JPH0345566A - Production of sintered granular material - Google Patents

Production of sintered granular material

Info

Publication number
JPH0345566A
JPH0345566A JP1181748A JP18174889A JPH0345566A JP H0345566 A JPH0345566 A JP H0345566A JP 1181748 A JP1181748 A JP 1181748A JP 18174889 A JP18174889 A JP 18174889A JP H0345566 A JPH0345566 A JP H0345566A
Authority
JP
Japan
Prior art keywords
gas
binder
temperature
green body
degreased
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1181748A
Other languages
Japanese (ja)
Other versions
JP2821183B2 (en
Inventor
Norikazu Shindo
典一 神藤
Tomoyuki Sekine
関根 知幸
Yoshikatsu Nakamura
中村 義勝
Takashi Kawamoto
尚 河本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juki Corp
Nippon Piston Ring Co Ltd
Original Assignee
Juki Corp
Nippon Piston Ring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juki Corp, Nippon Piston Ring Co Ltd filed Critical Juki Corp
Priority to JP1181748A priority Critical patent/JP2821183B2/en
Priority to US07/550,972 priority patent/US4996022A/en
Publication of JPH0345566A publication Critical patent/JPH0345566A/en
Application granted granted Critical
Publication of JP2821183B2 publication Critical patent/JP2821183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the subject sintered material having decreased residual C content by kneading metallic particles with a binder to form a pellet, forming a green body having a prescribed form from the pellets and maintaining the body in an H2-containing inert gas or H2 gas atmosphere at a temperature within a specific range over a sufficiently long period. CONSTITUTION:One or more kinds of metallic particles such as Fe or Ni having particle diameter of several mum are kneaded with a binder composed of a thermoplastic resin, wax, etc., to form pellets, which are injection-molded to obtain a green body W having a prescribed shape. The green body W is embedded in a processing vessel 3 containing Al2O3 powder 4. The vessels 3 are placed in a degreasing furnace 1. H2-containing inert gas or H2 gas is introduced as an atmospheric gas into the a furnace through a gas-inlet tube 5. The green body W is heated at about 300 deg.C to evaporate and eliminate the binder and then the temperature is raised to 600-800 deg.C to react H2 in the atmosphere gas with C remaining in the binder and remove the C as hydrocarbons. The degreased formed article W is transferred to another vacuum furnace and heated at about 120 deg.C for about 3hr to obtain a sintered material having decreased C content.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼結可能な金属粒子から機械部品等の焼結体
を製造する粉末冶金方法に′係り、特にグリーンボディ
からバインダーを除去する脱脂方法に関するものであり
、特に低炭素材料を作る製造方法である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a powder metallurgy method for manufacturing sintered bodies such as mechanical parts from sinterable metal particles, and in particular, a method for removing binders from green bodies. It relates to degreasing methods, particularly manufacturing methods for producing low carbon materials.

〔従来の技術〕[Conventional technology]

一般に、粉末冶金方法においては、金属粒子に熱可塑性
樹脂、ワックス等からなるバインダーを混ぜてペレット
とし、このペレットから射出成形により所定形状の成形
体いわゆるグリーンボディを作り、このグリーンボディ
を加熱してその中のバインダーを除去した後、真空雰囲
気中で高温焼結して完成品を作るようにしている。
Generally, in the powder metallurgy method, metal particles are mixed with a binder made of thermoplastic resin, wax, etc. to form pellets, a molded body of a predetermined shape is made from the pellets by injection molding, and this green body is heated. After removing the binder, the finished product is sintered at high temperature in a vacuum atmosphere.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記バインダーを除去する脱脂工程においては、バイン
ダーを完全に除去する必要があるが、バインダーは有機
物であるので高温加熱時に成形体の内部及び表面に炭素
が析出付着し、その炭素は焼結工程においても除去され
ない。そのため、耐食性、磁気特性等の材料特性を向上
させるには、この炭素を除去し、低炭素材料とすること
が必要である。そこで、特開昭62−283875号は
、脱脂工程において雰囲気を水蒸気で飽和させ、遊離炭
素と水蒸気とを反応させて炭素の析出を防止することを
開示している。しかしながら、このように水蒸気を使用
すると、金属粉末の場合にその表面に酸化被膜が生じ、
次の焼結工程において脱脂時に生じた酸化被膜を還元す
るために特別な工程を新たに設ける必要が生じるばかり
でなく、特にCrの酸化物のような還元が非常に困難な
材料の場合は水蒸気を使用することが不可能となる。
In the degreasing process to remove the binder, it is necessary to completely remove the binder, but since the binder is an organic substance, carbon precipitates and adheres to the inside and surface of the compact when heated at high temperatures, and this carbon is removed during the sintering process. is not removed either. Therefore, in order to improve material properties such as corrosion resistance and magnetic properties, it is necessary to remove this carbon and make a low-carbon material. Therefore, Japanese Patent Application Laid-Open No. 62-283875 discloses that the atmosphere is saturated with water vapor in the degreasing process to cause free carbon to react with the water vapor to prevent carbon precipitation. However, when water vapor is used in this way, an oxide film is formed on the surface of metal powder.
In the next sintering process, not only is it necessary to add a special process to reduce the oxide film formed during degreasing, but also water vapor is required especially when using materials that are extremely difficult to reduce, such as Cr oxides. becomes impossible to use.

本発明は、かかる点に鑑み、焼結体中に炭素の析出が生
じないような粒子状材料の低炭素焼結体の製造方法を提
供することを目的とする。
In view of this, an object of the present invention is to provide a method for producing a low-carbon sintered body of particulate material in which carbon precipitation does not occur in the sintered body.

〔課題を解決するための手段〕[Means to solve the problem]

そこで、本発明は、1種又は2種以上の金属粒子と熱可
塑性樹脂、ワックス等からなるバインダーとを混練して
ペレットとし、このペレットを射出成形により所定形状
のグリーンボディを形成し、このグリーンボディを脱脂
し、更に焼結して焼結体を作る粒子状材料の焼結体の製
造方法において、前記グリーンボディの脱脂の際に、不
活性ガス中に水素を含む混合ガス雰囲気もしくは水素ガ
ス雰囲気中で脱脂体を炭素が浸炭しない温度範囲で、か
つ、脱脂体内に連続空孔が十分存在する温度範囲で、残
留バインダー中の炭素に前記水素が反応して除去される
ために十分な時間保持するようにした。
Therefore, in the present invention, one or more types of metal particles and a binder made of thermoplastic resin, wax, etc. are kneaded to form pellets, and the pellets are injection molded to form a green body of a predetermined shape. In a method for manufacturing a sintered body of particulate material in which a body is degreased and further sintered to produce a sintered body, when the green body is degreased, a mixed gas atmosphere containing hydrogen in an inert gas or hydrogen gas is used. In a temperature range in which the degreased body is not carburized by carbon in the atmosphere, and in a temperature range where continuous pores are sufficiently present in the degreased body, for a sufficient period of time for the hydrogen to react with the carbon in the residual binder and be removed. I decided to keep it.

〔作用〕[Effect]

脱脂工程の際、脱脂炉内の雰囲気を不活性ガスと水素ガ
スとの混合ガスとし、脱脂体を例えば700℃のような
残留バインダーが浸炭せず、かつ焼結して脱脂体が縮む
ことなく連続空孔が維持され、炭化水素ガスとして除去
される温度に所定時間保持する。これにより脱脂体から
完全に炭素が除去され、もって、低炭素材料焼結体を得
ることができる。
During the degreasing process, the atmosphere in the degreasing furnace is a mixed gas of inert gas and hydrogen gas, and the degreased body is heated to 700°C, for example, so that residual binder does not carburize and the degreased body does not shrink due to sintering. The temperature is maintained for a predetermined time at which continuous pores are maintained and removed as hydrocarbon gas. As a result, carbon is completely removed from the degreased body, thereby making it possible to obtain a low carbon material sintered body.

〔実施例〕〔Example〕

以下、図面を参照して本発明の一実施例について説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明に係る脱脂工程を実施するための脱脂炉
であり、この脱脂炉■は外側ケーシング2を有し、この
外側ケーシング2内には複数の処理容器3.3.・・・
3が積層収納されている。前記処理容器3内にはアルミ
ナ粉体4が収納され、このアルミナ粉体4に所定形状の
グリーンボディWが置かれている。そして、前記処理容
器3を囲んでいる内側ケーシング7内にはガス流入管5
を介して脱脂工程における脱脂炉内の雰囲気を作るため
のガスが流入される。そして、気化したバインダーを含
む雰囲気ガスは排出パイプ8を介してワックストラップ
6内に流入され、このワックストラッf6によってバイ
ンダー中の気化したワックスが除去された後に排出ガス
は排出管9を通って外部に排出される。前記グリーンボ
ディと呼ばれる成形品Wは、通常の混練方法によって製
造される。すなわち平均粒子径数ミクロンの1種又は2
種以上の金属粒子例えば、鉄およびニッケル粒子と熱可
塑性樹脂、ワックスなどからなるバインダー等を混練し
てペレット状とし、この混練ペレットを通常の射出成形
機によって所定の形状に射出成形し、このようにして作
られたグリーンボディが前記処理容器3内に収納された
アルミナ粉体の中に埋め込まれて脱脂工程が行なわれる
。このとき、成形品Wは予め溶剤等にて脱脂を行ったも
のでもよく、あるいは射出成形したままの成形品Wでも
よい。
FIG. 1 shows a degreasing furnace for carrying out the degreasing process according to the present invention. ...
3 are stored in a stack. Alumina powder 4 is stored in the processing container 3, and a green body W having a predetermined shape is placed on the alumina powder 4. A gas inflow pipe 5 is provided in the inner casing 7 surrounding the processing container 3.
A gas for creating an atmosphere in the degreasing furnace in the degreasing process is flowed through the degreasing furnace. Then, the atmospheric gas containing the vaporized binder flows into the wax trap 6 through the exhaust pipe 8, and after the vaporized wax in the binder is removed by the wax trap f6, the exhaust gas passes through the exhaust pipe 9 to the outside. is discharged. The molded product W called the green body is manufactured by a normal kneading method. That is, one or two types of particles with an average particle size of several microns.
A number of metal particles, such as iron and nickel particles, and a binder made of thermoplastic resin, wax, etc. are kneaded into pellets, and the kneaded pellets are injection molded into a predetermined shape using an ordinary injection molding machine. The green body made in this manner is embedded in alumina powder stored in the processing container 3, and a degreasing process is performed. At this time, the molded product W may be one that has been previously degreased with a solvent or the like, or it may be a molded product W that has been injection molded.

本脱脂工程は第2図乃至第4図に示すようなヒートパタ
ーンによって行なわれる。
This degreasing step is carried out using a heat pattern as shown in FIGS. 2 to 4.

第2図において、ガス流入管5を介して窒素ガス(N2
)が雰囲気ガスとして炉内に供給された状態で、先ず、
300℃まで温度上昇させるが、この際には1時間当り
約10°Cの割合で温度を上昇させる。雰囲気温度が室
温から300°Cの間においてはバインダーの気化が急
激になるため比較的ゆっくりと昇温する必要があり、こ
の際急激に温度を上昇させると成形品に亀裂や膨れある
いはクラックなどが生ずる。成形体を雰囲気温度300
 ’Cまで上昇させると、その全量の約40%の気化バ
インダーはワックストラップ6に補足される。この脱脂
工程において、300℃までの昇温前においては、前述
したように窒素雰囲気を使用しているので金属粉末の酸
化が有効に防止されつつ脱脂が行なわれる。
In FIG. 2, nitrogen gas (N2
) is supplied into the furnace as an atmospheric gas, first,
The temperature is raised to 300°C, at a rate of about 10°C per hour. When the ambient temperature is between room temperature and 300°C, the binder vaporizes rapidly, so it is necessary to raise the temperature relatively slowly.In this case, if the temperature is raised rapidly, cracks, blisters, or cracks may occur in the molded product. arise. The molded body is kept at an ambient temperature of 300
When raised to 'C, approximately 40% of the total amount of vaporized binder is captured in the wax trap 6. In this degreasing step, before the temperature is raised to 300° C., a nitrogen atmosphere is used as described above, so that oxidation of the metal powder is effectively prevented while degreasing is performed.

実験によれば、第5図に示すように脱脂保持温度と脱脂
率との関係は成形体Wを250℃に上昇させた場合には
約25%のバインダーが気化されて除去され、280℃
の場合には34%のバインダーが除去され、300℃の
場合には40%のノくインダーが除去され、500℃の
場合には、95%のバインダーが除去され、700℃ま
で上昇させたときにはほぼ100%のバインダーが除去
されることが判明している。
According to experiments, as shown in Fig. 5, the relationship between the degreasing holding temperature and the degreasing rate is such that when the molded body W is raised to 250°C, about 25% of the binder is vaporized and removed;
34% of the binder was removed at 300°C, 40% of the binder was removed at 300°C, 95% of the binder was removed at 500°C, and when raised to 700°C It has been found that almost 100% of the binder is removed.

次いで、前記ガス流入管5を介して窒素および水素ガス
の混合ガスを脱脂炉内に送り、好ましくは工時間当り2
00℃の上昇速度で600乃至800℃好ましくは65
0乃至750℃の温度まで上昇せしめる。そして、その
温度に最も好ましくは700℃に5時間程保持した後に
室温に低下せしめる。すなわち、この700℃の温度は
炭素が浸炭しない温度で、かつ、完全な焼結がおきるこ
となく、材料が縮まず連続空孔が十分に存在する温度範
囲である。また、5時間程700℃に保持することによ
って水素ガスと残留炭素との間には十分な反応がおこり
、炭化水素ガスとして炭素は十分に除去される。前述の
300℃まで上昇した段階においてはバインダーの約4
0%が除去されているので成形体Wはポーラス状となっ
ており、この場合、内部から外部へ連続する連続通気孔
が多数生じているので、この後は急速昇温によってバイ
ンダーを除去しても前記通気孔を介してノくインダーの
ガスが外部に流出でき欠陥が発生することはない。なお
、混合ガス中の水素ガスの量は5%以上が好ましく、成
形体W中に残留しているノくインダーの量の増大に応じ
て水素ガスの量を増大する。
Next, a mixed gas of nitrogen and hydrogen gas is sent into the degreasing furnace through the gas inlet pipe 5, preferably at a rate of 2 gas per working hour.
600 to 800°C at a rate of increase of 00°C, preferably 65
The temperature is raised to between 0 and 750°C. Then, the temperature is most preferably maintained at 700° C. for about 5 hours, and then the temperature is lowered to room temperature. That is, this temperature of 700° C. is a temperature range at which carbon is not carburized, complete sintering does not occur, and the material does not shrink and there are sufficient continuous pores. Further, by holding the temperature at 700° C. for about 5 hours, a sufficient reaction occurs between hydrogen gas and residual carbon, and carbon is sufficiently removed as hydrocarbon gas. At the stage where the temperature was raised to 300°C, the binder
Since 0% has been removed, the molded body W is porous, and in this case, there are many continuous ventilation holes from the inside to the outside, so after this, the binder is removed by rapid heating. Also, the gas in the indulator can flow out through the vent hole, and no defects will occur. Note that the amount of hydrogen gas in the mixed gas is preferably 5% or more, and the amount of hydrogen gas is increased in accordance with the increase in the amount of the inder remaining in the molded body W.

前述したように300℃まで昇温した段階において、は
ぼ40%程度のバインダーが除去されるが、この段階で
除去しきれず炭化して残留しているバインダーは600
乃至800℃までの上昇段階およびその温度での一定時
間の維持の際に雰囲気ガスの・水素と炭素が反応して生
成する炭化水素ガスとして除去される。したがって、脱
脂体表面への炭素の残留は極めて少なくなり、焼結工程
を経た焼結体中には炭素は残留しない。
As mentioned above, approximately 40% of the binder is removed when the temperature is raised to 300°C, but 600% of the binder that is not completely removed at this stage is carbonized and remains.
During the rising stage from 800° C. to 800° C. and maintaining the temperature for a certain period of time, the hydrogen and carbon of the atmospheric gas react and are removed as hydrocarbon gas. Therefore, the amount of carbon remaining on the surface of the degreased body is extremely reduced, and no carbon remains in the sintered body after the sintering process.

このような脱脂工程後の成形体は、別に設けた真空炉内
に供給され、この真空炉内において1200℃まで上昇
されてその温度に3時間程維持されて焼結される。
The molded body after such a degreasing step is fed into a separately provided vacuum furnace, heated to 1200° C. in the vacuum furnace, and maintained at that temperature for about 3 hours to be sintered.

第3図は第2図に示すヒートパターンの他の実施例を示
したものである。すなわち、第2図のヒートパターンに
示すように脱脂工程の窒素ガス雰囲気中での300℃ま
での昇温は同じような割合で行ない、300℃に1時間
程度維持した後に室温に降温し、次いで窒素および水素
の混合ガス雰囲気において1時間当り約200℃の割合
で600乃至800℃まで上昇せしめ、この温度、最も
好ましくは700℃において5時間程維持した後に第2
図のヒートパターンと同様に真空炉内において1200
℃まで上昇させてその温度に3時間程維持して焼結し、
その後室温まで降温する。
FIG. 3 shows another embodiment of the heat pattern shown in FIG. 2. That is, as shown in the heat pattern in Figure 2, the temperature was raised to 300°C in a nitrogen gas atmosphere during the degreasing process at the same rate, maintained at 300°C for about 1 hour, then lowered to room temperature, and then The temperature is raised to 600 to 800°C at a rate of about 200°C per hour in a mixed gas atmosphere of nitrogen and hydrogen, and after maintaining this temperature, most preferably 700°C, for about 5 hours, a second
In the same way as the heat pattern shown in the figure, 1200
℃ and maintained at that temperature for about 3 hours to sinter.
Thereafter, the temperature is lowered to room temperature.

第2図のヒートパターンにおいては窒素ガス雰囲気中に
おいて300℃まで上昇させた後に600乃至800℃
まで昇温させ、次いで真空炉内で焼結を行なっているが
、第3図においては窒素ガス雰囲気中において300°
Cまで上昇させた後に1時間程度その温度に維持して室
温に降温し、次いで窒素およ水素の混合ガス雰囲気中に
おいて最も好ましくは700℃まで室温から成形体Wを
上昇せしめ、700℃に5時間程度維持した後に引き続
いて1200°Cまで温度を上昇させて焼結し、その後
室温まで降温させている。第2図乃至第4図のヒートパ
ターンの各数字は最も好ましいものを示たものであり、
必ずしもこれらの温度あるいはこれらの昇温速度に限定
されるものではない。
In the heat pattern shown in Figure 2, the temperature is increased to 600 to 800°C after being raised to 300°C in a nitrogen gas atmosphere.
300° in a nitrogen gas atmosphere.
After raising the temperature to C, the temperature is maintained at that temperature for about 1 hour, and then the temperature is lowered to room temperature.Then, the molded body W is raised from room temperature, most preferably to 700°C, in a mixed gas atmosphere of nitrogen and hydrogen, and heated to 700°C for 5 After maintaining the temperature for about an hour, the temperature was subsequently raised to 1200°C for sintering, and then the temperature was lowered to room temperature. Each number of the heat patterns in FIGS. 2 to 4 indicates the most preferable one,
It is not necessarily limited to these temperatures or these temperature increase rates.

次に実験例を示す。Next, an experimental example will be shown.

実験例1 カーボニル純鉄粉60 Van%に対し、熱可塑性樹脂
、ワックス等からなるバインダー40 Vo1%を加え
て混練してペレットとし、このペレットを射出成形して
グリーンボディを製造し、第1図に示すような脱脂炉内
で第2図乃至第4図のヒートパターンおよび雰囲気ガス
条件に従って処理した。
Experimental Example 1 To carbonyl pure iron powder 60Van%, 40Vo1% binder made of thermoplastic resin, wax, etc. was added and kneaded to form pellets, and the pellets were injection molded to produce a green body. Processing was carried out in a degreasing furnace as shown in FIG. 2 according to the heat pattern and atmospheric gas conditions shown in FIGS. 2 to 4.

実験例2 実験例1と同じグリーンボディを用い、第1図に示すよ
うな脱脂炉内で雰囲気ガスを窒素ガスだけにして第2図
乃至第4図のヒートパターンに従って処理した。これら
両実験例の比較表を次頁に示す。
Experimental Example 2 Using the same green body as in Experimental Example 1, it was treated in a degreasing furnace as shown in FIG. 1 using only nitrogen gas as the atmosphere gas according to the heat patterns shown in FIGS. 2 to 4. A comparison table of both of these experimental examples is shown on the next page.

比 較 表 各実験例においては、焼結体の炭素量、その相対密度、
磁束密度、保磁力および透磁率が測定され比較された。
Comparison table In each experimental example, the amount of carbon in the sintered body, its relative density,
Magnetic flux density, coercivity and permeability were measured and compared.

実験例によれば、本発明による実験例1による焼結体の
残留炭素は0.008wt%で殆んど炭素は残っていな
いのに対し、水素ガスを用いない実験例2では0.15
%と多くなっている。
According to the experimental example, the residual carbon of the sintered body of Experimental Example 1 according to the present invention was 0.008 wt%, and almost no carbon remained, whereas in Experimental Example 2, which did not use hydrogen gas, it was 0.15%.
%.

更に、焼結体の磁気ヒステリシスの磁界の強さが小さい
部分(B2,85部分)では、実験例1の焼結体の値は
実験例2の焼結体のそれよりも著しく大きくなっており
、残留磁束密度(B r)においても実験例1の焼結体
が実験例2の焼結体よりも大きな値になっている。とこ
ろが、保磁力(Oe)においては両者の間で大きな差は
なく、初期透磁率(μ0)および最大透磁率(μm)に
おいては実験例1の焼結体が実験例2のそれよりも著し
く大きくなっている。
Furthermore, in the part (B2, 85 part) where the magnetic field strength of the magnetic hysteresis of the sintered body is small, the value of the sintered body of Experimental Example 1 is significantly larger than that of the sintered body of Experimental Example 2. The sintered body of Experimental Example 1 also has a larger value in residual magnetic flux density (Br) than the sintered body of Experimental Example 2. However, there is no big difference in coercive force (Oe) between the two, and the sintered body of Experimental Example 1 is significantly larger than that of Experimental Example 2 in terms of initial magnetic permeability (μ0) and maximum magnetic permeability (μm). It has become.

すなわち、磁界の強さが小さい範囲における磁気特性が
良好であり、本発明による焼結体は磁性材料としての応
用範囲が著しく広い。
That is, the magnetic properties are good in a range where the strength of the magnetic field is small, and the sintered body according to the present invention has an extremely wide range of applications as a magnetic material.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上のように構成したので、残留炭素が極め
て少ない低炭素焼結体を製造することができるという効
果を奏する。
Since the present invention is configured as described above, it is possible to produce a low carbon sintered body with extremely low residual carbon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は脱脂炉の概略構成図、第2図は本発明の第1実
施例であるヒートパターンを示す線図、第3図は本発明
の第2実施例であるヒートパターンを示す線図、第4図
は本発明の第3実施例であるヒートパターンを示す線図
、第5図は脱脂保持温度と脱脂率の関係を示すグラフで
ある。 1・・・脱脂、 2・・・外側ケーシング、 3・・・処理容器、 ・・内側ケーシング。
Fig. 1 is a schematic diagram of a degreasing furnace, Fig. 2 is a diagram showing a heat pattern according to the first embodiment of the present invention, and Fig. 3 is a diagram showing a heat pattern according to the second embodiment of the present invention. , FIG. 4 is a diagram showing a heat pattern according to a third embodiment of the present invention, and FIG. 5 is a graph showing the relationship between degreasing holding temperature and degreasing rate. 1... Degreasing, 2... Outer casing, 3... Processing container,... Inner casing.

Claims (3)

【特許請求の範囲】[Claims] 1.1種又は2種以上の金属粒子と熱可塑性樹脂、ワッ
クス等からなるバインダーとを混練してペレットとし、
このペレットを射出成形により所定形状のグリーンボデ
ィを成形し、このグリーンボディを脱脂し、更に焼結し
て焼結体を作る粒子状材料の焼結体の製造方法において
、前記グリーンボディの脱脂の際に、不活性ガス中に水
素を含む混合ガス雰囲気もしくは水素ガス雰囲気中で脱
脂体を浸炭しない温度範囲で、かつ、脱脂体内に連続空
孔が十分存在する温度範囲で、残留バインダー中の炭素
に水素が反応して炭素を除去するために十分な時間保持
することを特徴とする粒子状材料の焼結体の製造方法。
1. Knead one or more types of metal particles and a binder consisting of a thermoplastic resin, wax, etc. to form pellets,
In a method for manufacturing a sintered body of a particulate material in which a green body of a predetermined shape is formed from the pellets by injection molding, this green body is degreased, and further sintered to produce a sintered body, the green body is degreased. In this case, carbon in the residual binder is removed in a temperature range that does not carburize the degreased body in a mixed gas atmosphere containing hydrogen in an inert gas or in a hydrogen gas atmosphere, and in a temperature range where there are sufficient continuous pores in the degreased body. A method for producing a sintered body of a particulate material, characterized by holding the body for a sufficient time to react with hydrogen and remove carbon.
2.前記混合ガス中の水素ガスは全体の5%以上含有さ
れている請求項1記載の粒子状材料の焼結体の製造方法
2. 2. The method for producing a sintered body of particulate material according to claim 1, wherein the mixed gas contains 5% or more of hydrogen gas.
3.前記脱脂の際の温度範囲は、600〜 800℃である請求項1又は2記載の粒子状材料の焼結
体の製造方法。
3. The method for producing a sintered body of particulate material according to claim 1 or 2, wherein the temperature range during the degreasing is 600 to 800°C.
JP1181748A 1989-07-14 1989-07-14 Method for producing sintered body of particulate material Expired - Fee Related JP2821183B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1181748A JP2821183B2 (en) 1989-07-14 1989-07-14 Method for producing sintered body of particulate material
US07/550,972 US4996022A (en) 1989-07-14 1990-07-10 Process for producing a sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1181748A JP2821183B2 (en) 1989-07-14 1989-07-14 Method for producing sintered body of particulate material

Publications (2)

Publication Number Publication Date
JPH0345566A true JPH0345566A (en) 1991-02-27
JP2821183B2 JP2821183B2 (en) 1998-11-05

Family

ID=16106195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1181748A Expired - Fee Related JP2821183B2 (en) 1989-07-14 1989-07-14 Method for producing sintered body of particulate material

Country Status (1)

Country Link
JP (1) JP2821183B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130063A (en) * 1996-10-25 1998-05-19 Komatsu Ltd Dewaxing method, dewaxed body obtained thereby and sintered body
WO2011081081A1 (en) * 2009-12-28 2011-07-07 株式会社Ihi Degreasing method
CN103081039A (en) * 2011-06-24 2013-05-01 日东电工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103264163B (en) * 2013-05-06 2016-08-17 宁波恒普真空技术有限公司 Metal powder injection molding vacuum degreasing fritting furnace windstream device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130063A (en) * 1996-10-25 1998-05-19 Komatsu Ltd Dewaxing method, dewaxed body obtained thereby and sintered body
WO2011081081A1 (en) * 2009-12-28 2011-07-07 株式会社Ihi Degreasing method
JP2011137202A (en) * 2009-12-28 2011-07-14 Ihi Corp Degreasing method
CN102655967A (en) * 2009-12-28 2012-09-05 株式会社Ihi Degreasing method
KR101453463B1 (en) * 2009-12-28 2014-10-22 가부시키가이샤 아이에이치아이 Degreasing method
CN102655967B (en) * 2009-12-28 2014-12-24 株式会社Ihi Degreasing method
CN103081039A (en) * 2011-06-24 2013-05-01 日东电工株式会社 Rare earth permanent magnet and method for producing rare earth permanent magnet

Also Published As

Publication number Publication date
JP2821183B2 (en) 1998-11-05

Similar Documents

Publication Publication Date Title
US4996022A (en) Process for producing a sintered body
US20060027950A1 (en) Method for manufacturing soft magnetic material
JP4010296B2 (en) Method for producing soft magnetic powder material
JP2588272B2 (en) Method for producing Fe-Co based sintered magnetic material
JPH02194105A (en) Method for degreasing injection-molded body
JPH0345566A (en) Production of sintered granular material
JP2587872B2 (en) Method for producing soft magnetic sintered body of Fe-Si alloy
JP4562483B2 (en) Method for producing soft magnetic material
JPH0211703A (en) Method for degreasing metal powder injection green compact
JPH04147905A (en) Manufacture of sintered body of glanular material
EP1965940B1 (en) Enhancement of thermal stability of porous bodies comprised of stainless steel or an alloy
JPH0345567A (en) Production of sintered granular material
KR100366773B1 (en) Manufacturing method of nano-metal feedstock for metal injection molding
JP2002075721A (en) Dust core
JP2016079484A (en) Magnetic nanoparticle, method for producing the same, and magnetic material
JPH0770610A (en) Method for sintering injection-molded product
JP2020145310A (en) Powder-compact magnetic core material
KR930006442B1 (en) Sintered fe-co type magnetic materials
JP2021165416A (en) Soft magnetic alloy powder, method for producing the same, and dust core
JPH0257614A (en) Degreasing method
JPS5852522B2 (en) Production method of metallic iron or alloy magnetic powder mainly composed of iron
JP2005200752A (en) Method for producing sintered compact
JPH04170357A (en) Dewaxable molded body of magnetic powder and method for dewaxing same
JPS585241B2 (en) Method for manufacturing metallic iron or alloy magnetic powder mainly composed of iron
JPS62259407A (en) Manufacture of sintered rare earth magnet

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080828

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees