP1983171337 U JP 1983171337U JP 17133783 U JP17133783 U JP 17133783U JP H034768 Y2 JPH034768 Y2 JP H034768Y2
Authority
JP
Japan
Prior art keywords
pressure
intake
atmospheric pressure
engine
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983171337U
Other languages
Japanese (ja)
Other versions
JPS6078955U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17133783U priority Critical patent/JPS6078955U/en
Publication of JPS6078955U publication Critical patent/JPS6078955U/en
Application granted granted Critical
Publication of JPH034768Y2 publication Critical patent/JPH034768Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 〈技術分野〉 本考案は、内燃機関の空燃比、点火時期等の制
御対象を高精度に演算制御する装置に関する。
[Detailed Description of the Invention] <Technical Field> The present invention relates to a device that performs highly accurate calculation control of control targets such as the air-fuel ratio and ignition timing of an internal combustion engine.

〈従来技術〉 従来のこの種の制御装置としては、例えば吸気
管内圧力と回転速度に基づいて制御対象を制御す
るものがある。これは第1図に示すように構成さ
れており、絶対圧力センサ1から出力された吸入
負圧の絶対圧力と図示しない回転速度センサから
出力された機関回転速度Nとを演算装置2に供給
して機関の1回転当りの基本体積空気量を算出
し、この基本体積空気量を冷却水温TW、機関回
転速度N及びその他の信号に基づいて補正手段3
により補正して実質的な体積空気量を算出し、こ
の体積空気量に応答する信号を燃料噴射量信号と
して噴射弁に出力するようにしていた(例えば、
昭和46年9月、日産自動車(株)発行、「電子制御ガ
ソリン噴射装置整備要領書」等参照)。
<Prior Art> As a conventional control device of this type, there is one that controls a controlled object based on, for example, intake pipe internal pressure and rotational speed. This is configured as shown in FIG. 1, and supplies the absolute pressure of the suction negative pressure output from the absolute pressure sensor 1 and the engine rotation speed N output from the rotation speed sensor (not shown) to the calculation device 2. The basic air volume per rotation of the engine is calculated using the correction means 3 based on the cooling water temperature TW, the engine rotation speed N, and other signals.
The actual volumetric air amount is calculated by correcting the volumetric air amount, and a signal responsive to this volumetric air amount is output to the injection valve as a fuel injection amount signal (for example,
Published by Nissan Motor Co., Ltd., September 1971, see ``Electronic Controlled Gasoline Injection System Maintenance Instructions'', etc.).

しかしながら、このように絶対圧力センサ1の
出力と機関回転速度Nとに基づいて基本体積空気
量(基本噴射量TP)を算出する場合は、大気圧
が例えば760mmHgであるときAと608mmHgである
ときBとでは第2図の実験結果に示すように吸気
管内の絶対圧力が同一であつても空気流量に大き
な誤差(β1,β2)が生じ、この空気流量の誤差が
十数パーセントにも及ぶので大気圧の変動にとも
なつて燃費及び排気特性に悪影響を及ぼすことが
あつた。
However, when calculating the basic volume air amount (basic injection amount TP) based on the output of the absolute pressure sensor 1 and the engine rotational speed N in this way, when the atmospheric pressure is 760 mmHg, A and when the atmospheric pressure is 608 mmHg, for example, As shown in the experimental results in Figure 2, with B, even if the absolute pressure inside the intake pipe is the same, there is a large error in the air flow rate (β 1 , β 2 ), and this error in the air flow rate is more than ten percent. As a result, fuel efficiency and exhaust characteristics were adversely affected by fluctuations in atmospheric pressure.

ところで本考案者らは、種々の実験を重ねた結
果、大気圧力PAと吸気管内圧力PMとの比PR
(=PM/PA)を知れば、この圧力比PRに実際に
気筒内へ吸入される機関の1回転当りの体積空気
量が相関を持つことを確認した(第7図参照)。
つまり、定性的に考えると、機関の吸入行程の初
期において、吸気弁が開弁すると、気筒内の残留
ガスが膨張し、吸気ポート内へ吹き返す。そし
て、機関吸入行程の終了時において、吸気弁が閉
弁した状態では、気筒内に新気吸入空気と残留ガ
スが混在した状態となる。
By the way, as a result of various experiments, the inventors of the present invention have determined that the ratio PR between atmospheric pressure PA and intake pipe pressure PM
(=P M /P A ), it was confirmed that this pressure ratio PR has a correlation with the volumetric air amount per revolution of the engine actually sucked into the cylinder (see Fig. 7).
In other words, qualitatively speaking, when the intake valve opens at the beginning of the engine's intake stroke, the residual gas in the cylinder expands and blows back into the intake port. When the intake valve is closed at the end of the engine intake stroke, fresh intake air and residual gas are mixed in the cylinder.

