JPH0345911A - Housing for branch coupler of optical fiber - Google Patents

Housing for branch coupler of optical fiber

Info

Publication number
JPH0345911A
JPH0345911A JP18080589A JP18080589A JPH0345911A JP H0345911 A JPH0345911 A JP H0345911A JP 18080589 A JP18080589 A JP 18080589A JP 18080589 A JP18080589 A JP 18080589A JP H0345911 A JPH0345911 A JP H0345911A
Authority
JP
Japan
Prior art keywords
optical fiber
linear expansion
coefficient
casing
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18080589A
Other languages
Japanese (ja)
Other versions
JP2855672B2 (en
Inventor
Hiroaki Hanabusa
花房 広明
Kunihiro Takenaka
邦博 竹中
Tokio Yamamuro
山室 時生
Norimichi Koga
古賀 徳道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Nippon Telegraph and Telephone Corp
Original Assignee
Mitsubishi Kasei Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Nippon Telegraph and Telephone Corp filed Critical Mitsubishi Kasei Corp
Priority to JP1180805A priority Critical patent/JP2855672B2/en
Publication of JPH0345911A publication Critical patent/JPH0345911A/en
Application granted granted Critical
Publication of JP2855672B2 publication Critical patent/JP2855672B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PURPOSE:To improve the reproducibility and productivity by setting the coefficient of linear expansion of an optical fiber which is measured in the long-axis direction below a specific value and using a material which can be molded by injection. CONSTITUTION:The coefficient of linear expansion of the optical fiber which is measured in the long-axial direction is <=1.0X 10<-6>cm/cm/ deg.C and the material which can be molded by injection is used. Further, a polymer which can forms an anisotropic fusion phase is a polymer which has optical anisotropy when fused. Therefore, shear deformation or extension deformation is caused in the fused state and then molecular chains are easily arranged in the deformation direction; and the array structure can be frozen by being cooled and caked rapidly. Consequently, strain is reduced, mass-production is enabled, and the cost is reducible.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、射出成形によって成形された光ファイバー分
岐カプラー用筺体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a housing for an optical fiber branch coupler molded by injection molding.

詳しくは、本発明は光ファイバーの分岐カプラーの製造
において熱可塑性樹脂を使用して、射出成形法で安価に
且つ、再現性良く大量に製造しうる筺体に関するもので
ある。
Specifically, the present invention relates to a housing that can be manufactured in large quantities with good reproducibility at low cost using a thermoplastic resin in the manufacture of optical fiber branching couplers by injection molding.

[従来の技術及びその問題点] 周知の如く、光ファイバーの分岐カプラーは光ファイバ
ー内を流れる情報を外部に取り出すために必要な部品で
あり、2本の光ファイバー芯線の石英ガラス部分をその
出力分岐比が50150になるように調整しながら加熱
溶着せしめ、その溶着部分に歪みがかからないように、
筐体の中に保持、固定された構造となっている。(第1
図にその1例を示す。)熔着した石英ガラス部分に歪み
がかかると、初期に設定した信号の分岐比(50150
)が、歪みの大きさによって変動してしまい、分岐カプ
ラーとしての用をたさなくなってしまう。歪みの発生要
因としては、例えば熔着した石英ガラスを、基板あるい
は筐体に固着するために使用する接着剤の固化過程にお
ける体積収縮に原因する歪み、又筺体外部に出た光ファ
イバー素線に加えられた外力が、溶着部分に伝わって発
生する歪み、あるいは基板、筐体部等の線膨張係数が、
石英部分の線膨張係数と異なることに由来する、熱によ
る寸法変化の差により発生する歪み、等が考えられる。
[Prior art and its problems] As is well known, an optical fiber branching coupler is a component necessary for extracting the information flowing inside the optical fiber to the outside. Heat weld while adjusting to 50150, making sure not to distort the welded part.
It has a structure that is held and fixed inside the casing. (1st
An example is shown in the figure. ) When distortion is applied to the welded quartz glass part, the initially set signal branching ratio (50150
) varies depending on the magnitude of distortion, making it useless as a branch coupler. The causes of distortion include, for example, distortion caused by volume shrinkage during the solidification process of the adhesive used to fix fused quartz glass to the substrate or housing, and distortion caused by optical fiber strands exposed outside the housing. The strain caused by the applied external force being transmitted to the welded part, or the coefficient of linear expansion of the board, casing, etc.
Possible causes include distortion caused by a difference in dimensional change due to heat, which is caused by a difference in linear expansion coefficient from that of the quartz portion.

特にこの線膨張係数の差に由来する歪みの発生は、使用
する材料の本質的な物性によるものであり組立て工程に
おける工夫で除去することは不可能である。この線膨張
係数の差に由来する歪みは環境温度の変化に対して、分
岐度も可逆的に変化するという性質をもっている。
In particular, the occurrence of distortion due to the difference in linear expansion coefficients is due to the essential physical properties of the materials used, and cannot be eliminated by devising the assembly process. The strain resulting from this difference in coefficient of linear expansion has the property that the degree of branching changes reversibly in response to changes in environmental temperature.

かかる問題点を回避するために、分岐した石英ガラスを
保持、固着する基板あるいは筐体は、石英ガラスと線膨
張係数がほとんど等しいガラスあるいはセラミック等で
製作されてきた。このような材質で作威された分岐カプ
ラーは、環境温度の変化に対してもその信号分岐比の変
化は極めて少ないために、現在専ら使用されている。
In order to avoid such problems, a substrate or a casing for holding and fixing the branched quartz glass has been made of glass, ceramic, or the like having almost the same coefficient of linear expansion as the quartz glass. Branching couplers made of such materials are currently exclusively used because their signal branching ratios hardly change even with changes in environmental temperature.

しかしながら、光ファイバー通信の普及は近年特にめざ
ましく、従って分岐カプラーの需要も加速度的に増大す
ることが予想されており、その製造コストの低減が切望
されている。
However, the spread of optical fiber communications has been particularly remarkable in recent years, and the demand for branch couplers is therefore expected to increase at an accelerating pace, and there is a strong desire to reduce their manufacturing costs.

分岐カプラーの製造方法は、現在の技術としては、ガラ
ス、セラミック等で薄葉の基板を作威し、この上に溶着
した光ファイバーをウレタン系あるいはアクリル系ある
いはシリコン系の硬化型樹脂で接着せしめ、次いでこの
基板を石英管中にいれ、先に述べた接着剤を使用し基板
の固定、端部の密閉(外部に出ている光ファイバー先端
の固定)等の方法で製造されている。(第1図参照)か
かる方法では、基板あるいは石英管の材料コストが高い
のみならず、その加工費も高く、さらには製品間のバラ
ツキも大きいという問題点を有している。
The current technology for manufacturing branch couplers is to create a thin substrate made of glass, ceramic, etc., adhere the welded optical fiber onto this with a urethane-based, acrylic-based, or silicone-based hardening resin, and then This substrate is placed in a quartz tube, and the substrate is fixed using the adhesive mentioned above, and the end is sealed (fixing the tip of the optical fiber protruding to the outside). (See FIG. 1) This method has problems in that not only the material cost of the substrate or quartz tube is high, but also the processing cost is high, and furthermore, there is large variation between products.

[問題点を解決するための手段] かかる問題点に対して、本発明者等は、歪みが少なく、
大量生産が可能でありしかも大幅なコストダウンを達成
することが可能である光ファイバー分岐カプラー用筺体
に関して鋭意研究した結果、本発明を完成したものであ
る。
[Means for solving the problem] In order to solve the problem, the present inventors have proposed a method with less distortion and
The present invention was completed as a result of intensive research into a housing for optical fiber branching couplers that can be mass-produced and achieve significant cost reductions.

即ち、本発明は光ファイバーの長軸方向に測定した線膨
張係数が1. OX 10−6cm/cm/℃以下であ
り、かつ射出成形しうる材料によって底形された光ファ
イバー分岐カプラー用筺体に関するものである。本発明
で使用する材料は、射出成形しうるちのであるが、好ま
しいものは、異方性溶融相を形成しうるポリマー即ち、
溶融時に光学異方性を示すポリマーである。かかるポリ
マーは、溶融状態において剪断変形あるいは伸長変形を
加えることにより分子鎖がその変形方向に容易に配列す
るという性質を有しており、又かかる配列構造は急速に
冷却固化することにより凍結することができる。かかる
構造体においては分子鎖の配向方向は一般的に線膨張係
数が極めて小さく 10−6cm/as / ”Cのオ
ーダーあるいはそれ以下の値をとることが可能となる。
That is, in the present invention, the linear expansion coefficient measured in the long axis direction of the optical fiber is 1. The present invention relates to a housing for an optical fiber branching coupler which has an OX of 10-6 cm/cm/°C or less and whose bottom is made of a material that can be injection molded. Although the materials used in the present invention can be injection molded, preferred are polymers capable of forming an anisotropic melt phase, i.e.
It is a polymer that exhibits optical anisotropy when melted. Such polymers have the property that when subjected to shear deformation or elongation deformation in a molten state, the molecular chains are easily arranged in the direction of deformation, and such an arranged structure can be frozen by rapidly cooling and solidifying. I can do it. In such a structure, the linear expansion coefficient in the orientation direction of the molecular chains is generally extremely small, and can take a value on the order of 10-6 cm/as/''C or less.

