JPH0345505A - Method for purifying liquid sulfur - Google Patents

Method for purifying liquid sulfur

Info

Publication number
JPH0345505A
JPH0345505A JP17912689A JP17912689A JPH0345505A JP H0345505 A JPH0345505 A JP H0345505A JP 17912689 A JP17912689 A JP 17912689A JP 17912689 A JP17912689 A JP 17912689A JP H0345505 A JPH0345505 A JP H0345505A
Authority
JP
Japan
Prior art keywords
gas
sulfur
liquid sulfur
solid catalyst
sweep gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17912689A
Other languages
Japanese (ja)
Other versions
JPH0567561B2 (en
Inventor
Nobuhiro Yamada
伸広 山田
Kenzo Yamamoto
山本 研三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP17912689A priority Critical patent/JPH0345505A/en
Publication of JPH0345505A publication Critical patent/JPH0345505A/en
Publication of JPH0567561B2 publication Critical patent/JPH0567561B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)

Abstract

PURPOSE:To enable use of inexpensive air as a sweep gas and safely and efficiently remove dissolved hydrogen sulfide and hydrogen polysulfide using ZnO as a solid catalyst by bringing liquid sulfur synthesized according to a Claus process into contact with the sweep gas in a solid catalyst layer and purifying the liquid sulfur. CONSTITUTION:Liquid sulfur containing hydrogen sulfide and hydrogen polysulfide is brought into contact with a sweep gas in a solid catalyst layer to remove the hydrogen sulfide and hydrogen polysulfide. In the aforementioned method, ZnO is used as the solid catalyst. Not only an inert gas but also a gas containing molecular oxygen, such as inexpensive air, can be used as the sweep gas. Oxidative reaction of sulfur occurs by using a conventional solid catalyst, whereas the aforementioned reaction will not substantially occur in the case of the ZnO. As a result, the above-mentioned method is safe and advantageous.

Description

【発明の詳細な説明】 イ2発明の目的 の1 この発明は、主としてクラウス法によりH2S(硫化水
素)とSO2(二酸化硫黄)から製造される液体硫黄の
精製方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION A2.Objective 1 of the Invention The present invention relates to a method for purifying liquid sulfur produced from H2S (hydrogen sulfide) and SO2 (sulfur dioxide) mainly by the Claus method.

クラウス法硫黄回収装置からの元素硫黄は液体状で生産
されることから、この形態で輸送あるいけ毬逆LfT輩
的に伸田される7 しかし、クラウス法からの液体硫黄中には、その生成過
程においてH2S及びH2SX (ポリ硫化水素)がH
2Sに換算して通常200〜800ppm溶存しており
、貯蔵又は輸送中に液体硫黄中からH2Sが気化、拡散
するため、人体への影響やガス爆発の危険がある。また
H2SXは徐々に分解してH2Sになるので同様に有害
である。
Since elemental sulfur from the Claus process sulfur recovery equipment is produced in liquid form, it can be transported in this form or transported in a reverse LfT manner.7 However, the liquid sulfur from the Claus process contains In the process, H2S and H2SX (polyhydrogen sulfide)
H2S is normally dissolved in an amount of 200 to 800 ppm in terms of 2S, and since H2S vaporizes and diffuses from liquid sulfur during storage or transportation, there is a risk of impact on the human body and gas explosion. H2SX is also harmful as it gradually decomposes into H2S.

従って液体硫黄中のH2S及びH2SXのH2S換算濃
度は10ppm以下であることが要求されている。
Therefore, the concentration of H2S and H2SX in liquid sulfur in terms of H2S is required to be 10 ppm or less.

鎧迷」月i量 液体硫黄中に溶存しているH2S及びH2SXを除去す
る方法としては、液体硫黄を障害物に吹きつけたり、ス
イープガスと呼ばれる空気等の気体と液体硫黄を無触媒
で接触させたりして、H2Sxを分解してH2Sの形と
し溶存H2Sと共に気化して除去する方法があるが、い
ずれも処理時間が長く且つ除去効率が悪い。特にH2S
Xの分解が遅く、スイープガスの使用のみでは一日以上
の机理皓聞2騨オろ− そこで処理時間を短縮しようとする見地から、化学的に
処理するための研究が行われており、種々の方法が知ら
れている。
Monthly amount of H2S and H2SX dissolved in liquid sulfur can be removed by spraying liquid sulfur onto obstacles or by bringing liquid sulfur into contact with a gas such as air called sweep gas without a catalyst. There is a method of decomposing H2Sx to form H2S and vaporizing it together with dissolved H2S to remove it, but all of these methods require a long processing time and have poor removal efficiency. Especially H2S
The decomposition of X is slow, and it would take more than a day to use only a sweep gas.Therefore, from the perspective of shortening the processing time, research is being conducted on chemical processing, and various methods are being conducted. method is known.

例えば特公昭56−52847号には、液体硫黄をクラ
ウス反応器からの最終残留ガスでスウイーブし、さらに
アンモニアやアミンを添加してH2S及びH2SXを除
去する方法が開示されている。また特公昭59−407
62号には液体硫黄をアルミナ又はコバルト−モリブデ
ン含浸アルミナからなる触媒と接触させて、空気又は酸
素富化空気でスウイーブしてH2S及びH2SXを除去
する方法が記載されている。
For example, Japanese Patent Publication No. 56-52847 discloses a method in which liquid sulfur is swept with the final residual gas from a Claus reactor and further ammonia or amine is added to remove H2S and H2SX. In addition, the special public service 59-407
No. 62 describes a method for removing H2S and H2SX by contacting liquid sulfur with a catalyst consisting of alumina or cobalt-molybdenum impregnated alumina and sweeping with air or oxygen-enriched air.

さらに本発明者等はその改良法として、Ni−Mo系の
触媒を使用し、酸素含有ガス及び窒素ガスよりなる群か
ら選ばれるスイープガスと接触させることにより、より
迅速に除去しつる方法について特願昭60−96805
号にて提案している。
Furthermore, as an improved method, the present inventors have specifically developed a method for more rapid removal by using a Ni-Mo catalyst and bringing it into contact with a sweep gas selected from the group consisting of an oxygen-containing gas and a nitrogen gas. Gansho 60-96805
It is proposed in the issue.

が ′ しよ とする 前記の特公昭59−40762号や特願昭60−968
05号に開示されたモリブデン系触媒を用いる方法は、
共に、スイープガスとして空気のような分子状酸素含有
ガスの利用が可能とされている。
The above-mentioned Japanese Patent Publication No. 59-40762 and Japanese Patent Application No. 60-968 which
The method using a molybdenum catalyst disclosed in No. 05 is as follows:
In both cases, it is possible to use a molecular oxygen-containing gas such as air as the sweep gas.

しかしこれらの方法では、スイープガスとして空気のよ
うな分子状酸素含有ガスを用いた場合、液体硫黄中のH
2S及びH2SX除去に関する本来の性能は高いが、反
応中にH2Sが微量酸化すると共に、原料硫黄の供給停
止後空気を流し続けると接触層内に滞留していた硫黄の
酸化反応が起き、加速度的に温度上昇する危険性がある
。このため停止時には不活性ガスへの切替など複雑な操
作を必要とする。
However, in these methods, when a molecular oxygen-containing gas such as air is used as a sweep gas, H
Although the original performance for removing 2S and H2SX is high, a small amount of H2S is oxidized during the reaction, and if air continues to flow after the feedstock sulfur supply is stopped, the oxidation reaction of the sulfur accumulated in the contact layer occurs, resulting in an accelerated reaction. There is a risk of temperature rise. Therefore, when the system is stopped, complicated operations such as switching to inert gas are required.

ことに装置の緊急停止時などに対応が遅れると危険であ
る。
It is especially dangerous if the response is delayed, such as during an emergency stop of the equipment.

本発明は、スイープガスとして、不活性ガスはもとより
、安価な空気などの分子状酸素を含有するガスをも使用
でき、しかも硫黄の酸化反応を抑制して、安全且つ効率
的に溶存している硫化水素及びポリ硫化水素を除去でき
る液体硫黄の精製方法を提供することを目的とする。
The present invention can use not only an inert gas but also an inexpensive gas containing molecular oxygen such as air as the sweep gas, and suppresses the oxidation reaction of sulfur to safely and efficiently dissolve it. An object of the present invention is to provide a method for purifying liquid sulfur that can remove hydrogen sulfide and polyhydrogen sulfide.

口0発明の構成 を ゛するための 本発明に係わる液体硫黄の精製方法は、硫化水素及びポ
リ硫化水素を含有する液体硫黄をスイープガスと固体触
媒層で接触させて硫化水素及びポリ硫化水素を除去する
方法において、固体触媒としてZnOを用いることを特
徴とする。
The method for purifying liquid sulfur according to the present invention for achieving the configuration of the present invention is to contact liquid sulfur containing hydrogen sulfide and polyhydrogen sulfide with a sweep gas through a solid catalyst layer to purify hydrogen sulfide and polyhydrogen sulfide. The removing method is characterized by using ZnO as a solid catalyst.

スイープガスとしては、窒素ガス、クラウス法硫黄回収
装置におけるインシネレータ−オフガスやテールガス処
理装置(例えばスコツトオフガス法)などのほか、空気
をも安全に使用できる。スイープガスとして空気を用い
た場合、従来の固体触媒では硫黄の酸化反応が起きるの
に対し、ZnOではこの反応が実質的に起きないので安
全で有利である。
As the sweep gas, in addition to nitrogen gas, incinerator off gas in a Claus method sulfur recovery device, tail gas treatment device (for example, Scott off gas method), and the like, air can also be safely used. When air is used as the sweep gas, sulfur oxidation reaction occurs with conventional solid catalysts, but this reaction does not substantially occur with ZnO, so it is safe and advantageous.

スイープガスの流量は処理される液体硫黄に対し10〜
100NJ2/βが好適である。
The flow rate of the sweep gas is 10 to 10% for the liquid sulfur being treated.
100NJ2/β is suitable.

処理条件は前記の公知技術で採用されている条件と同様
で良い。即ち処理温度は液体硫黄の特性上120〜16
5℃の範囲内に保持することが必尊で$、スー帆狸圧力
は通當當庫乃卒若千の加庫下で行う。
The processing conditions may be similar to those employed in the above-mentioned known techniques. That is, the processing temperature is 120 to 16
It is essential to maintain the temperature within the range of 5°C, and the pressure must be maintained at a constant temperature.

以下実施例により本発明を具体的に説明する。The present invention will be specifically explained below using Examples.

[実施例1] 押出成型法により製造した直径3mm、長さ5〜10m
mのZnO触媒1186mgを、内径28.6mm、長
さ2200mmのスチームジャケット付反応管に充填し
、145±10℃に溶解した原料硫黄0.59β/ H
rを窒素ガス5ONQ/ Hrと共に供給し反応温度1
45℃で液体硫黄中のH2S及びH2SXの除去反応を
行った。原料硫黄としては全H2Sとして330wt、
ppm、そのうちH2SX態として170wt、ppm
が含まれているものを使用した。
[Example 1] Diameter 3 mm and length 5 to 10 m manufactured by extrusion molding method
A steam-jacketed reaction tube with an inner diameter of 28.6 mm and a length of 2200 mm was filled with 1186 mg of ZnO catalyst of
r is supplied together with nitrogen gas 5ONQ/Hr, and the reaction temperature is 1
A reaction for removing H2S and H2SX in liquid sulfur was carried out at 45°C. The raw material sulfur is 330wt as total H2S,
ppm, of which 170wt as H2SX state, ppm
I used the one that included.

反応管出口の硫黄中のH2S濃度及びガス中のH2Sと
SO2の濃度を分析したところ、次の結果を得た。
When the concentration of H2S in the sulfur at the outlet of the reaction tube and the concentration of H2S and SO2 in the gas were analyzed, the following results were obtained.

■精製硫黄の分析結果 全H2S  濃度:  8wt、ppm内H2SX濃度
:  6wt、ppm ■出ロガス中の分析結果 H2S   濃度:  0.45vof2.%SO2i
農度 :    0.02vo  ℃ 、  %[実施
例2] 窒素ガスの代りに空気5ONβ/ Hrを用いた以外は
実施例1と同様にして液体硫黄中のH2S及びH2SX
の除去反応を行い、反応管出口の硫黄中のH2S濃度及
びガス中のH2SとSO2の濃度を分析したところ、次
の結果を得た。
■Analysis results of purified sulfur Total H2S concentration: 8wt, ppm H2SX concentration: 6wt, ppm ■Analysis results of output log gas H2S concentration: 0.45vof2. %SO2i
Agricultural degree: 0.02vo °C, % [Example 2] H2S and H2SX in liquid sulfur were prepared in the same manner as in Example 1 except that air 5ONβ/Hr was used instead of nitrogen gas.
When the H2S concentration in the sulfur at the outlet of the reaction tube and the H2S and SO2 concentrations in the gas were analyzed, the following results were obtained.

■精製硫黄の分析結果 全H2S  濃度:  ’yWt、ppm内H2SX濃
度:  6wt、ppm ■出ロガス中の分析結果 H2S   a度:  0.46voff、%SO2濃
度:  0.02voff、%次いで原料硫黄の供給を
停止し、空気5ONβ/ Hrのみを流し続けたところ
、出口ガス中のSO2は0.03voj2.%を維持し
た。その後−旦空気量を4倍にして3時間残留硫黄をパ
ージしてから元の流量に戻したところ、出口ガス中のS
02は0.03〜0.032vo氾9%の範囲で維持さ
れ、硫黄の残留量による影響は見られなかった。
■Analysis results of refined sulfur Total H2S concentration: 'yWt, ppmH2SX concentration: 6wt, ppm ■Analysis results of H2S in output log gas a degree: 0.46voff, %SO2 concentration: 0.02voff,%Next supply of raw material sulfur When the gas was stopped and only air 5ONβ/Hr continued to flow, the SO2 in the outlet gas was 0.03voj2. % was maintained. After that, the amount of air was quadrupled to purge the residual sulfur for 3 hours, and then the original flow rate was returned to the original flow rate.
02 was maintained in the range of 0.03 to 0.032vo flood 9%, and no influence by the residual amount of sulfur was observed.

[比較例1] 粒径l/16インチのNi−Mo系脱硫触媒を用いて実
施例2と同様に実験した。原料硫黄としては全H2Sと
して360wt、ppm、そのうちH2SX態として1
90wt、ppmが含まれているものを使用した。
[Comparative Example 1] An experiment was carried out in the same manner as in Example 2 using a Ni-Mo desulfurization catalyst having a particle size of 1/16 inches. The raw material sulfur is 360wt, ppm as total H2S, of which 1 is in H2SX form.
The one containing 90wt, ppm was used.

反応管出口の硫黄中のH2Sa度及びガス中のH2Sと
SO2の濃度を分析したところ、次の結果を得た。
When the H2Sa degree in the sulfur at the outlet of the reaction tube and the concentrations of H2S and SO2 in the gas were analyzed, the following results were obtained.

■精製硫黄の分析結果 全H2S  濃度:  2wt、ppm内H2SX濃度
:  1wt、ppm ■出ロガス中の分析結果 H2S   濃度:  0.24voj2.%SO2濃
度:  0.08voff、%その後、スィ−ブガスを
空気から窒素に切替えて出口ガス中のH2S及びSO2
を測定したところ、H2Sは0.33voI2.%、S
O2は0%であった。このことから出口ガス中のSO2
はH2Sの燃焼によることが明らかである。
■Analysis results of purified sulfur Total H2S concentration: 2wt, ppm H2SX concentration: 1wt, ppm ■Analysis results of output log gas H2S concentration: 0.24voj2. %SO2 concentration: 0.08voff, %Then, the sweep gas was switched from air to nitrogen to reduce H2S and SO2 in the outlet gas.
When measured, H2S was 0.33voI2. %, S
O2 was 0%. From this, SO2 in the outlet gas
It is clear that this is due to the combustion of H2S.

次いでスィ−ブガスを元の空気に戻した後原料硫黄の供
給を停止し、空気5ONβ/ Hrを流し続けたところ
、出口ガス中のSO2は0.16VOW、%で継続した
。−旦空気量を4倍にして3時間流した後50 N I
2/ Hrに戻したところ、SO2濃度は0.7voβ
1%まで上昇し、継続した。空気量を一時的に増やすこ
とによって液体硫黄がパージされた結果、触媒表面に空
気が触れ易くなり硫黄の酸化反応が促進されたためと思
われる。
Next, after returning the sieve gas to the original air, the supply of raw material sulfur was stopped, and when air was continued to flow at 5ONβ/Hr, SO2 in the outlet gas continued at 0.16 VOW, %. - After quadrupling the air volume and flowing for 3 hours, 50 N I
When the temperature was returned to 2/Hr, the SO2 concentration was 0.7voβ
It rose to 1% and continued. This seems to be because liquid sulfur was purged by temporarily increasing the amount of air, which made it easier for air to come into contact with the catalyst surface, promoting the oxidation reaction of sulfur.

[実施例3] 小型のスチームジャケット付反応管に第1表に示した各
種触媒を各10rnJ2充填し、145℃で溶解した)
(2Sを含まない液体硫黄を50mβ流し触媒を硫黄で
漏らした後、空気を流して出口ガス中のSO2を分析し
た。その・結果、第1表のようになり、硫黄の酸化活性
についてはZnOがもわかった。
[Example 3] A small steam-jacketed reaction tube was filled with 10rnJ2 of each of the various catalysts shown in Table 1, and dissolved at 145°C.)
(After flowing 50 mβ of liquid sulfur that does not contain 2S to make the catalyst leak with sulfur, air was flowed to analyze the SO2 in the outlet gas. The results are as shown in Table 1, and the sulfur oxidation activity of ZnO I also understood.

第 表 艷且 ZnO触媒は、十分実用的なポリ硫化水素の分解性能を
有すると共に、空気のように分子状酸素を含有するガス
の存在下で使用しても硫黄を酸化してSO2にする程度
が公知触媒に比して小さいので、スイープガスとして安
価な空気を支障なく使用できる。
Table 1: The ZnO catalyst has sufficient performance to decompose polyhydrogen sulfide for practical use, and even when used in the presence of a gas containing molecular oxygen, such as air, it only oxidizes sulfur to SO2. is smaller than that of known catalysts, so cheap air can be used as the sweep gas without any problems.

ハ1発明の効果 l)反応停止時にスイープガスを切替える必要がなく、
運転操作が簡易になる。
C1 Effects of the invention l) There is no need to switch the sweep gas when the reaction is stopped,
Driving operations become easier.

2)緊急停止時に危険を伴わない。2) No danger during emergency stop.

Claims (1)

【特許請求の範囲】 1 硫化水素及びポリ硫化水素を含有する液体硫黄をス
イープガスと固体触媒層で接触させて硫化水素及びポリ
硫化水素を除去する方法において、固体触媒としてZn
Oを用いることを特徴とする液体硫黄の精製方法。 2 スイープガスとして空気を用いる請求項第1項記載
の液体硫黄の精製方法。
[Claims] 1. A method for removing hydrogen sulfide and polyhydrogen sulfide by contacting liquid sulfur containing hydrogen sulfide and polyhydrogen sulfide with a sweep gas through a solid catalyst layer, in which Zn is used as the solid catalyst.
A method for purifying liquid sulfur, characterized by using O. 2. The method for purifying liquid sulfur according to claim 1, wherein air is used as the sweep gas.
JP17912689A 1989-07-13 1989-07-13 Method for purifying liquid sulfur Granted JPH0345505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17912689A JPH0345505A (en) 1989-07-13 1989-07-13 Method for purifying liquid sulfur

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17912689A JPH0345505A (en) 1989-07-13 1989-07-13 Method for purifying liquid sulfur

Publications (2)

Publication Number Publication Date
JPH0345505A true JPH0345505A (en) 1991-02-27
JPH0567561B2 JPH0567561B2 (en) 1993-09-27

Family

ID=16060449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17912689A Granted JPH0345505A (en) 1989-07-13 1989-07-13 Method for purifying liquid sulfur

Country Status (1)

Country Link
JP (1) JPH0345505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134061A (en) * 2010-01-25 2011-07-27 气体产品与化学公司 A reactor, a structured packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
WO2013006040A1 (en) 2011-06-21 2013-01-10 Jacobs Nederland B.V. Catalytic sulfur degassing

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102134061A (en) * 2010-01-25 2011-07-27 气体产品与化学公司 A reactor, a structured packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
EP2347995A1 (en) * 2010-01-25 2011-07-27 Air Products and Chemicals, Inc. A reactor, a structures packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
AU2011200201B2 (en) * 2010-01-25 2013-08-22 Fluor Technologies Corporation A reactor, a structured packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
US8663596B2 (en) 2010-01-25 2014-03-04 Fluor Enterprises, Inc. Reactor, a structure packing, and a method for improving oxidation of hydrogen sulfide or polysulfides in liquid sulfur
WO2013006040A1 (en) 2011-06-21 2013-01-10 Jacobs Nederland B.V. Catalytic sulfur degassing
US9260307B2 (en) 2011-06-21 2016-02-16 Jacobs Nederland B.V. Catalytic sulfur degassing

Also Published As

Publication number Publication date
JPH0567561B2 (en) 1993-09-27

Similar Documents

Publication Publication Date Title
SU1314949A3 (en) Method for removing sulfides from gases
US8871176B2 (en) Process for reducing sulfur emission of sulfur plant
EP1773473B1 (en) Process for removing mercaptans from an inert gas gas stream
KR850006151A (en) Methods for removing hydrogen sulfide from gases and absorbents suitable for use thereof
ES2166006T3 (en) PROCEDURE OF ELIMINATION ALMOST TOTAL OF THE SUGAR COMPOUNDS H2S, SO2, COS, AND / OR CS2, CONTAINED IN A RESIDUAL GAS OF FACTORY OF SULFRE, WITH RECOVERY OF THE SUCH COMPOUNDS IN THE FORM OF Sulfur.
NO885271D0 (en) PROCEDURE FOR REMOVING HYDROGEN SULFID FROM GASES.
NL8105728A (en) PROCESS FOR THE REMOVAL OF HYDROGEN SULFIDE FROM PROCESS GASES USING FIXED ACCEPTORS, PROCESS FOR CYCLICALLY REGENERATING THE ACCEPTORS USED AT HIGH TEMPERATURE, AND METHOD FOR PREPARING THESE PROCESS.
FI56320C (en) FOERFARANDE FOER ATT REDUCERA DEN TOTALA SVAVELHALTEN I AVGASER VID EN CLAUSPROCESS
CA1069273A (en) Purification of sulfur-containing waste gases with hydrogen peroxide
CN1105174A (en) Method for the direct high-selectivity catalytic oxidative conversion of a low concentration of H2S in a gas into sulphur, and catalyst therefor
SK282140B6 (en) Process of catalytic oxidation of ammonia to nitrogen in exhaust gas
JPH0345505A (en) Method for purifying liquid sulfur
JPS60220123A (en) Removal of sulfur compound from exhaust gas
US3794710A (en) Gas desulfurization
JPS6120342B2 (en)
JPH08503651A (en) Method for removing sulfur dioxide from a sulfur dioxide-containing gas stream
ES2207192T3 (en) PROCEDURE FOR THE TRANSFORMATION OF HYDROGEN SULFIDE IN ELEMENTAL SULFUR.
FI75329C (en) Process for removing the sulfur content of a thinned sulfur dioxide containing gas.
CA2087265C (en) Catalyst and process for removal of sulphur compounds and oxides from fluid streams
JPH0364445B2 (en)
SU874140A1 (en) Method of regeneration of absorbent
WO1998004338A1 (en) Catalyst composition, its preparation, and its use in catalytic incineration
KR100215737B1 (en) Selective oxidation catalyst of hydrogen sulfide including ammonia and water and its use for removing hydrogen sulfide
CA1337069C (en) Process for removal of sulphur compounds and nitrogen peroxide from fluid streams
IT1039007B (en) Regeneration of spent metal-porous carrier adsorbents - by treatment with dilute oxygen, a reducing gas and an inert gas to remove hydrogen sulphide poison