よつて、機関吸入行程の終了時における気筒内
の新気吸入空気量は、機関吸入行程の初期におけ
る吸気弁開弁時の残留ガスの吹き返し量によつて
決定されるのである。
Therefore, the amount of fresh air taken into the cylinder at the end of the engine intake stroke is determined by the amount of residual gas blown back when the intake valve is opened at the beginning of the engine intake stroke.

そして、この残留ガスの吹き返し量は、吸気管
内圧力PMによつて大きく異なる。すなわち、吸
気管内圧力PMが低いほど吸気ポート内へ吹き返
す残留ガス量が増大するのである。一方、気筒に
は吸気管内圧力PMと気筒内圧力との差圧で吸気
が導入されるわけであるから、吸気管内圧力PM
が大きい程吸気ポート内へ吹き返す残留ガスの量
が減少し、吸気充填効率が増大するわけであり、
また、吸気管内圧力PMは大気圧力PAとの比PR
が大きい程吸気絞り効果が小となつて吸気量が増
大することになるから、前記圧力比PRは大気圧
力PAに応じた実際に気筒内へ吸入される機関1
回転当りの体積空気量Q相当の値を示すことにな
るのである。よつて前記圧力比PRが大きい程、
吸気ポート内へ吹き返す残留ガスの量が減少し、
これにより実際に気筒内へ吸入される機関の1回
転当りの体積空気量が増大するのである。
The amount of this residual gas blown back varies greatly depending on the intake pipe internal pressure PM. That is, the lower the intake pipe internal pressure PM, the more the amount of residual gas blown back into the intake port increases. On the other hand, since intake air is introduced into the cylinder at the differential pressure between the intake pipe internal pressure P M and the cylinder internal pressure, the intake pipe internal pressure PM
The larger the value, the smaller the amount of residual gas blown back into the intake port, increasing the intake filling efficiency.
Also, the intake pipe pressure PM is the ratio PR to the atmospheric pressure PA.
The larger the intake air throttling effect is, the smaller the intake air amount will be.
This indicates a value equivalent to the volumetric air amount Q per rotation. Therefore, the larger the pressure ratio PR,
The amount of residual gas blown back into the intake port is reduced,
As a result, the volumetric air amount per revolution of the engine that is actually drawn into the cylinder increases.

〈考案の目的〉 本考案は、このような実状に鑑みてなされたも
のであり、その目的とするところは、上記のよう
に大気圧の変動により吸気ポート内へ吹き返す残
留ガス量が変動するということに対しては大気圧
力と吸気管内圧との比が実際に気筒内へ吸入され
る機関の気筒毎の1回転当りの体積空気量に相関
するという現象を利用し、大気圧がどのように変
動しようとも吸入空気量を高精度に測定(算出)
して空燃比等の制御精度を高くし、もつて、機関
の燃費、運転性、排気特性等が悪化することを防
止することにある。
<Purpose of the invention> The present invention was developed in view of the above-mentioned circumstances, and its purpose is to solve the problem that the amount of residual gas blown back into the intake port fluctuates due to fluctuations in atmospheric pressure, as described above. In order to solve this problem, we can use the phenomenon that the ratio of atmospheric pressure and intake pipe internal pressure is correlated to the volumetric air amount per rotation of each cylinder of the engine that is actually sucked into the cylinder, to calculate the atmospheric pressure. Highly accurate measurement (calculation) of intake air volume even if it fluctuates
The purpose of the present invention is to improve the accuracy of control of air-fuel ratios, etc., and thereby prevent deterioration of engine fuel efficiency, drivability, exhaust characteristics, etc.

〈考案の構成〉 上記の如き目的を達成するために本考案では第
3図に示すように、吸気管内圧力検出手段の出力
PMと大気圧力検出手段の出力PAとを圧力比演
算手段に供給して大気圧力PAと吸気管内圧力
PMとの比PRを求め、この圧力比PRと機関の回
転速度Nとを第1の気圧補正手段に供給して実際
に気筒内へ吸入される機関1回転当りの基本体積
空気量Qを算出すると共に、この空気量Qと空気
密度に対応する吸気温度補正係数KTAとを第2
の気圧補正手段に供給して実質的な体積空気量を
算出することにより、大気圧力PAの変動に関係
なく燃料の噴射量等の制御対象を最適制御するよ
うにしている。
<Structure of the invention> In order to achieve the above-mentioned purpose, the present invention uses the output of the intake pipe pressure detection means as shown in Fig. 3.
PM and the output PA of the atmospheric pressure detection means are supplied to the pressure ratio calculation means to calculate the atmospheric pressure PA and the intake pipe pressure.
The ratio PR with respect to PM is determined, and this pressure ratio PR and engine rotational speed N are supplied to the first pressure correction means to calculate the basic volumetric air amount Q per engine revolution that is actually drawn into the cylinder. At the same time, this air amount Q and the intake air temperature correction coefficient KTA corresponding to the air density are
By supplying the air pressure to the atmospheric pressure correction means and calculating the substantial volumetric air amount, control targets such as the fuel injection amount can be optimally controlled regardless of fluctuations in the atmospheric pressure PA.

〈実施例〉 以下に第4図乃至第8図を参照して本考案の実
施例を説明する。
<Example> An example of the present invention will be described below with reference to FIGS. 4 to 8.

第4図は本考案の一実施例を示すブロツクダイ
アグラムであり、内燃機関10の吸気マニフオー
ルド11の圧力(吸気絞り弁下流の圧力)が導入
される絶対圧力センサ12の出力PMを圧力比演
算装置13と大気圧演算装置14とに供給してい
る。又、前記吸気マニフオールド11に接続した
スロツトルチヤンバ15には吸気絞り弁16が全
開になつたときにアクセル全開信号を出力するア
クセル全開スイツチ17を装着し、このスイツチ
17の出力を大気圧力演算装置14に供給してい
る。
FIG. 4 is a block diagram showing one embodiment of the present invention, in which the output PM of the absolute pressure sensor 12 into which the pressure of the intake manifold 11 of the internal combustion engine 10 (pressure downstream of the intake throttle valve) is introduced is calculated by pressure ratio calculation. It is supplied to the device 13 and the atmospheric pressure calculation device 14. Further, the throttle chamber 15 connected to the intake manifold 11 is equipped with an accelerator full-open switch 17 that outputs an accelerator full-open signal when the intake throttle valve 16 is fully opened, and the output of this switch 17 is set to atmospheric pressure. It is supplied to the arithmetic unit 14.

前記圧力比演算装置13には上記した絶対圧力
センサ12の出力PMの他に大気圧演算装置14
の出力PAをも供給し、この圧力比演算装置13
の出力PRを回転速度Nと共に空気量演算装置1
8に供給している。そして、この空気量演算装置
18の出力QAを基本噴射量演算装置19に供給
すると共に、この基本噴射量演算装置19の出力
TPを噴射量補正装置20及び点火時期演算装置
21とに供給することにより、噴射量補正装置2
0から燃料噴射弁22に制御パルスが出力される
と同時に、点火時期演算装置21からは点火パル
スが出力されるように構成している。
The pressure ratio calculation device 13 includes an atmospheric pressure calculation device 14 in addition to the output PM of the absolute pressure sensor 12 described above.
This pressure ratio calculation device 13 also supplies the output PA of
output PR along with rotational speed N
8. Then, the output QA of this air amount calculation device 18 is supplied to the basic injection amount calculation device 19, and the output of this basic injection amount calculation device 19 is
By supplying TP to the injection amount correction device 20 and the ignition timing calculation device 21, the injection amount correction device 2
The control pulse is outputted from 0 to the fuel injection valve 22, and at the same time, the ignition timing calculation device 21 outputs an ignition pulse.

斯る構成になる制御装置は、第5図に示すフロ
ーチヤートのように作用する。
The control device having such a configuration operates as shown in the flowchart shown in FIG.

つまり、大気圧演算装置14はアクセル全開ス
イツチ17がオンしており、しかも、機関の回転
速度Nが例えば3000rpm以下であるときに絶対圧
力センサ12の出力PMに基づいて大気圧力PA
を計算する。これは、回転速度Nが3000rpm以上
であると吸気量が大きいため吸気マニフオールド
11内の圧力損失が増大して吸気管内圧力PMか
ら大気圧力PAを演算するのに誤差が生じ易いた
めである。又、この大気圧力PAの計算に際して
は、吸気管内圧力PMが吸入サイクル毎に大きく
変動するので平滑化処理を同時に行ない、 PA=旧PA×63/64+(PM+ΔP)×1/64 なる式で計算することにより、1/64の重みで新
データと旧データとの平均をとる。ここに、ΔP
は機関回転速度Nの値からテーブルルツクアツプ
で求めた補正定数であり、第6図にその特性の一
例を示している。尚、この補正定数ΔPは吸気絞
り弁16の全開近傍でのエアクリーナ及び絞り弁
16の圧力損失に相当する。
That is, the atmospheric pressure calculation device 14 calculates the atmospheric pressure PA based on the output PM of the absolute pressure sensor 12 when the accelerator full-open switch 17 is on and the engine rotational speed N is, for example, 3000 rpm or less.
Calculate. This is because when the rotational speed N is 3000 rpm or more, the intake air amount is large, so the pressure loss in the intake manifold 11 increases, and errors are likely to occur when calculating the atmospheric pressure PA from the intake pipe internal pressure PM. In addition, when calculating this atmospheric pressure PA, since the intake pipe internal pressure PM varies greatly with each intake cycle, smoothing processing is performed at the same time, and it is calculated using the formula: PA = old PA x 63/64 + (PM + ΔP) x 1/64 By doing this, the new data and old data are averaged with a weight of 1/64. Here, ΔP
is a correction constant determined from the value of engine rotational speed N by table drawing, and an example of its characteristics is shown in FIG. Note that this correction constant ΔP corresponds to the pressure loss of the air cleaner and the throttle valve 16 when the intake throttle valve 16 is close to being fully open.

又、上記のようにして算出された大気圧力PA
と絶対圧力センサ12の出力(吸気管内圧力)
PMとに基づいて両者の圧力比PR=PM/PAを
計算した後に、この圧力比PRと機関回転速度N
とに基づいて大気圧力に応じた基本体積空気量
(実際に気筒内へ吸入される機関の気筒毎の1回
転当りの体積空気量)Qをテーブルルツクアツプ
で求める。第7図はそのデータマツプの一例であ
り、実験を重ねてそのデータを作成する。第7図
の関係を定性的に考えると、機関の吸入行程の初
期において、吸気弁が開弁すると、気筒内の残留
ガスが膨張し、吸気ポート内へ吹き返す。そし
て、機関吸入行程の終了時において、吸気弁が閉
弁した状態では、気筒内に新気吸入空気と残留ガ
スが混在した状態となる。
Also, the atmospheric pressure PA calculated as above
and the output of the absolute pressure sensor 12 (intake pipe pressure)
After calculating the pressure ratio PR = PM / PA based on PM, calculate this pressure ratio PR and engine rotation speed N.
Based on this, the basic volumetric air amount (the volumetric air amount per rotation of each cylinder of the engine that is actually drawn into the cylinder) Q corresponding to the atmospheric pressure is determined by table search. FIG. 7 is an example of the data map, and the data is created through repeated experiments. Considering the relationship shown in FIG. 7 qualitatively, when the intake valve opens at the beginning of the intake stroke of the engine, the residual gas in the cylinder expands and is blown back into the intake port. When the intake valve is closed at the end of the engine intake stroke, fresh intake air and residual gas are mixed in the cylinder.

よつて、機関吸入行程の終了時における気筒内
の新気吸入空気量は、機関吸入行程の初期におけ
る吸気弁開弁時の残留ガスの吹き返し量によつて
決定されるのである。
Therefore, the amount of fresh air taken into the cylinder at the end of the engine intake stroke is determined by the amount of residual gas blown back when the intake valve is opened at the beginning of the engine intake stroke.

そして、この残留ガスの吹き返し量は、吸気管
内圧力PMによつて大きく異なる。すなわち、吸
気管内圧力PMが低いほど吸気ポート内へ吹き返
す残留ガス量が増大するのである。一方気筒には
吸気管内圧力PMと気筒内圧力との差で吸気が導
入されるわけであるから、吸気管内圧力PMが大
きい程吸気ポート内へ吹き返す残留ガスの量が減
少し、吸気充填効率が増大するわけであり、ま
た、吸気管内圧力PMと大気圧力PAとの比PRが
大きい程吸気絞り効果が小となつて吸気量が増大
することになるから、前記圧力比PRは大気圧力
PAに応じた実際に気筒に吸入される機関1回転
当りの体積空気量Q相当の値を示すことになる。
よつて前記圧力比PRが大きい程吸気ポート内へ
吹き返す残留ガスの量が減少するのである。な
お、比PRと体積空気量Qとが正確に比例しない
のは、気筒内の残留ガスと新気との混合割合が機
関回転数に応じて変化することによる。比PRに
よつて第1回目の大気圧補正が行われる。
The amount of this residual gas blown back varies greatly depending on the intake pipe internal pressure PM. That is, the lower the intake pipe internal pressure PM, the more the amount of residual gas blown back into the intake port increases. On the other hand, since intake air is introduced into the cylinder based on the difference between the intake pipe internal pressure PM and the cylinder internal pressure, the larger the intake pipe internal pressure PM, the less the amount of residual gas blown back into the intake port decreases, and the intake air filling efficiency increases. In addition, the larger the ratio PR between the intake pipe internal pressure PM and the atmospheric pressure PA, the smaller the intake throttling effect and the larger the intake air amount.
It shows the value equivalent to the volumetric air amount Q per engine revolution actually taken into the cylinder according to PA.
Therefore, as the pressure ratio PR increases, the amount of residual gas blown back into the intake port decreases. Note that the reason why the ratio PR and the volumetric air amount Q are not exactly proportional is that the mixing ratio of the residual gas and fresh air in the cylinder changes depending on the engine speed. The first atmospheric pressure correction is performed using the ratio PR.

次に、図示しない温度センサから出力された吸
気温度TAに基づいて吸気温度補正係数KTAを
テーブルルツクアツプによつて求める。第8図に
吸気温度補正係数KTAのデータの一例を示す。
そして、この吸気温度補正係数KTAと大気圧力
PAと基本体積空気量Qとに基づいて燃料の基本
噴射量TPを、 TP=K×Q×PA×KTA なる式で求め、ここで第2回目の大気圧力補正が
行われる。尚、Qは体積であり、これを空気の密
度で補正するために、 空気密度=1.128×PA/760×313/(273+
TA) (但し、1.128は大気圧力PAが760mmHgで温度
が313〓のときの空気密度g/)を乗算する必
要があり、313/(273+TA)を温度補正係数
KTAとすると共に、 1.128/760×1/目標空燃比(A/F) をKとして上記した基本噴射量TPの算出式に基
づいて演算される。
Next, based on the intake air temperature TA output from a temperature sensor (not shown), an intake air temperature correction coefficient KTA is determined by table lookup. FIG. 8 shows an example of data on the intake air temperature correction coefficient KTA.
Then, this intake air temperature correction coefficient KTA and atmospheric pressure
The basic injection amount TP of fuel is determined based on PA and the basic volumetric air amount Q using the formula: TP=K×Q×PA×KTA, and the second atmospheric pressure correction is performed here. In addition, Q is the volume, and to correct this with the density of air, air density = 1.128 × PA / 760 × 313 / (273 +
TA) (However, 1.128 needs to be multiplied by the air density g/) when the atmospheric pressure PA is 760 mmHg and the temperature is 313〓, and 313/(273 + TA) is the temperature correction coefficient.
KTA and 1.128/760×1/target air-fuel ratio (A/F) is calculated based on the formula for calculating the basic injection amount TP described above.

そして、このようにして得られた基本噴射量
TPを機関の冷却水温TWによる補正、機関回転
速度Nと機関冷却水温TW及び圧力比PRによる
フユーエルカツト補正、機関回転速度Nと圧力比
PRによる全開増量補正等の各種補正が行なわれ
て制御パルスとなつて第4図の燃料噴射弁22に
出力される。
And the basic injection amount obtained in this way
Correction of TP by engine cooling water temperature TW, fuel cut correction by engine rotation speed N, engine cooling water temperature TW and pressure ratio PR, engine rotation speed N and pressure ratio
Various corrections such as a full-open increase correction by PR are performed, and the control pulses are output to the fuel injection valve 22 in FIG. 4.

同様に、点火時期演算装置21にも基本噴射量
TPが供給され、機関回転速度N、機関冷却水温
TW、圧力比PR等によつて点火時期が演算され
て点火パルスが出力されるのである。
Similarly, the ignition timing calculation device 21 also uses the basic injection amount.
TP is supplied, engine rotation speed N, engine cooling water temperature
Ignition timing is calculated based on TW, pressure ratio PR, etc., and an ignition pulse is output.

尚、実施例では絶対圧力センサ12の出力を利
用して大気圧力をも検出するようにしているが吸
気管内圧力を検出する絶対圧力センサの他に大気
圧センサを使用してもよく、この場合は、吸気管
内圧力を実施例のように絶対圧力で検出する代り
に相対圧力で検出するようにしてもよい。
In the embodiment, atmospheric pressure is also detected using the output of the absolute pressure sensor 12, but an atmospheric pressure sensor may be used in addition to the absolute pressure sensor that detects the pressure inside the intake pipe. In this case, the pressure inside the intake pipe may be detected as a relative pressure instead of as an absolute pressure as in the embodiment.

又、機関の制御対象は機関点火時期及び燃料噴
射量の他にアイドル回転速度制御等その他の電子
制御対象をも含むことはいうまでもない。
It goes without saying that the engine control objects include not only engine ignition timing and fuel injection amount, but also other electronic control objects such as idle rotation speed control.

尚、本考案は吸気管内圧力と大気圧力との圧力
比及び機関の回転速度とに基づいて1回転当りの
基本体積空気量を算出し、これを空気密度により
補正するものであり、前記基本体積空気量が実施
例のように燃料の噴射量、点火時期信号等に対応
して変更されることをも含むものである。
In addition, the present invention calculates the basic volume air amount per revolution based on the pressure ratio between the intake pipe internal pressure and atmospheric pressure and the rotational speed of the engine, and corrects this based on the air density. This also includes changing the air amount in response to the fuel injection amount, ignition timing signal, etc. as in the embodiment.

〈考案の効果〉 以上説明したように本考案によれば、大気圧力
の変化に対しては大気圧力と吸気管内圧力との比
(圧力比)が機関の気筒毎の体積吸入空気量と相
関関係にあることを利用して圧力比と機関回転速
度とに基づいて基本空気体積量を求め、この基本
空気体積量を空気密度に関連する情報に応じて補
正して実質的な空気体積量を求めるようにしてい
るため、大気圧力の変動に関係なく機関の吸入空
気量を高精度に検出できる。このために、この空
気量に基づいて演算される燃料噴射弁の制御パル
ス及び点火パルス等をそれぞれ最適制御でき、大
気圧の変動に起因する燃費、運転性、排気特性等
の悪化を予防できる。
<Effects of the invention> As explained above, according to the invention, in response to changes in atmospheric pressure, the ratio of atmospheric pressure to intake pipe pressure (pressure ratio) is correlated with the volumetric intake air amount for each cylinder of the engine. The basic air volume is determined based on the pressure ratio and the engine rotational speed using the fact that This allows the intake air amount of the engine to be detected with high accuracy regardless of atmospheric pressure fluctuations. Therefore, control pulses, ignition pulses, etc. of the fuel injection valve, which are calculated based on this air amount, can be optimally controlled, and deterioration of fuel efficiency, drivability, exhaust characteristics, etc. due to fluctuations in atmospheric pressure can be prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の概略ブロツクダイアグラム、
第2図は同じく大気圧力の変化による空気流量の
特性図、第3図は本考案の構成を示すブロツクダ
イアグラム、第4図は本考案の一実施例を示すブ
ロツクダイアグラム、第5図は同じくフローチヤ
ート、第6図乃至第8図はそれぞれ第5図のフロ
ーチヤートに使用されるテーブルデータの具体例
を示す線図である。 11……吸気マニフオールド、12……絶対圧
力センサ、13……圧力比演算装置、14……大
気圧演算装置、15……スロツトルチヤンバ、1
6……吸気絞り弁、17……アクセル全開スイツ
チ、18……空気量演算装置、19……基本噴射
量演算装置、20……噴射量補正装置、21……
点火時期演算装置、22……燃料噴射弁。
Figure 1 is a schematic block diagram of a conventional example.
Fig. 2 is a characteristic diagram of air flow rate due to changes in atmospheric pressure, Fig. 3 is a block diagram showing the configuration of the present invention, Fig. 4 is a block diagram showing an embodiment of the present invention, and Fig. 5 is the same flowchart. 6 to 8 are diagrams showing specific examples of table data used in the flowchart of FIG. 5, respectively. 11... Intake manifold, 12... Absolute pressure sensor, 13... Pressure ratio calculation device, 14... Atmospheric pressure calculation device, 15... Throttle chamber, 1
6... Intake throttle valve, 17... Accelerator full open switch, 18... Air amount calculation device, 19... Basic injection amount calculation device, 20... Injection amount correction device, 21...
Ignition timing calculation device, 22...Fuel injection valve.

Claims (1)

【実用新案登録請求の範囲】 (A) 内燃機関の吸気管内圧力を検出する手段と、 (B) 大気圧力を検出する手段と、 (C) 吸気管内圧力と大気圧力との比を求める手段
と、 (D) 該手段で得られた圧力比と機関の回転速度に
基づいて1回転当りの基本体積空気を算出する
第1の気圧補正手段と、 (E) 該基本体積空気量を空気密度に関連する情報
に基づいて補正する第2の気圧補正手段と、 (F) 前記第1及び第2の気圧補正手段に基づいて
内燃機関の制御対象を制御する手段と、からな
る内燃機関の制御装置。
[Scope of claim for utility model registration] (A) means for detecting the pressure inside the intake pipe of an internal combustion engine; (B) means for detecting atmospheric pressure; (C) means for determining the ratio of the pressure inside the intake pipe and atmospheric pressure. (D) a first pressure correction means for calculating a basic volume of air per revolution based on the pressure ratio obtained by the means and the rotational speed of the engine; A control device for an internal combustion engine, comprising: second atmospheric pressure correction means for correcting based on related information; and (F) means for controlling a control target of the internal combustion engine based on the first and second atmospheric pressure correction means. .
JP17133783U 1983-11-07 1983-11-07 Internal combustion engine control device Granted JPS6078955U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17133783U JPS6078955U (en) 1983-11-07 1983-11-07 Internal combustion engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17133783U JPS6078955U (en) 1983-11-07 1983-11-07 Internal combustion engine control device

Publications (2)

Publication Number Publication Date
JPS6078955U JPS6078955U (en) 1985-06-01
JPH034768Y2 true JPH034768Y2 (en) 1991-02-07

Family

ID=30373785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17133783U Granted JPS6078955U (en) 1983-11-07 1983-11-07 Internal combustion engine control device

Country Status (1)

Country Link
JP (1) JPS6078955U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716054B2 (en) * 1987-09-24 1998-02-18 富士通テン 株式会社 Fuel injection amount control method for internal combustion engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148039A (en) * 1981-03-10 1982-09-13 Nissan Motor Co Ltd Altitude corrector for engine fuel feeder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148039A (en) * 1981-03-10 1982-09-13 Nissan Motor Co Ltd Altitude corrector for engine fuel feeder

Also Published As

Publication number Publication date
JPS6078955U (en) 1985-06-01

Similar Documents

Publication Publication Date Title
CA2048085A1 (en) Method and apparatus for inferring barometric pressure surrounding an internal combustion engine
JPH01177432A (en) Fuel injection control device for internal combustion engine
JPH1047114A (en) Control device for internal combustion engine
JPH0518287A (en) Fuel injection type internal combustion engine
JPH08189390A (en) Intake manifold pressure estimating device and fuel feed device for internal combustion engine
JP3284395B2 (en) Throttle valve control device for internal combustion engine
JPH02227532A (en) Fuel injection control device
JPH01100334A (en) Fuel supply control device for internal combustion engine
JPH034768Y2 (en)
JP3672210B2 (en) Air-fuel ratio control device for internal combustion engine
JPS6098329A (en) Pressure detector of internal-combustion engine
JPH0742893B2 (en) Fuel system air amount estimation control method
JP2566803B2 (en) Electronically controlled fuel injection device for internal combustion engine
JPH02271041A (en) Intake-air temperature detecting device of internal combustion engine
JPH0710048Y2 (en) Fuel supply control device for internal combustion engine
JPH0357861A (en) Intake air temperature detecting device for internal combustion engine
JPH09222043A (en) Ambient air temperature calculator of internal combustion engine
JP2512726Y2 (en) Electronically controlled fuel injection device for internal combustion engine
JP2677421B2 (en) Fuel injection amount control method for internal combustion engine
JPH0763101A (en) Fuel injection quantity control device of internal combustion engine
JP2536241B2 (en) Air supply device for internal combustion engine
JPH10339205A (en) Intake control device of engine
JPH04255546A (en) Intake air flow detecting device and fuel supply control device for internal combustion engine
JPH08128348A (en) Control device of engine
JPH0772509B2 (en) Electronically controlled fuel injection device for internal combustion engine