剪断あるいは伸長変形の程度をさらに大きくして分子鎖
配向の程度を上げてやれば、線膨張係数は負の値をとる
場合も有り得るのである。かかる性質を利用して射出成
形法によって筐体を底形すれば光ファイバーに使用され
ている石英ガラスの線膨張係数にほとんど一致させるこ
とができ、環境温度の変動に対する信号分岐比の変化も
ほとんど無い分岐カプラーを製造することが可能となる
はずである。本発明で使用することができる、溶融時に
光学異方性を示すポリ、マーとしては、少なくとも下記
構造を有するセグメントよりなるポリエステルあるいは
ポリエステルアミドの群より任意に選択することができ
る。
If the degree of shearing or elongation deformation is further increased to increase the degree of molecular chain orientation, the coefficient of linear expansion may take a negative value. Taking advantage of these properties, if the bottom shape of the casing is made by injection molding, the linear expansion coefficient can almost match that of the quartz glass used in optical fibers, and there is almost no change in the signal branching ratio due to changes in environmental temperature. It should be possible to produce branched couplers. The polyester or mer exhibiting optical anisotropy when melted that can be used in the present invention can be arbitrarily selected from the group of polyesters or polyesteramides consisting of segments having at least the following structure.

1:ポリエステル    −〇−R−○−Co−R−C
○ −0−R−CO− 2=ポリエステルアミド −0−R−〇−−CO−R−
C○− −O−R−CO −NH−R−CO− −NH−R−NH− 本構造式におけるRはそれぞれ下記の群より任意に選択
することができる。
1: Polyester -○-R-○-Co-R-C
○ -0-R-CO- 2=Polyesteramide -0-R-〇--CO-R-
C○- -O-R-CO -NH-R-CO- -NH-R-NH- Each R in this structural formula can be arbitrarily selected from the following group.

−CHz−、−(CHz:h −、−(CH2)4−、
−(CHz)6−。
-CHz-, -(CHz:h-, -(CH2)4-,
-(CHz)6-.

又、 各々の芳香環、 脂肪族基、脂環族基等には、 以下の群より選択される各種置換基によって置換されて
いてもよい。
Further, each aromatic ring, aliphatic group, alicyclic group, etc. may be substituted with various substituents selected from the following groups.

Br Cl C00H CON Hz かかる群より選定された、 溶融時に光学異方性を 示すポリマー(液晶ポリマー)を使用して実際に分岐カ
プラーの筐体用の金型を試作して射出成形を行った。第
2図に本発明の筐体の一例を示す。
Br Cl C00H CON Hz Using a polymer (liquid crystal polymer) selected from this group that exhibits optical anisotropy when melted, a prototype mold for a branch coupler housing was actually fabricated and injection molding was performed. FIG. 2 shows an example of the casing of the present invention.

しかしながら、かかる方法で得られた筐体は、長平方向
の線膨張係数は非常に小さく好ましい値を与えるものの
、熔着したガラスファイバーを実際に装着して分岐カプ
ラーを製作し、ヒートサイクルテスト(85℃〜−55
℃)を行った結果、分岐比は初期設定値が50150で
あるにもかかわらず50150〜80/20まで分散し
てしまい、良好な性能を発現する可能性を有しているも
のの、成形条件等の微妙な変動要因が分岐比のバラツキ
を大きくしているものとの結果を得た。この分岐比のバ
ラツキの原因としては、射出成形により製造した筐体が
スキン−コア構造を有しており、全体としての線膨張係
数は小さいものの、スキン部とコア部の膨張係数の差に
よるいわゆるバイメタル効果によるソリ、ネジレ等を無
視することができず結果的に光フアイバ一部に歪みを生
じることになり、更には成形条件の微妙な差が表裏のス
キン部の厚さに変化を及ぼしているためと考えられる。
However, although the casing obtained by this method has a very small coefficient of linear expansion in the longitudinal direction and gives a desirable value, a branch coupler was manufactured by actually attaching welded glass fibers, and a heat cycle test (85 °C ~ -55
As a result, the branching ratio was dispersed from 50150 to 80/20 even though the initial setting value was 50150. Although there is a possibility of achieving good performance, the molding conditions etc. The results showed that subtle fluctuation factors were causing large variations in the branching ratio. The reason for this variation in branching ratio is that the housing manufactured by injection molding has a skin-core structure, and although the linear expansion coefficient as a whole is small, the difference in expansion coefficient between the skin part and the core part is the so-called so-called Warping, twisting, etc. due to the bimetal effect cannot be ignored, resulting in distortion in a part of the optical fiber, and furthermore, subtle differences in molding conditions can cause changes in the thickness of the skin on the front and back sides. This is thought to be due to the presence of

かかる問題点に対し、射出成形法で得た第2図のごとき
形状を有する筐体において、熔着した光ファイバーが保
持、固定される部分の長軸方向に測定した線膨張係数が
1. OX 10−6cm/cm/℃以下である筐体で
あれば環境温度の変化における信号分岐比の変動の極め
て小さい筐体を製造しえることを見いだした。かかる筐
体を得るための材料としては、上記群より選定された液
晶ポリマーに対して、線膨張係数が1. OX 10−
’cva/ cm/ ’C以下である繊維状充填剤が、
好ましくは2重量%以上充填されたものが用いられる。
To solve this problem, in a housing having the shape shown in FIG. 2 obtained by injection molding, the coefficient of linear expansion measured in the long axis direction of the part where the welded optical fiber is held and fixed is 1. It has been found that if the casing has an OX of 10-6 cm/cm/°C or less, it is possible to manufacture a casing with extremely small fluctuations in signal branching ratio due to changes in environmental temperature. The material for obtaining such a casing is a liquid crystal polymer selected from the above group with a linear expansion coefficient of 1. OX 10-
'cva/cm/'C or less fibrous filler is
Preferably, one filled with 2% by weight or more is used.

2重量%より少ないとスキン−コア構造に由来するソリ
、ネジレの影響を取り除くことが十分にできない場合が
ある。一方筐体の線膨張係数が1. OX 10−hc
11/cm/℃より大きくならない限り、かかる繊維状
充填剤はいくらでも充填することができるが、好ましく
は30重量%以下である。但しかかる繊維状充填剤は、
射出成形時に樹脂の流れを乱す効果が非常に大きく、従
って液晶ポリマーの特徴である分子鎖の配向が乱され、
マトリックス樹脂の流動方向に対する線膨張係数も大幅
に増大するので注意する必要がある。
If it is less than 2% by weight, it may not be possible to sufficiently remove the effects of warpage and twisting resulting from the skin-core structure. On the other hand, the linear expansion coefficient of the housing is 1. OX 10-hc
Any amount of such fibrous filler can be used as long as the temperature does not exceed 11/cm/°C, but it is preferably 30% by weight or less. However, such fibrous fillers are
It has a very large effect of disrupting the flow of resin during injection molding, and as a result, the orientation of molecular chains, which is a characteristic of liquid crystal polymers, is disrupted.
Care must be taken because the coefficient of linear expansion of the matrix resin in the flow direction also increases significantly.

かかる線膨張係数がI X 10−6cm/cm/℃以
下である繊維状充填剤としては、炭素繊維、石英ガラス
等よりなるガラス繊維、ウオラストナイト、チタン酸カ
リ等に代表されるウィスカー、アスベスト等の無機繊維
あるいは繊維状有機化合物、有機高分子繊維等より任意
に選択することができる。
Examples of the fibrous filler having a coefficient of linear expansion of I x 10-6 cm/cm/°C or less include carbon fibers, glass fibers made of quartz glass, whiskers such as wollastonite, potassium titanate, etc., and asbestos. It can be arbitrarily selected from inorganic fibers, fibrous organic compounds, organic polymer fibers, etc.

好ましくは炭素繊維、ウィスカーまたは有機高分子繊維
である。一方線膨張係数が1.0X10−6cm/ c
m / ”Cを越えないかぎりにおいて、液晶ポリマー
成分に対して他種構造を有する上記群よりなる液晶ポリ
マーあるいはポリエステル、ボリア藁ド、ポリエステル
アミド、ポリアミトイ逅ド、ポリイミド、ポリエーテル
ケトンォン、ポリスルフォン、ポリエーテルケトン、ポ
リエーテルエーテルケトン、ポリフェニレンサルファイ
ド、ポリフェニレンオキサイド等に代表される通常の熱
可塑性樹脂等がブレンドされていてもよく、又、板状、
粒子状充填剤がそれぞれ混合されでいてもよい。板状あ
るいは粒子状充填剤としては、マイカ、ガラスフレーク
、カオリナイト、タルク、グラファイト、アルミナ、シ
リカ、炭酸カルシウム、炭酸マグネシウム、硫酸マグネ
シウム、硫酸バリウム、酸化チタン等がある。
Carbon fibers, whiskers or organic polymer fibers are preferred. On the other hand, the coefficient of linear expansion is 1.0X10-6cm/c
As long as m/''C is not exceeded, liquid crystal polymers consisting of the above groups having other types of structures for the liquid crystal polymer component or polyester, boria straw, polyester amide, polyamide, polyimide, polyether ketone, polyamide, etc. Ordinary thermoplastic resins such as sulfone, polyetherketone, polyetheretherketone, polyphenylene sulfide, polyphenylene oxide, etc. may be blended, and plate-shaped,
The particulate fillers may be individually mixed. Examples of plate-like or particulate fillers include mica, glass flakes, kaolinite, talc, graphite, alumina, silica, calcium carbonate, magnesium carbonate, magnesium sulfate, barium sulfate, and titanium oxide.

なお、本発明における線膨張係数とは、−55°Cにお
ける寸法をLcllI、−55°Cと+85°Cの間の
寸法の差をΔLcmとして、ΔL/L/140の計算式
で示される。
The coefficient of linear expansion in the present invention is expressed by the formula ΔL/L/140, where LcllI is the dimension at -55°C, and ΔLcm is the difference in dimension between -55°C and +85°C.

[実施例] 以下、実施例によって本発明をさらに詳細に説明するが
、本発明は実施例にのみ限定されるものではない。また
、第1図、第2図に従来及び本発明の光ファイバー分岐
カプラー用筺体の一例を示すが、本発明はこれらにより
何ら制限されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited only to the Examples. Furthermore, although FIGS. 1 and 2 show examples of conventional and inventive optical fiber branching coupler casings, the invention is not limited to these in any way.

実施例−1 三菱化成■より上布されているN0VACCURATE
■樹脂(商品名)は、主としてエチレングリコール残基
、テレフタル酸残基、バラヒドロキシ安息香酸残基より
なる、液晶性ポリエステル樹脂であるが、このペレット
に長さ6IIII+の炭素繊維チョツプドストランド(
東邦ベスロン■、)を重量で20%添加し、タンブラで
充分に混合し、2軸押出機を使用して、275℃で押し
出してペレットとした。使用した炭素繊維の線膨張係数
は0、3 X 10−”aa/cIII/ ’Cであっ
た。(測定装置:デュポン製943型TMA) 第2図に示す形状の成形品を得ることができる金型を用
いて上記組成物を、樹脂温度275°C1射出圧カフ5
MPa、金型温度so’c、冷却時間20秒で光ファイ
バー分岐カプラー用筺体を得た。
Example-1 N0VACCURATE manufactured by Mitsubishi Kasei ■
■Resin (trade name) is a liquid crystalline polyester resin consisting mainly of ethylene glycol residues, terephthalic acid residues, and rose hydroxybenzoic acid residues.
20% by weight of Toho Veslon (2) was added, thoroughly mixed in a tumbler, and extruded at 275° C. using a twin-screw extruder to form pellets. The linear expansion coefficient of the carbon fiber used was 0.3 x 10-''aa/cIII/'C. (Measuring device: DuPont Model 943 TMA) A molded product having the shape shown in Figure 2 could be obtained. The above composition was molded using a mold at a resin temperature of 275°C, an injection pressure cuff of 5
A housing for an optical fiber branching coupler was obtained using MPa, a mold temperature of SO'C, and a cooling time of 20 seconds.

(基板部と蓋部より槽底されている。)かかる筐体の光
ファイバーの長軸方向の線膨張係数は、0゜8 X I
 O−’ca+/c+a/℃であった。一方、光信号ノ
分岐比が50150になるように溶着した光ファイバー
素線をU■硬化シリコン樹脂を使用して接着せしめ、又
筺体の両端部を、UV硬化シリコン系樹脂で封止した。
(The bottom of the tank is lower than the substrate part and the lid part.) The linear expansion coefficient of the optical fiber in the long axis direction of this case is 0°8
It was O-'ca+/c+a/°C. On the other hand, optical fiber wires welded so that the optical signal branching ratio was 50,150 were adhered using U-curing silicone resin, and both ends of the housing were sealed with UV-curing silicone resin.

このようにして得られたカプラーに対して、+85°C
(2時間L+85℃−−55°C(2時間)、−55℃
(2時間)を1サイクルとする、ヒートサイクルテスト
を12サイクル行った。1サイクルのテスト中における
信号分岐比の変動は49151〜51/49内であり、
極めて良好であった。又12サイクルテスト終了後の分
岐比は48.8151.2と良好であり、環境温度変化
に対する信頼性は良好であると言える。
For the couplers thus obtained, +85 °C
(2 hours L+85℃--55℃ (2 hours), -55℃
A heat cycle test was conducted for 12 cycles, with (2 hours) being one cycle. The variation in signal branching ratio during one cycle of testing is within 49151 to 51/49,
It was extremely good. Furthermore, the branching ratio after the 12-cycle test was 48.8151.2, which was good, and it can be said that the reliability against environmental temperature changes was good.

実施例−2 実施例−1と同様な方法で炭素繊維2.5重量%、炭酸
カルシウム粒子5型景%配合してなるペレットを得た。
Example 2 Pellets containing 2.5% by weight of carbon fibers and 5% by weight of calcium carbonate particles were obtained in the same manner as in Example 1.

又実施例−■と同様な方法で射出成形し光ファイバー分
岐カプラーを得た。この時得られた筐体の線膨張係数は
、0.7 X 10−hcm/cm/°Cであった。更
に、実施例−1と同様な方法でヒートサイクルテストを
行い信号分岐比を測定したところlサイクルテスト中に
おける信号分岐比の変動は49151〜50150以内
であり極めて良好であった。又12サイクルのテストを
行った後の分岐比の変化は49.3 / 50.7であ
り極めて良好な結果を得た。環境温度変化に対する信頼
性は極めて良好であると言−える。
Further, an optical fiber branching coupler was obtained by injection molding in the same manner as in Example-①. The linear expansion coefficient of the casing obtained at this time was 0.7 x 10-hcm/cm/°C. Furthermore, when a heat cycle test was conducted in the same manner as in Example 1 and the signal branching ratio was measured, the variation in the signal branching ratio during the 1 cycle test was within 49,151 to 50,150, which was extremely good. Furthermore, the change in branching ratio after 12 cycles of testing was 49.3/50.7, which was an extremely good result. It can be said that reliability against environmental temperature changes is extremely good.

比較例−1 線膨張係数が3.7 X 10−6am/cm/ ’C
である、長さ3.0Mのガラス繊維チゴップドストラン
ド(日本電気ガラスQ!jj3)を、実施例−1と同様
な方法で10重量%配合してなるペレットを得、同様に
筐体を成形した。この筐体の線膨張係数は1. IX 
10−”cm/c削/℃であった。更にヒートサイクル
テストを行ったところ、−55°C−+85°C1の昇
降温度過程において、信号分岐比が20/80まで大き
く変動してしまうことを認めた。環境温度の上下によっ
て分岐比がこのように変動しては、実用に供することは
できない。
Comparative example-1 Linear expansion coefficient is 3.7 x 10-6 am/cm/'C
A pellet made by blending 10% by weight of 3.0M long glass fiber chigopped strands (Nippon Electric Glass Q!jj3) in the same manner as in Example-1 was obtained, and the casing was similarly Molded. The linear expansion coefficient of this housing is 1. IX
It was 10-"cm/c cutting/°C. When we further conducted a heat cycle test, we found that the signal branching ratio fluctuated significantly up to 20/80 during the temperature rise and fall process from -55°C to +85°C1. If the branching ratio fluctuates like this due to the rise and fall of the environmental temperature, it cannot be put to practical use.

参考例 第1図で示されるように石英ガラスで作成した基板(線
膨張係数0.16 X 10−’cn+/cm/ ”C
)上に熔着した光ファイバーを固着し、石英ガラス管の
中に封入して、分岐カプラーを製作した。実施例−1と
同様な方法でヒートサイクルテストを行い、信号分岐比
の変化を測定したところ、1サイクルテスト中における
変動は4 B152〜51/49以内であり極めて良好
であった。又12サイクルのヒートサイクルテスト後の
値は49151であり、極めて良好であった。このカプ
ラーは現在市販されているものとほとんど同じである。
Reference Example As shown in Fig. 1, a substrate made of quartz glass (linear expansion coefficient 0.16 x 10-'cn+/cm/''C
) A branch coupler was manufactured by fixing an optical fiber welded onto the top and sealing it in a quartz glass tube. A heat cycle test was conducted in the same manner as in Example 1, and the change in signal branching ratio was measured. The variation during one cycle test was within 4B152 to 51/49, which was extremely good. The value after 12 cycles of heat cycle test was 49151, which was extremely good. This coupler is almost identical to those currently on the market.

[発明の効果] 本発明の光ファイバー分岐カプラー用筺体は、環境温度
の変動に対して信号分岐比の変化の極めて小さいもので
あり、しかも再現性よくしかも生産性の高い射出成形法
で製造することができるので、工業的に極めて有利であ
る。
[Effects of the Invention] The optical fiber branching coupler casing of the present invention exhibits extremely small changes in signal branching ratio due to changes in environmental temperature, and can be manufactured using an injection molding method with good reproducibility and high productivity. This is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の石英ガラス製の光ファイバー分岐カプ
ラーの一例である。図中1は熔着された光ファイバー素
線、2は石英ガラス管、3はUV硬化シリコン樹脂、4
は石英ガラス基板、5はUV硬化シリコン樹脂による封
止部分を示す。 第2図は、本発明の筐体を用いた光ファイバー分岐カプ
ラーの一例である。図中、<a>は光ファイバー素線を
熔着した基板であり、<b>は蓋部である。<c>は<
a>と<b>を組合せて得られた本発明の筐体を示すも
のである。図中1は、熔着された光ファイバー素線、2
は基板、3はUV硬化シリコン樹脂、4は線膨張係数の
測定方向、5は光ファイバー、6はUV硬化シリコン樹
脂による封止部分を示す。 出 願 人 日本電信電話株式会社 (ほか1名)
FIG. 1 is an example of a conventional optical fiber branching coupler made of quartz glass. In the figure, 1 is a welded optical fiber wire, 2 is a quartz glass tube, 3 is a UV-cured silicone resin, and 4 is a welded optical fiber wire.
Reference numeral 5 indicates a quartz glass substrate, and 5 indicates a sealing portion made of UV-cured silicone resin. FIG. 2 is an example of an optical fiber branching coupler using the casing of the present invention. In the figure, <a> is a substrate to which optical fiber wires are welded, and <b> is a lid. <c> is <
It shows the casing of the present invention obtained by combining a> and <b>. In the figure, 1 is a welded optical fiber wire, 2
3 is a substrate, 3 is a UV-cured silicone resin, 4 is a direction in which the coefficient of linear expansion is measured, 5 is an optical fiber, and 6 is a sealed portion by UV-cured silicone resin. Applicant: Nippon Telegraph and Telephone Corporation (1 other person)

Claims (3)

【特許請求の範囲】[Claims] (1)光ファイバーの長軸方向に測定した線膨張係数が
1.0×10^−^6cm/cm/℃以下であり、かつ
射出成形しうる材料によって成形された光ファイバー分
岐カプラー用筺体。
(1) A casing for an optical fiber branching coupler, which has a linear expansion coefficient measured in the long axis direction of the optical fiber of 1.0 x 10^-^6 cm/cm/°C or less, and is molded from a material that can be injection molded.
(2)射出成形しうる材料が、少なくとも溶融時に光学
異方性を有するポリマーと、線膨張係数が1.0×10
^−^6cm/cm/℃以下である繊維状充填剤よりな
る樹脂組成物であることを特徴とする特許請求の範囲第
1項記載の光ファイバー分岐カプラー用筺体。
(2) The material that can be injection molded is a polymer that has optical anisotropy at least when melted and a linear expansion coefficient of 1.0×10
The casing for an optical fiber branching coupler according to claim 1, characterized in that it is a resin composition comprising a fibrous filler having a temperature of ^-^6 cm/cm/°C or less.
(3)繊維状充填剤が炭素繊維、ウィスカー、及び有機
高分子繊維の中から選択されたものであることを特徴と
する特許請求範囲第2項記載の光ファイバー分岐カプラ
ー用筺体。
(3) The casing for an optical fiber branching coupler according to claim 2, wherein the fibrous filler is selected from carbon fibers, whiskers, and organic polymer fibers.
JP1180805A 1989-07-13 1989-07-13 Housing for optical fiber branch coupler Expired - Fee Related JP2855672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1180805A JP2855672B2 (en) 1989-07-13 1989-07-13 Housing for optical fiber branch coupler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1180805A JP2855672B2 (en) 1989-07-13 1989-07-13 Housing for optical fiber branch coupler

Publications (2)

Publication Number Publication Date
JPH0345911A true JPH0345911A (en) 1991-02-27
JP2855672B2 JP2855672B2 (en) 1999-02-10

Family

ID=16089656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1180805A Expired - Fee Related JP2855672B2 (en) 1989-07-13 1989-07-13 Housing for optical fiber branch coupler

Country Status (1)

Country Link
JP (1) JP2855672B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426714A (en) * 1992-01-27 1995-06-20 Corning Incorporated Optical fiber couplers packaged for resistance to bending or breakage, and methods of making the same
US5552092A (en) * 1994-05-31 1996-09-03 Corning Incorporated Waveguide coupler
KR20030078091A (en) * 2002-03-28 2003-10-08 심형보 Brassiere
KR100478711B1 (en) * 2002-01-19 2005-03-24 (주)동성케이티 Oxygen liquefying apparatus in water

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119618A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Power supply application control system
JPS634895A (en) * 1986-06-24 1988-01-09 Mitsubishi Electric Corp Device for supplying ozone refining water

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119618A (en) * 1985-11-20 1987-05-30 Fujitsu Ltd Power supply application control system
JPS634895A (en) * 1986-06-24 1988-01-09 Mitsubishi Electric Corp Device for supplying ozone refining water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426714A (en) * 1992-01-27 1995-06-20 Corning Incorporated Optical fiber couplers packaged for resistance to bending or breakage, and methods of making the same
US5552092A (en) * 1994-05-31 1996-09-03 Corning Incorporated Waveguide coupler
KR100478711B1 (en) * 2002-01-19 2005-03-24 (주)동성케이티 Oxygen liquefying apparatus in water
KR20030078091A (en) * 2002-03-28 2003-10-08 심형보 Brassiere

Also Published As

Publication number Publication date
JP2855672B2 (en) 1999-02-10

Similar Documents

Publication Publication Date Title
JP6310043B2 (en) Liquid crystal polyester composition pellets
CA1272000A (en) Encapsulation of electronic components
JP5332188B2 (en) Resin molded body and method for producing the same
CN1377937B (en) Liquid crystal polyester resin composition
US4720424A (en) Electronic component encapsulated with a composition comprising a polymer which is capable of forming an anisotropic melt phase and substantially incapable of further chain growth upon heating
CN111357104A (en) Electronic module for use in a motor vehicle
CN111372987A (en) Fiber reinforced polymer composition for use in electronic modules
US5302656A (en) Molded article of norbornene-based polymer
KR101888699B1 (en) High-voltage coil
CN105273366A (en) Liquid crystal polyester resin composition, connector, and method for producing liquid crystal polyester resin composition
KR940003761B1 (en) Aromatic polyester
KR20120046067A (en) Liquid crystal polyester composition
CN111117170A (en) High-fluidity liquid crystal polymer and preparation method thereof
KR20110110003A (en) Liquid-crystalline polymer composition and molded article thereof
EP1626299A1 (en) Package sealing means and photonic device packages so formed
JPH0345911A (en) Housing for branch coupler of optical fiber
US4719250A (en) Encapsulation of electronic components
TW201249625A (en) Liquid crystalline polymer molded article
KR20200136902A (en) Aromatic liquid crystal polyester, aromatic liquid crystal polyester composition and molded article
JP2855671B2 (en) Manufacturing method of optical fiber branch coupler
KR20150050405A (en) Liquid crystal polyester composition
JP2015147881A (en) liquid crystal polyester composition
JPH0645481A (en) Resin-sealed electronic component and manufacture thereof
JP7393589B1 (en) Liquid crystalline resin composition for planar connectors and planar connectors using the same
JPH0647830A (en) Crystalline polyarylene sulfide resin composite molded form and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees