JPH0345110Y2 - - Google Patents

Info

Publication number
JPH0345110Y2
JPH0345110Y2 JP14011387U JP14011387U JPH0345110Y2 JP H0345110 Y2 JPH0345110 Y2 JP H0345110Y2 JP 14011387 U JP14011387 U JP 14011387U JP 14011387 U JP14011387 U JP 14011387U JP H0345110 Y2 JPH0345110 Y2 JP H0345110Y2
Authority
JP
Japan
Prior art keywords
base plate
temperature
furnace
sintering furnace
loaded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14011387U
Other languages
Japanese (ja)
Other versions
JPS6445294U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14011387U priority Critical patent/JPH0345110Y2/ja
Publication of JPS6445294U publication Critical patent/JPS6445294U/ja
Application granted granted Critical
Publication of JPH0345110Y2 publication Critical patent/JPH0345110Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Charging Or Discharging (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、高温条件下において処理品を積載し
た台板を連続的に移送して焼結を行う高温焼結炉
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a high-temperature sintering furnace that performs sintering by continuously transferring a bed plate loaded with processed products under high-temperature conditions.

[従来の技術] 近年、フアインセラミツクスの用途開発が進み
金属に代わつてセラミツクスが構造材として応用
されるようになつてきた。セラミツクスが金属材
料と同様に利用されるためには機械的強度が金属
と同等であることが必要条件となつており、その
ためにセラミツクスの焼結工程においては高温条
件下で加熱収縮させて緻密化させる方法が採用さ
れている。従来の焼結方法では高純度アルミナ質
耐火物を使用した連続式高温焼結炉は該耐火物の
熱間強度などの特性により、最高1650℃までが限
度であり、それ以上の高温での焼結はバツチ式焼
結炉により対応するのが一般的であつた。
[Prior Art] In recent years, the development of applications for fine ceramics has progressed, and ceramics have come to be used as structural materials in place of metals. In order for ceramics to be used in the same way as metal materials, it is necessary that the mechanical strength is equivalent to that of metals, and for this reason, in the sintering process of ceramics, it is heated and shrunk under high temperature conditions to make it densified. A method has been adopted to do so. In conventional sintering methods, continuous high-temperature sintering furnaces using high-purity alumina refractories are limited to a maximum temperature of 1650°C due to the hot strength and other characteristics of the refractories, and cannot be sintered at higher temperatures. Generally, sintering was carried out using a batch-type sintering furnace.

[考案が解決しようとする問題点] 従来の連続式高温焼結炉は、大気中では二珪化
モリブデン質やランタンクロマイト質の発熱体を
使用して最高1650℃までは可能であつた。また中
性ガスや不活性ガス雰囲気では黒鉛発熱体が使用
できるが高純度アルミナ質の耐火物は高温では黒
鉛と接触すれば反応侵食されるために利用が制限
されていた。更に還元ガス雰囲気中ではモリブデ
ンやタングステン発熱体を使用できるが、耐火物
の還元作用により高温強度の劣化が発生するため
最高1650℃までが限度であつた。
[Problems to be solved by the invention] Conventional continuous high-temperature sintering furnaces were able to reach temperatures up to 1650°C in the atmosphere using molybdenum disilicide or lanthanum chromite heating elements. Furthermore, graphite heating elements can be used in neutral gas or inert gas atmospheres, but high-purity alumina refractories are subject to reaction erosion if they come into contact with graphite at high temperatures, which limits their use. Furthermore, molybdenum or tungsten heating elements can be used in a reducing gas atmosphere, but the high-temperature strength deteriorates due to the reducing action of the refractory, so the maximum temperature is 1650°C.

いずれの場合も処理品の移送については台板の
上に処理品を積載してプツシヤ装置などによつて
台板を押しながら移送する方法が一般的であり、
高温条件下では台板の耐圧強度、耐摩耗強度耐ス
ポーリング性などが要求されるなど種々の問題が
あつた。すなわち、台板や炉床板として用いられ
る耐火物の特性から1650℃以上の連続式焼結炉は
困難といえた。
In either case, the general method for transporting the processed products is to load the processed products on a base plate and transport the products while pushing the base plate using a pusher device or the like.
Under high-temperature conditions, there were various problems, such as the need for the base plate to have high pressure resistance, wear resistance, and spalling resistance. In other words, it was difficult to construct a continuous sintering furnace at temperatures above 1650°C due to the characteristics of the refractories used as bed plates and hearth plates.

本考案は、前述の問題点を解決した、即ち、従
来の耐火物の特性はそのままでも、従来よりもさ
らに高温条件下で大量生産を可能ならしめた、連
続式高温焼結炉を提供するものである。
The present invention solves the above-mentioned problems; that is, it provides a continuous high-temperature sintering furnace that maintains the characteristics of conventional refractories but enables mass production under higher temperature conditions than before. It is.

[問題点を解決するための手段] 即ち、本考案は処理品を積載して炉内を移送す
る台板の摺動面を焼結炉内部の加熱室底面のレベ
ルよりも下部に位置する炉構造を設けたことを特
徴とする。本考案によれば上記の炉構造によつて
台板と炉床部の摺動面の温度は処理品を加熱する
炉内温度よりも相当に温度降下した位置となる。
[Means for solving the problem] That is, the present invention is a furnace in which the sliding surface of the base plate on which processed products are loaded and transferred through the furnace is located below the level of the bottom of the heating chamber inside the sintering furnace. It is characterized by having a structure. According to the present invention, due to the above furnace structure, the temperature of the sliding surfaces between the base plate and the hearth is at a position that is considerably lower than the temperature inside the furnace where the processed product is heated.

従つて台板の摺動面は従来でも使用実績のある
最高1650℃以上まで上昇しても台板は使用可能で
あるから、その分だけ炉内温度は最高に上昇する
ことが可能となり、処理品の加熱温度は従来より
もさらに高温にすることが可能となる。
Therefore, the base plate can be used even if the sliding surface of the base plate rises to the maximum temperature of 1,650℃, which has been used in the past, so the temperature inside the furnace can rise to the maximum by that amount, and the processing It becomes possible to heat the product to a higher temperature than before.

また、本考案の構造は一般的にはプツシヤ装置
により台板を移動されるものである。
Further, in the structure of the present invention, the base plate is generally moved by a pusher device.

本考案において、上記の台板や摺動面を加熱室
内の底面より下部にさせるには、台板と処理品の
間に高温耐火断熱材を介在させることにより達成
される。
In the present invention, placing the base plate and sliding surface below the bottom of the heating chamber is achieved by interposing a high-temperature refractory heat insulating material between the base plate and the processed product.

[構成] 本考案を図面により説明する。第1図はプツシ
ヤ方式の連続式焼結炉の代表的な実施例を断面図
で、第2図は本考案の実施例を示す断面図、第3
図は従来方式の実施例を示す断面図である。
[Structure] The present invention will be explained with reference to the drawings. Figure 1 is a sectional view of a typical embodiment of a pusher type continuous sintering furnace, Figure 2 is a sectional view of an embodiment of the present invention, and Figure 3 is a sectional view of a typical embodiment of a pusher type continuous sintering furnace.
The figure is a sectional view showing an example of a conventional system.

従来から連続式焼結炉は第1図に示すように処
理品を積載する台板1はプツシヤ装置2によつて
押され、炉内の炉床部3の上を摺動しながら炉内
を移送し、炉内に取付された発熱体4によつて加
熱される構造になつている。
Conventionally, in a continuous sintering furnace, as shown in Fig. 1, a base plate 1 on which processed products are loaded is pushed by a pusher device 2, and is moved inside the furnace while sliding on a hearth part 3 inside the furnace. The structure is such that it is transported and heated by a heating element 4 installed in the furnace.

従来は第3図に示すように炉床部3の上を移送
される台板1の上に処理品5が直接に積載される
ために台板1と処理品5は同じ炉内温度にさらさ
れることになり、高温条件になるに従つて炉床部
3と台板1の耐熱強度(耐圧強度、耐摩耗強度、
耐スポーリング性)が厳しくなり、従来方式では
高純度アルミナ質では最高1650℃以上が限度とな
つていた。
Conventionally, as shown in FIG. 3, the processed product 5 is directly loaded onto the base plate 1 which is transferred over the hearth 3, so the base plate 1 and the processed product 5 are exposed to the same furnace temperature. As the high temperature conditions increase, the heat resistance strength (pressure resistance, abrasion resistance,
Spalling resistance) has become stricter, and in the conventional method, high purity alumina was limited to a maximum temperature of 1650℃ or higher.

本考案は第2図に示すように炉床部3と台板1
は炉内の加熱室底面6よりも下部に位置してお
り、処理品5は台板1の上に直接に積載された高
温耐火断熱材7のさらに上に積載されて、プツシ
ヤ装置などのような機械機構によつて移送され
る。
The present invention has a hearth part 3 and a base plate 1 as shown in Fig. 2.
is located below the bottom surface 6 of the heating chamber in the furnace, and the processed product 5 is loaded further above the high-temperature refractory insulation material 7 placed directly on the base plate 1, such as in a pusher device, etc. transported by a mechanical mechanism.

第2図の場合はランタンクロマイト発熱体8を
使用した例を示しており、発熱体保護管9として
再結晶質アルミナ保護管を使用した状況を図示し
たものである。
FIG. 2 shows an example in which a lanthanum chromite heating element 8 is used, and a situation in which a recrystallized alumina protection tube is used as the heating element protection tube 9 is illustrated.

[実施例] 次に本考案を第2図に示した実施例により説明
する。電気容量70kw処理品の通過する有効炉内
寸法として幅150mm高さ200mm炉長6000mmの連続式
高温焼結炉において大気中の炉内温度を1800℃と
し,発熱体はやランタンクロマイト発熱体を使用
した。また台板と炉床部はA20377.6%、Si02
21.8%、カサ比重2.6のムイライト質煉瓦を使用
し、台板の上に積載する高温耐火断熱材としてA
20398%、カサ比重1.4の高純度アルミナ質煉瓦
を使用した。台板寸法は幅160mm長さ115mm厚さ25
mmとし、台板上に積載した高温耐火断熱材は幅
110mm長さ110mm厚さ100mmとしたところ、炉内温
度が最高1800℃となつた場合、台板と炉床部の摺
動部では最高1580℃となつていた。従来の台板や
炉床部の煉瓦特性はそのままでも十分に使用に耐
える温度以内になつていることが分かつた。
[Example] Next, the present invention will be explained with reference to an example shown in FIG. A continuous high-temperature sintering furnace with a width of 150 mm, a height of 200 mm, and a furnace length of 6000 mm, through which products processed with an electric capacity of 70 kW pass through, has an internal furnace temperature of 1800°C in the atmosphere, and uses a lanthanum chromite heating element as the heating element. did. In addition, the base plate and hearth part are A 2 0 3 77.6%, Si0 2
21.8%, bulk specific gravity 2.6 muilite bricks are used as a high temperature fireproof insulation material loaded on the base plate A.
High purity alumina bricks with a bulk density of 1.4 and a density of 20398 % were used. Base plate dimensions are width 160mm length 115mm thickness 25
mm, and the high temperature fireproof insulation material loaded on the base plate has a width of
When the length was 110mm, the length was 110mm, and the thickness was 100mm, when the temperature inside the furnace reached a maximum of 1800°C, the temperature at the sliding part between the base plate and the hearth reached a maximum of 1580°C. It was found that the brick characteristics of the conventional base plate and hearth are within the temperature range that can be used as is.

上述したように従来は1650℃までの連続焼結炉
しか製作できなかつたが、本考案の実施例によ
り、炉内温度1800℃までが可能となり連続式高温
焼結炉が可能となつた。また中性ガス、不活性ガ
スまた還元ガス雰囲気中においても本考案の実施
例と同様な炉構造にしてもよく、その効果も同様
に著しいものである。
As mentioned above, conventionally it was only possible to manufacture a continuous sintering furnace up to 1650°C, but with the embodiment of the present invention, the furnace temperature can reach up to 1800°C, making it possible to create a continuous high-temperature sintering furnace. Further, even in a neutral gas, inert gas, or reducing gas atmosphere, a furnace structure similar to that of the embodiment of the present invention may be used, and the effects are similarly remarkable.

[考案の効果] 前記したように、本考案は従来使用している台
板や炉床部の煉瓦の特性はそのままで、極めて高
温条件下の焼結が可能となつた。
[Effects of the invention] As described above, the invention enables sintering under extremely high temperature conditions while maintaining the characteristics of the bricks used in the past for the base plate and hearth.

本考案は、新素材開発に極めて有効な高温焼結
に関し、特に、今後フアインセラミツクスの用途
開発を促進させる効果が大といえる。本考案の産
業上の期待は非常に多大である。
The present invention relates to high-temperature sintering, which is extremely effective in the development of new materials, and can be said to be particularly effective in promoting the development of applications for fine ceramics in the future. The present invention has great industrial expectations.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は代表的なプツシヤ方式の連続焼結炉の
断面図で、第2図は本考案の実施例を示す断面
図、第3図は従来方式の実施例を示す断面図であ
る。 1……台板、2……プツシヤ装置、3……炉床
部、4……発熱体、5……処理品、6……加熱室
底面、7……高温耐火断熱材、8……ランタンク
ロマイト発熱体、9……発熱体保護管。
FIG. 1 is a cross-sectional view of a typical pusher type continuous sintering furnace, FIG. 2 is a cross-sectional view showing an embodiment of the present invention, and FIG. 3 is a cross-sectional view showing an example of a conventional method. DESCRIPTION OF SYMBOLS 1... Base plate, 2... Pusher device, 3... Hearth part, 4... Heating element, 5... Processed product, 6... Bottom surface of heating chamber, 7... High temperature refractory insulation material, 8... Lantern Chromite heating element, 9... Heating element protection tube.

Claims (1)

【実用新案登録請求の範囲】 (1) セラミツクスなどの焼結に用いられる高温焼
結炉において、処理品を積載し移動する台板及
び該台板の摺動面である炉床部が加熱室の底面
より下部に位置することを特徴とする連続式高
温焼結炉。 (2) 上記台板の移動がプツシヤ装置により駆動す
る実用新案登録請求の範囲第(1)項記載の連続式
高温焼結炉。 (3) 上記台板の上に高温耐火断熱材を積載し、さ
らに該断熱材上に処理品を積載して、台板を移
動させる実用新案登録請求の範囲第(1)項記載の
連続式高温焼結炉。
[Scope of Claim for Utility Model Registration] (1) In a high-temperature sintering furnace used for sintering ceramics, etc., the base plate on which processed products are loaded and moved and the hearth part, which is the sliding surface of the base plate, are located in the heating chamber. A continuous high-temperature sintering furnace characterized by being located below the bottom of the furnace. (2) The continuous high-temperature sintering furnace according to claim (1), wherein the movement of the bed plate is driven by a pusher device. (3) A continuous system according to claim (1) of the utility model registration claim, in which a high-temperature fireproof insulation material is loaded on the base plate, a processed product is further loaded on the heat insulation material, and the base plate is moved. High temperature sintering furnace.
JP14011387U 1987-09-16 1987-09-16 Expired JPH0345110Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14011387U JPH0345110Y2 (en) 1987-09-16 1987-09-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14011387U JPH0345110Y2 (en) 1987-09-16 1987-09-16

Publications (2)

Publication Number Publication Date
JPS6445294U JPS6445294U (en) 1989-03-17
JPH0345110Y2 true JPH0345110Y2 (en) 1991-09-24

Family

ID=31403989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14011387U Expired JPH0345110Y2 (en) 1987-09-16 1987-09-16

Country Status (1)

Country Link
JP (1) JPH0345110Y2 (en)

Also Published As

Publication number Publication date
JPS6445294U (en) 1989-03-17

Similar Documents

Publication Publication Date Title
JPS63257218A (en) Component of diffusion furnace
US4633051A (en) Stable conductive elements for direct exposure to reactive environments
JPH0345110Y2 (en)
GB2106142A (en) Sintering refractory articles using direct-heated gases
JP4273227B2 (en) Manufacturing method of microwave heating element
CN106830949A (en) A kind of ceramic sintering method
JP4235447B2 (en) Method for increasing the useful life of molybdenum silicide heating elements
Wroe Microwave-assisted firing of ceramics
CN210532998U (en) Push plate type energy-saving tunnel furnace for sintering ceramic products
US4569661A (en) Furnace construction
JPH0196067A (en) Production of aluminum nitride sintered body
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
JP4343154B2 (en) Manufacturing method of ceramic sintered body
CN219141456U (en) Electromagnetic heating type push plate kiln
JP2723903B2 (en) Induction electric furnace
JP3244409U (en) Continuous furnace structure
JP2000356471A (en) Continuously conveying baking furnace
CN111089488A (en) High-temperature sintering furnace
CN117249679A (en) Double-layer composite reduction device for magnesium smelting
JPS5842868Y2 (en) Moving bed type kiln
TW202244447A (en) Quartz hearth sintering furnace capable of achieving better anti-pollution effect
JPS6343673B2 (en)
JP2002146437A (en) Supporter for hot working
KR200224664Y1 (en) structure of zirconia sandwich plate
JPH0397682A (en) Production of vessel having setter and method for calcining aluminum nitride substrate by using this vessel