JPH0345256A - Jet device for bathtub - Google Patents

Jet device for bathtub

Info

Publication number
JPH0345256A
JPH0345256A JP17995789A JP17995789A JPH0345256A JP H0345256 A JPH0345256 A JP H0345256A JP 17995789 A JP17995789 A JP 17995789A JP 17995789 A JP17995789 A JP 17995789A JP H0345256 A JPH0345256 A JP H0345256A
Authority
JP
Japan
Prior art keywords
discharge
pressure
valve
ultrasonic
nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17995789A
Other languages
Japanese (ja)
Inventor
Yasushi Nakajima
靖 中嶋
Koichi Iwata
岩田 興一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Family Co Ltd
Original Assignee
Family Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Family Co Ltd filed Critical Family Co Ltd
Priority to JP17995789A priority Critical patent/JPH0345256A/en
Publication of JPH0345256A publication Critical patent/JPH0345256A/en
Pending legal-status Critical Current

Links

Landscapes

  • Percussion Or Vibration Massage (AREA)

Abstract

PURPOSE:To freely select the discharge of the fine gas foam mixed water and the discharge of the ultrasonic wave generating jet water by selecting one selector valve by installing a pressure detector which sends air into the fine hole of a gas suction device by the opening of a selector valve by the internal pressure of a discharge side conduit, when the valve is switched to a fine gas foam discharge nozzle side. CONSTITUTION:A pressure detector 7 is installed in a discharge side conduit 5 close to a pump 2, and the pressure detector 7 has an air suction hole 10 and a passage 11 which communicates to a connecting pipe 8 from the hole 10, and a valve device 12 which opens the passage 11 when the pomp discharge pressure is over a certain value and closes the passage 11 when the pressure is below a certain value is installed. At the terminal edge part of a discharge side conduit 5 leading to the inside of a bathtub body 1, a fine gas foam discharging nozzle 14 for discharging the fine gas foams into the bathtub body 1 is installed at one edge through a selector valve 13, and a ultrasonic-wave generating nozzle 15 is installed at the top edge of the other terminal part. Therefore, the fine gas foam bath or ultrasonic-wave bath can be easily obtained by only carrying out the switching operation to the fine gas foam discharging nozzle side or the ultrasonic-wave generating nozzle side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は微細気泡混合水の吐出と超音波発生噴流水の吐
出とを1個の切替弁の切替で自由に選択できる浴用の噴
出装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an ejection device for a bath that can freely select between ejection of fine bubble mixed water and ejection of ultrasonic-generated jet water by switching one switching valve. It is something.

(従来の技術) 浴槽に微細気泡と通常気泡とを切替えて供給できるよう
にしたものとしては特開昭62−94160号公報が知
られている。
(Prior Art) Japanese Patent Laid-Open No. 62-94160 is known as a device that can switchably supply fine bubbles and normal bubbles to a bathtub.

(発明が解決しようとする問題点) 上記公報に開示されている浴槽は、4個のバルブの切り
替え操作をしなければ微細気泡と通常気泡とを選択でき
ないので手数がかかるという問題があり、また疲労の回
復、健康の増進には超音波が極めて有効であるので、本
発明においては、1個の切替弁の弁操作によって浴槽内
水中に超音波と微細気泡とが簡単に得られるように考え
られたものである。
(Problems to be Solved by the Invention) The bathtub disclosed in the above publication has the problem that it is time-consuming because it is not possible to select between fine bubbles and normal bubbles without switching between four valves. Since ultrasonic waves are extremely effective in recovering from fatigue and promoting health, the present invention is designed to easily generate ultrasonic waves and microbubbles in the water in the bathtub by operating a single switching valve. It is something that was given.

(問題点を解決するための手段) 本発明は、浴槽本体内へ微細気泡混合水を吐出する一定
圧保持弁を有する微細気泡吐出用ノズルと、超音波を発
生せしめる超音波発生ノズルとを切替弁を介して分岐連
結し、浴槽本体内の水を循環させるポンプの吸引側管路
に、極く小さい気体吸入細孔を絞り部分に有する気体吸
入装置を設け、ポンプの吐出側管路に、前記切替弁を微
細気泡ポ吐出ノズル側に切替えたとき、吐出側管路の内
圧によって弁が開かれて前記気体吸入装置の細孔へ空気
を送入する圧力検知装置を設け、前記切替弁の切替え操
作によって微細気泡の吐出と超音波の発生とが簡易に選
択できるように構成したものである。
(Means for solving the problem) The present invention switches between a fine bubble discharge nozzle having a constant pressure holding valve that discharges fine bubble mixed water into the bathtub body and an ultrasonic generation nozzle that generates ultrasonic waves. A gas suction device having extremely small gas suction pores in the constriction part is provided in the suction side pipe of the pump which is branched and connected via a valve and circulates water in the bathtub body, and a gas suction device having extremely small gas suction pores in the constriction part is installed in the discharge side pipe of the pump. When the switching valve is switched to the micro-bubble discharge nozzle side, the valve is opened by the internal pressure of the discharge side conduit to send air into the pores of the gas suction device. The configuration is such that the discharge of fine bubbles and the generation of ultrasonic waves can be easily selected by a switching operation.

(作用) 切替弁を微細気泡吐出用ノズル側に切替えた状態におい
て、図示省略のスイッチをONとしポンプを駆動させる
と、浴槽本体の吸込口から水を吸引する。微細気泡吐出
用ノズルには吐出寸前までポンプ吐出圧を一定圧(5k
g / an’ 〜9 kg/an2)以上に保持する
保持弁を有しているから圧力検知装置の弁装置が第3図
に示す如く押し上げられ、該装置の孔から吸入された空
気は矢印で示すように通路を通り、連結パイプを介して
気体吸入装置の気体吸入細孔へと送気される。そして、
該気体は、気体吸入装置の絞り部分で急激に速く通過中
の水に除圧によって引き込まれてポンプに入り、ポンプ
によって高圧に高められることにより水中に溶解する。
(Function) When the switching valve is switched to the fine bubble discharge nozzle side, a switch (not shown) is turned on to drive the pump, and water is sucked from the suction port of the bathtub body. For the fine bubble discharge nozzle, the pump discharge pressure is kept at a constant pressure (5k) until just before discharge.
g/an' ~ 9 kg/an2), the valve device of the pressure sensing device is pushed up as shown in Fig. 3, and the air sucked through the hole in the device is drawn in as shown by the arrow. As shown, the air passes through the passage and is delivered to the gas suction pores of the gas suction device via the connecting pipe. and,
The gas is rapidly and rapidly drawn into the passing water by depressurization at the constriction part of the gas suction device, enters the pump, and is dissolved in the water by being raised to a high pressure by the pump.

また、更に気液混合器で混合溶解し、未溶解の空気は気
液分離槽の自動排気弁から排出して、微細気泡を吐出寸
前までの水圧を一定圧以上に保つ保持弁を有する微細気
泡吐出孔から水中に10〜20μmの微細な気泡として
浴槽本体内へ吐出される。
In addition, the fine bubbles are further mixed and dissolved in a gas-liquid mixer, and the undissolved air is discharged from the automatic exhaust valve of the gas-liquid separation tank, which has a holding valve that keeps the water pressure above a certain level until the fine bubbles are about to be discharged. Fine bubbles of 10 to 20 μm are discharged into the bathtub body from the discharge hole into the water.

切替弁を超音波発生ノズル側へ切替えると、ポンプの吐
出圧は4 kg/an2〜6 kg/an2程度となる
ので圧力検知装置の弁装置が閉鎖され孔からの空気の流
入は遮断されるから気体吸入細孔への送気はない。従っ
て、ポンプによって吸引された水は、超音波発生ノズル
側に流れ、該ノズルの流体流出口端部に設けられた共鳴
穴上部の内径上端面部に衝突して一次乱流を起して該共
鳴穴内に流入した水と、該共鳴穴を通り越して段付き部
分に衝突した流体が二次乱流となって共鳴穴内へ流入し
、縦振動を生ぜしめる。この縦振動によって空気柱の共
鳴(閉管の共鳴)と同様の水中における水柱の共鳴が生
じ、後記する公式による周波数の水中超(3) 音波が発生して超音波発生ノズルから浴槽本体内へ伝播
される。
When the switching valve is switched to the ultrasonic generating nozzle side, the discharge pressure of the pump will be about 4 kg/an2 to 6 kg/an2, so the valve device of the pressure detection device will be closed and the inflow of air from the hole will be blocked. There is no air supply to the gas inlet pores. Therefore, the water sucked by the pump flows toward the ultrasonic generation nozzle and collides with the inner diameter upper end surface of the upper part of the resonance hole provided at the end of the fluid outlet of the nozzle, causing primary turbulence and causing the resonance. The water that has flowed into the hole and the fluid that has passed through the resonance hole and collided with the stepped portion become secondary turbulence and flow into the resonance hole, producing longitudinal vibration. This longitudinal vibration causes a resonance in the water column in the water similar to the resonance in the air column (resonance in a closed pipe), and an underwater ultrasonic wave of frequency (3) according to the formula described below is generated and propagates from the ultrasonic generation nozzle into the bathtub body. be done.

(実施例) 本発明の一実施例について説明すると、本発明は、ポン
プ2によって浴槽本体1内の水を吸込口3から吸引し、
吸入側管路4、吐出側管路5を経て浴槽本体1内へ吐出
される強制循環式浴槽システムにおいて使用されるもの
であって、ポンプ2の手前の吸入側管路4には気体吸入
袋B6が設けられ、ポンプ2に近い吐出側管路5−には
圧力検知装置7が設けられて、該圧力検知装置7と前記
気体吸入装置6とは連結パイプ8を介して連結されてい
る。そIノて、前記気体吸入袋@6は絞り部分6Aの直
径を吸入側管路の直径より約1/2〜273程度細い4
〜8印程度に設定し、該絞り部分の通路に該通路6Aの
直径より約1/20〜1/10  はど細い直径0.4
〜0.8印程度の極めて小さな気体吸入細孔9を穿設し
ている。尚前記ポンプ2は吸入圧−5〜−15cmlT
g で吐出圧が6〜10感ら!に設定されている。前記
圧力検知装置7には、空(4) 気膜入孔10と、該孔10から前記連結パイプ8へ通じ
る通路11を有し、ポンプ吐出圧が一定圧以上の場合は
該通路11を開口し、一定圧以下の場合は閉鎖する弁装
置12が設けられている。浴槽本体1内へ導く吐出側管
路5の終端部には、切替弁13を介して一方には微細気
泡を浴槽本体内へ吐出する微細気泡吐出用ノズル14が
、他方の先端には超音波発生ノズル15が取付けられて
いる。該微細気泡吐出用ノズル14にはポンプ吐出圧を
一定圧(5〜9 kg/an’ )以上に保つ一定圧保
持弁16を有しているので、切替弁13を微細気泡吐出
用ノズル14側に切替えるとポンプ圧が5〜9 kg/
anに高まり、前記圧力検知装置1の弁装置12が開き
、該装置から取入れられた気体は気体吸入装置6の気体
吸入細孔9から吸入側管路4内へ送り出されてポンプ内
に入ってからポンプによって高圧5 kg/an2以上
に水圧が高められるため、該空気の大部分は水の中に溶
解し、溶解しなかった一部の気体は気液分離槽22及び
自動排気弁23によって外部に排出して前記微細気泡吐
出用ノズル14から噴出する。その時、水圧が解放され
て低圧に下ると液体に溶解していた気体は、直径10〜
30μmの微細気泡となって槽内に拡散し充満する。尚
この溶解していた気体が液体中で高圧から低圧に変化す
ると微細気泡に変化するのはヘンリーの法則によるもの
である。
(Example) To explain one example of the present invention, the present invention sucks water in the bathtub body 1 from the suction port 3 by the pump 2,
This is used in a forced circulation bathtub system in which gas is discharged into the bathtub body 1 through a suction side pipe 4 and a discharge side pipe 5, and a gas suction bag is provided in the suction side pipe 4 before the pump 2. A pressure detection device 7 is provided in the discharge side conduit 5- near the pump 2, and the pressure detection device 7 and the gas suction device 6 are connected via a connecting pipe 8. Therefore, in the gas suction bag @6, the diameter of the constricted portion 6A is about 1/2 to 273 times smaller than the diameter of the suction side conduit4.
The diameter of the constricted passage is approximately 1/20 to 1/10 smaller than the diameter of the passage 6A.
Extremely small gas suction pores 9 of about 0.8 mark are bored. The pump 2 has a suction pressure of -5 to -15 cmT.
The discharge pressure is 6 to 10 at g! is set to . The pressure detection device 7 has an empty (4) membrane inlet hole 10 and a passage 11 communicating from the hole 10 to the connection pipe 8, and when the pump discharge pressure is above a certain pressure, the passage 11 is opened. However, a valve device 12 is provided which closes when the pressure is below a certain level. At the terminal end of the discharge pipe 5 leading into the bathtub body 1, there is a fine bubble discharge nozzle 14 for discharging fine bubbles into the bathtub body through a switching valve 13, and an ultrasonic wave discharge nozzle 14 for discharging fine bubbles into the bathtub body at the other end. A generating nozzle 15 is attached. Since the fine bubble discharge nozzle 14 has a constant pressure holding valve 16 that keeps the pump discharge pressure above a constant pressure (5 to 9 kg/an'), the switching valve 13 is connected to the fine bubble discharge nozzle 14 side. When switching to
an, the valve device 12 of the pressure sensing device 1 opens, and the gas taken in from the device is sent out from the gas suction hole 9 of the gas suction device 6 into the suction side pipe line 4 and enters the pump. Since the water pressure is increased to over 5 kg/an2 by the pump, most of the air is dissolved in the water, and some of the undissolved gas is discharged to the outside by the gas-liquid separation tank 22 and the automatic exhaust valve 23. The fine bubbles are discharged from the nozzle 14 for discharging fine bubbles. At that time, when the water pressure is released and falls to a low pressure, the gas dissolved in the liquid will be
The mixture becomes fine bubbles of 30 μm and diffuses into the tank, filling it. The fact that this dissolved gas changes into fine bubbles when the pressure changes from high to low in a liquid is based on Henry's law.

ヘンリーの法則による空気の水への溶解は、比較的溶解
し難い気体に対しては一般にヘンリーの法則が成立する
。空気の水への溶解の場合はこれに相当する。
Regarding the dissolution of air into water according to Henry's law, Henry's law generally holds true for gases that are relatively difficult to dissolve. This is the case when air is dissolved in water.

ヘンリーの法則は次のように表わされる。Henry's law is expressed as follows.

p=Ex ここに、 X:液相中の溶質ガスのモル分率mol air/mo
l水p:この液体と平衡状態にある気相の圧力atmE
=ヘンリー常数 atm1モル分率 水に含まれる空気は、Henry−Daltonの法則
によれば、一定温度の下では液体はそれに接している気
体の一定体積を吸収する。
p=Ex where, X: molar fraction of solute gas in the liquid phase mol air/mo
l water p: pressure of the gas phase in equilibrium with this liquid atmE
=Henry constant atm1 mole fraction of air contained in water According to the Henry-Dalton law, at a constant temperature, a liquid absorbs a constant volume of gas in contact with it.

1 atmの下における水の1mlが含む空気量従って
水は、一定温度の下では常に一定体積の空気を含んでい
る。そして温度が異なれば、上表のように含まれる空気
の体積も異なるのである。
Amount of air contained in 1 ml of water under 1 atm Therefore, water always contains a certain volume of air at a certain temperature. And if the temperature differs, the volume of air included will also differ as shown in the table above.

しかるに空気の体積は圧力が変化すれば、それに反比例
して変化する。従って、水に吸収される空気の体積が一
定であるためには、吸収される空気の重量は異なること
になる。このために、水が高圧の所から低圧の所へ移る
場合、空気の一部は水から遊離して直径10〜30μm
の微細気泡となって水中に拡散する。
However, if the pressure changes, the volume of air changes inversely. Therefore, if the volume of air absorbed by water is constant, the weight of air absorbed will be different. For this reason, when water moves from a high pressure place to a low pressure place, some of the air is liberated from the water and has a diameter of 10 to 30 μm.
becomes microscopic bubbles and diffuses into the water.

而して、前記切替弁13を超音波発生ノズル15側に切
替えると、ポンプ吐出圧が4 kg/an〜6 kg/
an2程度となるので圧力検知装置7の弁装置12は閉
鎖し空気の取入れは遮断される。従って、吸入側管路4
内への気体の供給は停止する。前記超音波発生ノズル1
5は、流体流入側が大径で流(7) 伴流出側が小径のテーパー孔に形成された流体流入路1
7と該流体流入路17の下流に位置して該流体流入路1
7の流体流出口端部と連通の流体流出路18と前記流体
流入路17の流出側の先端部下端に流出側口端部の内寸
りとほぼ同寸の内寸D′を有し、且つ該内寸りの深さL
は超音波帯域波長の少なくとも半波長に相当する長さと
した共鳴穴19を有し、該共鳴穴19の上部開口端面部
は流体流入路17の底面部の略延長線上に位置するよう
にカット20され、また該共鳴穴19に近接せる流体流
出路1B端部に該流体流出路よりも大径の段付き部21
が形成されている。この段付き部は、流体に二次乱流を
発生させ且つ反転して共鳴穴19に流入しやすい形状、
好ましくは第6図に示すようなJ求而がよいが球面形状
に限定されるものではない。また超音波の周波数fは、
水中音速Cw、共鳴穴の深さLとすると、f=ow/2
Lの公式によって求められる。
Then, when the switching valve 13 is switched to the ultrasonic generation nozzle 15 side, the pump discharge pressure changes from 4 kg/an to 6 kg/an.
Since the pressure becomes about an2, the valve device 12 of the pressure detection device 7 is closed and the intake of air is cut off. Therefore, the suction side pipe line 4
The supply of gas to the inside is stopped. The ultrasonic generation nozzle 1
5 is a fluid inflow passage 1 formed with a large diameter on the fluid inflow side (7) and a tapered hole with a small diameter on the outflow side.
7 and the fluid inflow path 1 located downstream of the fluid inflow path 17.
A fluid outlet passage 18 communicating with the fluid outlet end of No. 7 and a lower end of the outlet end of the fluid inlet passage 17 have an inner dimension D' that is approximately the same as the inner dimension of the outlet end on the outlet side; And the depth L of the inner dimension
has a resonance hole 19 with a length corresponding to at least a half wavelength of the ultrasonic band wavelength, and a cut 20 is formed such that the upper opening end surface of the resonance hole 19 is located approximately on an extension of the bottom surface of the fluid inflow channel 17. Furthermore, a stepped portion 21 having a larger diameter than the fluid outflow path is provided at the end of the fluid outflow path 1B that is close to the resonance hole 19.
is formed. This stepped portion has a shape that generates secondary turbulence in the fluid and makes it easy to reverse and flow into the resonance hole 19.
A J shape as shown in FIG. 6 is preferable, but the shape is not limited to a spherical shape. Also, the frequency f of the ultrasonic wave is
If the underwater sound speed is Cw and the depth of the resonance hole is L, then f=ow/2
It is determined by the L formula.

例えば、水中音速は約1500m/s  であるからL
=2耕とすればf=1500/(2X0.02)() =37500Hz =37.5KHzとなる。
For example, the speed of sound underwater is approximately 1500 m/s, so L
If = 2 plowing, then f = 1500/(2X0.02) () = 37500Hz = 37.5KHz.

一般に厚生省では、浴用超音波装置に関する超音波発生
基準は20KHz  以上の帯域で20 dB以上の音
圧と規定しているので、この基準にあてはまる超音波と
なる。
In general, the Ministry of Health and Welfare stipulates that the ultrasonic generation standard for bath ultrasonic devices is a sound pressure of 20 dB or more in a band of 20 KHz or more, so the ultrasonic waves that meet this standard.

(発明の効果) 本発明によれば前記の如く、切替弁13を微細気泡吐出
用ノズル側又は超音波発生ノズル側のいずれかへ切替え
操作するだけで微細気泡浴又は超音波浴が簡易に得られ
るという特徴を有し、身体のこりの治療、健康の維持増
進のために使用される浴用の噴出装置として極めて有効
であると共に従来品に比して構成が簡単であるから安価
に提供できる。
(Effects of the Invention) According to the present invention, as described above, a fine bubble bath or an ultrasonic bath can be easily obtained by simply switching the switching valve 13 to either the fine bubble discharge nozzle side or the ultrasonic generation nozzle side. It is extremely effective as a bath squirt device used for treating body stiffness and maintaining and promoting health, and because it has a simpler structure than conventional products, it can be provided at a lower cost.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示したものであって、第1図
は本発明の概略構成図、第2図は圧力検知装置と気体吸
入装置部分の拡大断面図、第3図は圧力検知装置の弁が
開口した状態における断面図、第4図は微細気泡吐出用
ノズルの保持弁の閉鎖している状態における断面図、第
5図は微細気泡吐出用ノズルの保持弁が開口している状
態における断面図、第6図は超音波発生ノズルの断面図
である。 1・・・浴槽本体、    2・・・ポンプ、4・・・
吸入側管路、   5・・・吐出側管銘、6・・・気体
吸入装置、  1・・・圧力検知装置、9・・・気体吸
入細孔、  10・・・気体吸入孔、12・・・弁装置
、    13・・・切替弁、14・・・微細気泡吐出
用ノズル、 15・・・超音波発生ノズル、 16・・・一定圧保持弁、 ( 1 )
The drawings show an embodiment of the present invention, in which Fig. 1 is a schematic configuration diagram of the invention, Fig. 2 is an enlarged sectional view of the pressure detection device and gas suction device, and Fig. 3 is the pressure detection device. A cross-sectional view of the device with the valve open, Figure 4 is a cross-sectional view of the nozzle for discharging fine bubbles with the holding valve closed, and Figure 5 is a nozzle for discharging fine bubbles with the holding valve open. FIG. 6 is a sectional view of the ultrasonic generation nozzle. 1... Bathtub body, 2... Pump, 4...
Suction side pipe line, 5...Discharge side pipe name, 6...Gas suction device, 1...Pressure detection device, 9...Gas suction pore, 10...Gas suction hole, 12...・Valve device, 13... Switching valve, 14... Fine bubble discharge nozzle, 15... Ultrasonic generation nozzle, 16... Constant pressure maintenance valve, (1)

Claims (1)

【特許請求の範囲】[Claims] 浴槽本体内へ微細気泡を吐出する一定圧保持弁を有する
微細気泡吐出用ノズルと、超音波を発生せしめる超音波
発生ノズルとを切替弁を介して分岐連結し、浴槽本体内
の水を循環させるポンプの吸引側管路に、極く小さい気
体吸入細孔を絞り部分に有する気体吸入装置を設け、ポ
ンプの吐出側管路に、前記切替弁を微細気泡吐出ノズル
側に切替えたとき、吐出側管路の内圧により弁が開かれ
て前記気体吸入装置の細孔へ空気を送入する圧力検知装
置を設けてなるを特徴とする浴用の噴出装置。
A fine bubble discharge nozzle having a constant pressure maintenance valve that discharges fine bubbles into the bathtub body and an ultrasonic generation nozzle that generates ultrasonic waves are branched and connected via a switching valve to circulate water within the bathtub body. A gas suction device having extremely small gas suction pores in the throttle part is provided in the suction side pipe of the pump, and when the switching valve is switched to the fine bubble discharge nozzle side, the discharge side is installed in the pump discharge pipe. An ejection device for a bath, characterized in that it is provided with a pressure detection device that causes a valve to be opened by the internal pressure of the pipe line to feed air into the pores of the gas suction device.
JP17995789A 1989-07-12 1989-07-12 Jet device for bathtub Pending JPH0345256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17995789A JPH0345256A (en) 1989-07-12 1989-07-12 Jet device for bathtub

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17995789A JPH0345256A (en) 1989-07-12 1989-07-12 Jet device for bathtub

Publications (1)

Publication Number Publication Date
JPH0345256A true JPH0345256A (en) 1991-02-26

Family

ID=16074921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17995789A Pending JPH0345256A (en) 1989-07-12 1989-07-12 Jet device for bathtub

Country Status (1)

Country Link
JP (1) JPH0345256A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674567B1 (en) * 2006-02-20 2007-01-30 박종후 Fine bubble generating apparatus
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100674567B1 (en) * 2006-02-20 2007-01-30 박종후 Fine bubble generating apparatus
JP2007054655A (en) * 2006-11-24 2007-03-08 National Institute Of Advanced Industrial & Technology Method and device for utilizing nano-bubbles
JP4538612B2 (en) * 2006-11-24 2010-09-08 独立行政法人産業技術総合研究所 Cleaning device

Similar Documents

Publication Publication Date Title
JP6483303B2 (en) Gas-liquid dissolution tank and fine bubble generator
US7758024B2 (en) Microbubble generating device and hair washing device utilizing the same
KR101250362B1 (en) Air-dissolved water production device
WO2001036105A1 (en) Micro-bubble generating nozzle and application device therefor
WO2005115596A1 (en) Method and device for producing fine air bubble-containing liquid, and fine air bubble producer assembled in the device
JP2722373B2 (en) Method and apparatus for producing fine foam
JP2001129377A (en) Gas-liquid mixing dissolving device
JP4895033B2 (en) Microbubble generator
US4110210A (en) Dispersed gas flotation process
JP2001347145A (en) Fine bubble generator
JPH0345256A (en) Jet device for bathtub
JP2000317212A (en) Gas-liquid separator
JP4581556B2 (en) Gas-liquid dissolution tank
JP3264714B2 (en) Bubble generator
JP2002191949A (en) Fine air bubble generator
JP2002330885A (en) Bathtub system
JP4228990B2 (en) Microbubble generator
JP4162894B2 (en) Vacuum pump device
JP2010155213A (en) Minute bubble generation apparatus
JP2002331011A (en) Fine bubble generation device
JP4887555B2 (en) Nozzle of fine bubble generator
JP3738440B2 (en) Bubble generator
JP6797386B1 (en) Gas melting device
CN217230285U (en) Bubble generation system of water purification unit and water purification unit
JPH02211232A (en) Gas aspirator for fine air bubble generating apparatus and pump equipped with said aspirator