JPH0343873B2 - - Google Patents

Info

Publication number
JPH0343873B2
JPH0343873B2 JP55032229A JP3222980A JPH0343873B2 JP H0343873 B2 JPH0343873 B2 JP H0343873B2 JP 55032229 A JP55032229 A JP 55032229A JP 3222980 A JP3222980 A JP 3222980A JP H0343873 B2 JPH0343873 B2 JP H0343873B2
Authority
JP
Japan
Prior art keywords
output
setting
generator
circuit
bending point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55032229A
Other languages
Japanese (ja)
Other versions
JPS56129598A (en
Inventor
Hide Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Electric Manufacturing Co Ltd
Priority to JP3222980A priority Critical patent/JPS56129598A/en
Publication of JPS56129598A publication Critical patent/JPS56129598A/en
Publication of JPH0343873B2 publication Critical patent/JPH0343873B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/16Controlling the angular speed of one shaft

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Eletrric Generators (AREA)

Description

【発明の詳細な説明】 本発明は、系統に連系して使用される発電所の
電気式調速機(ガバナ)の非直線調定率制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-linear regulation rate control device for an electric speed governor of a power plant that is used in connection with a power grid.

系統に連系して使用される発電所は、自発電機
の制御方式が他系統の発電容量との比重によつて
異なる。即ち、比重の大きい容量を受け持つ主発
電機は系統の周波数を規制するのに対して、比重
の小さい容量の発電機は主発電機のガバナ開度と
連動して追従する定出力(連動)運転や主発電機
の制御に全く関係のない定出力運転、系統に定め
られた周波数変動範囲内でのガバナフリー運転
(2段折線特性)や定出力運転(1段折線特性)
等の種々の運転方式が用いられる。
In power plants that are connected to the grid, the control method for their own generators differs depending on the relative power generation capacity of other systems. In other words, the main generator with a large capacity regulates the frequency of the grid, whereas the generator with a small capacity has a constant output (linked) operation that follows in conjunction with the governor opening of the main generator. and constant power operation that is completely unrelated to the control of the main generator, governor-free operation (two-stage broken line characteristic) and constant power operation (first-stage broken line characteristic) within the frequency fluctuation range specified for the grid.
Various operating methods are used, such as:

本発明は上述の運転方式の内、一般に非直線調
定率特性と呼ばれる二段折線特性さらには一段折
線特性を得るための調速機の制御装置に関するも
のである。
The present invention relates to a governor control device for obtaining a two-stage broken line characteristic and a single-stage broken line characteristic, which are generally referred to as non-linear regulation rate characteristics, among the above-mentioned operating systems.

この種の従来方式は、非直線調定率特性を得る
のに、自発電機の速度調定率を設定するガバナ開
度に応じて設定値を変える剛性復元設定部の特性
を非線形特性とするものであつた。第1図は従来
の調速機制御装置のブロツク図を示し、定角加速
制御方式のものである。同図において、速度設定
部1の設定値と出力設定部2の設定値の加減算値
は比較部3にて発電機4の回転数検出部5A,5
Bの検出値と比較される。回転数検出部5Aは発
電機4の回転数をパルス周波数として検出し、検
出部5Bはパルス周波数を電圧信号に変換する。
比較部3での比較結果は比較部6にて発電機4の
ガバナ開度信号θに応じて設定値が決められる剛
性復元設定部7の設定値と比較され、その偏差は
速度制御演算増幅部8で演算されて速度制御信号
にされる。この速度制御信号は比較部9にて回転
数検出部5A,5Bの検出値を入力とする加減速
度検出部10の検出値と比較され、その偏差は加
減速度制御演算部11で演算される。演算部11
の出力は比較部12にてガバナ開度信号θの検出
部13と比較され、ガバナ開度制御演算増幅部1
4の入力とされるガバナ開度マイナループが構成
される。
In order to obtain non-linear regulation rate characteristics, this type of conventional method uses a stiffness restoration setting section that changes the set value according to the governor opening degree to set the speed regulation rate of the generator as a non-linear characteristic. Ta. FIG. 1 shows a block diagram of a conventional governor control system, which uses a constant angle acceleration control system. In the same figure, the addition/subtraction value between the setting value of the speed setting part 1 and the setting value of the output setting part 2 is determined by the comparison part 3 in the rotation speed detection parts 5A and 5 of the generator 4.
It is compared with the detected value of B. The rotation speed detection section 5A detects the rotation speed of the generator 4 as a pulse frequency, and the detection section 5B converts the pulse frequency into a voltage signal.
The comparison result in the comparison section 3 is compared in the comparison section 6 with the setting value of the stiffness restoration setting section 7 whose setting value is determined according to the governor opening signal θ of the generator 4, and the deviation is calculated by the speed control operational amplifier section. 8 and is used as a speed control signal. This speed control signal is compared in a comparing section 9 with a detected value of an acceleration/deceleration detecting section 10 which inputs the detected values of the rotation speed detecting sections 5A and 5B, and the deviation thereof is calculated in an acceleration/deceleration control calculating section 11. Arithmetic unit 11
The output of
A governor opening minor loop, which is inputted to No. 4, is constructed.

こうした制御装置において、剛性復元設定部7
の特性を非直線特性とすること、即ち剛性復元の
量を変えることにより速度調定率δを非直線にす
る。このため、剛性復元を構成するループにおい
て、演算部8,11,14及び検出部13によつ
て構成される前向きの伝達回路の定まつた定数に
対して剛性復元設定部7の帰還量が非直線に変化
することになり、設定部7での特性利得の変化が
制御系の利得変化として現れることから、系の安
定条件も成立させるには剛性復元設定部7の非線
形特性の利得に限界がある。また、非線形特性の
剛性復元設定部7により系の伝達関数がその特性
変化分に対応して変化する問題がある。こうした
ことから、従来方式では第2図a,bに発電機出
力PNAに対する速度FNAの二段折線特性及び一段
折線特性を示すように、折線部での特性の変化率
ΔF/ΔPに制約が生じ、非直線特性の範囲の選定
や調整上に制約を生じる欠点があつた。
In such a control device, the stiffness restoration setting section 7
By making the characteristics non-linear, that is, by changing the amount of stiffness restoration, the speed adjustment rate δ is made non-linear. Therefore, in the loop constituting the stiffness restoration, the feedback amount of the stiffness restoration setting section 7 is non-uniform with respect to the fixed constant of the forward transmission circuit constituted by the calculation sections 8, 11, 14 and the detection section 13. Since the change in the characteristic gain in the setting section 7 appears as a change in the gain of the control system, there is a limit to the gain of the nonlinear characteristic of the stiffness restoration setting section 7 in order to satisfy the system stability condition. be. Further, there is a problem in that the transfer function of the system changes depending on the change in the characteristics due to the stiffness restoration setting section 7 of the nonlinear characteristics. For this reason, in the conventional method, as shown in Figure 2 a and b, which show the two-step broken line characteristic and the one-step broken line characteristic of the speed F NA with respect to the generator output P NA , the rate of change of the characteristic at the broken line part is limited ΔF / ΔP. This has resulted in the drawback that restrictions are placed on the selection and adjustment of the range of nonlinear characteristics.

本発明の目的は、折線部での二段折線特性の変
化率を任意に設定しさらに一段折線特性への設定
切替えも可能にし、しかも系の安定も、得ること
ができる非直線調定率制御装置を提供するにあ
る。
An object of the present invention is to provide a non-linear adjustment rate control device that can arbitrarily set the rate of change of the two-step broken line characteristic in the broken line section, and also enable setting switching to the single-step broken line characteristic, and also provide system stability. is to provide.

本発明は、剛性復元設定部は調定率で定められ
た一定値で帰還することで剛性復元設定部を含む
系を安定系とし、発電機周波数の帰環系に二段非
線形さらには一段非線形に特性変更可能な非線形
伝達関数回路を具えることにより、任意の二段折
線さらには一段折線非直線調定率を得ることを特
徴とする。
In the present invention, the stiffness restoration setting section returns a constant value determined by the adjustment rate, thereby making the system including the stiffness restoration setting section a stable system, and making the return system of the generator frequency nonlinear in two steps and then nonlinear in one step. By providing a nonlinear transfer function circuit whose characteristics can be changed, an arbitrary two-stage broken line or even one-stage broken line nonlinear adjustment rate can be obtained.

第3図は本発明の一実施例を示す。同図が第1
図と異なる部分は、発電機回転数(周波数)帰還
系に加算回路15と非直線調定率設定部16とか
ら成る非線形伝達関数回路を具え、剛性復元設定
部7は直線入出力特性とした点にある。非線形伝
達関数回路の具体的な実施例を第4図に示す。同
図中、Rは演算抵抗、SRはダイオード、A1〜A7
は演算増幅器を示す。第1の加算回路17では検
出部5Bからの系統周波数に比例した電圧信号と
系統基準周波数設定器161の設定電圧との偏差
が利得1で演算増幅器A1から取り出される。こ
の偏差信号は、演算増幅器A2等で構成する負極
性での屈曲点設定回路18と、増幅器A3等で構
成する正極性での屈曲点設定回路19との共通入
力にされる。屈曲点設定回路18側では加算回路
17からの偏差信号入力が第1の屈曲点(+
ΔFNA1)設定器162の設定値(正)を越える負
の絶対値にあるときに利得1で増幅した正極性電
圧で出力し、屈曲点設定回路19側では第1の屈
曲点(−ΔFNA1)設定器163の設定値(負)を
越える正の絶対値にあるときに利得1で増幅した
負極性電圧で出力する。屈曲点設定回路18側出
力は増幅器A4等で構成する負極性での第2の屈
曲点設定回路20の入力とされると共に増幅器
A6等で構成する第2の加算回路21の加算入力
とされる。屈曲点設定回路20はその設定器16
で第2の屈曲点+ΔFNA2(>+ΔFNA1)を設定し、
屈曲点設定回路18の出力が該設定値を越えると
きに利得1で増幅した負極性電圧で出力する。ま
た、屈曲点設定回路20の出力は加算回路22の
入力にされる。屈曲点設定回路19の出力は増幅
器A5等で構成する正極性での第2の屈曲点設定
回路21の入力とされると共に加算回路22の入
力とされる。屈曲点設定回路21はその設定器1
5で第2の屈曲点−ΔFNA2を設定し、屈曲点設
定回路19の出力が該設定値を越えるときに利得
1で増幅した正極性電圧で出力し、その出力は加
算回路22の加算入力とされる。これら偏差信号
を加算した加算回路22の出力はその非直線傾斜
設定器166を通して増幅器A7等で構成する第3
の加算回路15にて検出部5Bの出力と加算反転
される。この出力は比較部3の比較入力として帰
還される。
FIG. 3 shows an embodiment of the invention. The same figure is the first
The difference from the diagram is that the generator rotational speed (frequency) feedback system is equipped with a nonlinear transfer function circuit consisting of an addition circuit 15 and a nonlinear adjustment rate setting section 16, and the stiffness restoration setting section 7 has linear input/output characteristics. It is in. A specific embodiment of the nonlinear transfer function circuit is shown in FIG. In the figure, R is arithmetic resistor, SR is diode, A 1 to A 7
indicates an operational amplifier. In the first adder circuit 17, the deviation between the voltage signal proportional to the system frequency from the detection section 5B and the set voltage of the system reference frequency setter 161 is extracted with a gain of 1 from the operational amplifier A1. This deviation signal is provided as a common input to a negative polarity bending point setting circuit 18 comprising an operational amplifier A 2 and the like, and a positive polarity bending point setting circuit 19 comprising an amplifier A 3 and the like. On the bending point setting circuit 18 side, the deviation signal input from the adder circuit 17 is set to the first bending point (+
ΔF NA1 ) When the absolute value is negative, exceeding the set value (positive) of the setter 162 , a positive polarity voltage amplified with a gain of 1 is output, and on the bending point setting circuit 19 side, the first bending point (-ΔF NA1 ) Outputs a negative polarity voltage amplified with a gain of 1 when it has a positive absolute value exceeding the set value (negative) of the setter 163 . The output from the bending point setting circuit 18 side is input to a second bending point setting circuit 20 with negative polarity, which is composed of an amplifier A4 , etc.
It is used as the addition input of the second addition circuit 21 composed of A6 and the like. The bending point setting circuit 20 has a setting device 16.
4 , set the second bending point +ΔF NA2 (>+ΔF NA1 ),
When the output of the bending point setting circuit 18 exceeds the set value, a negative polarity voltage amplified with a gain of 1 is output. Further, the output of the bending point setting circuit 20 is input to the adding circuit 22. The output of the bending point setting circuit 19 is input to a second bending point setting circuit 21 with positive polarity, which is composed of an amplifier A 5 and the like, and is also input to an adder circuit 22 . The bending point setting circuit 21 is the setting device 1
6 5 sets the second bending point -ΔF NA2 , and when the output of the bending point setting circuit 19 exceeds the set value, it outputs a positive polarity voltage amplified with a gain of 1, and the output is added by the adding circuit 22. It is considered as input. The output of the adder circuit 22, which adds these deviation signals, is passed through the nonlinear slope setting device 166 to a third circuit composed of an amplifier A7 , etc.
The adder circuit 15 adds and inverts the output of the detector 5B. This output is fed back as a comparison input to the comparison section 3.

こうした構成の非直線調定率設定部16の動作
を第7図を参照して説明する。設定器161の設
定値に系統基準周波数に相当する電圧を設定し、
実系統周波数(検出信号B)に変動が生じると、
加算回路17にはその偏差電圧が逆極性で発生す
る。今、系統周波数が上昇した場合、加算回路1
7の出力には負極性の電圧が発生し、この電圧は
設定器162の設定電圧+ΔFNA1以上とならない
限り屈曲点設定回路18の出力が零にある。逆に
系統周波数が設定器161の設定値よりも下降し
たときには該偏差信号が屈曲点設定回路19の設
定器163の設定値−ΔFNA1以上とならない限り
屈曲点設定回路19の出力が零にある。このと
き、屈曲点設定回路20,21共に出力零にな
る。従つて、第1の設定範囲+ΔFNA1〜−ΔFNA1
での系統周波数変動に対しては加算回路22の入
力合計値は零にあり、その反転出力を零になり、
加算回路15の入力は系統周波数信号Bのみにな
り、系統周波数に比例した出力D(=B)として
比較部3側に帰還され、ガバナフリー運転にな
る。
The operation of the non-linear adjustment rate setting section 16 having such a configuration will be explained with reference to FIG. 7. Set the voltage corresponding to the system reference frequency to the setting value of setting device 16 1 ,
When a fluctuation occurs in the actual system frequency (detection signal B),
The difference voltage is generated in the adder circuit 17 with opposite polarity. Now, if the grid frequency increases, adder circuit 1
A negative polarity voltage is generated at the output of 7, and the output of the bending point setting circuit 18 remains at zero unless this voltage exceeds the set voltage of the setter 162 +ΔF NA1 . Conversely, when the system frequency falls below the setting value of the setting device 16 1 , the output of the bending point setting circuit 19 becomes zero unless the deviation signal becomes equal to or higher than the setting value of the setting device 16 3 of the bending point setting circuit 19 - ΔF NA1 . It is in. At this time, the output of both the bending point setting circuits 20 and 21 becomes zero. Therefore, the first setting range +ΔF NA1 ~ -ΔF NA1
For the system frequency fluctuation at , the total input value of the adder circuit 22 is zero, and the inverted output is
The input of the adder circuit 15 becomes only the system frequency signal B, which is fed back to the comparator 3 side as an output D (=B) proportional to the system frequency, resulting in governor free operation.

次に、+ΔFNA1〜ΔFNA2を越える周波数変動には
その正負によつて屈曲点設定回路18側又は19
側に偏差電圧を生じ、該偏差電圧が設定範囲+
ΔFNA2〜−ΔFNA2以内であれば屈曲点設定回路2
0,21の出力が共に零にあるので該偏差電圧が
そのまま加算回路22で反転出力Cを得る。この
電圧は検出部5Bの出力Bを打ち消す極性である
ので、設定器166の設定値が最大(1)にあれ
ば発電機周波数の増減分と同じ値を減少、増加さ
せ、周波数のフイードバツク値になる出力Dに変
化はなくなる。すなわち、ガバナ開度に変化を生
じることなく出力一定(ガイドベーン開度一定)
の特性になる。また、設定器166の設定値が1
以下のときは出力CがC′のように変化する。
Next, for frequency fluctuations exceeding +∆F NA1 to ∆F NA2 , the bending point setting circuit 18 side or 19
A deviation voltage is generated on the side, and the deviation voltage is within the setting range +
If within ΔF NA2 ~ -ΔF NA2 , bending point setting circuit 2
Since the outputs of 0 and 21 are both zero, the inverted output C is obtained from the adder circuit 22 using the deviation voltage as it is. This voltage has a polarity that cancels the output B of the detection unit 5B, so if the setting value of the setting device 166 is at the maximum (1), it decreases or increases the same value as the increase or decrease in the generator frequency, and the frequency feedback value There is no change in the output D. In other words, the output is constant without any change in the governor opening (constant guide vane opening)
becomes the characteristic of Also, the setting value of the setting device 16 6 is 1.
In the following cases, the output C changes like C'.

次に、系統周波数変化が設定範囲+ΔFNA2〜−
ΔFNA2を越えると、屈曲点設定回路20,21に
も出力があり、この出力は屈曲点設定回路18又
は19に出力を打ち消すことになるため、加算回
路22の出力変化がなく、再びガバナフリー運転
特性になる。
Next, the system frequency change is within the setting range +ΔF NA2 ~ -
When ΔF NA2 is exceeded, the bending point setting circuits 20 and 21 also have outputs, and this output cancels the output to the bending point setting circuit 18 or 19, so there is no change in the output of the adding circuit 22, and the governor is free again. It becomes driving characteristics.

従つて、加算回路15と非直線調定率設定器1
6は、系統基準周波数に対する発電機の周波数変
化に対して、屈曲点を境にして二段折線特性出力
D又はD′を発生する。即ち、発電機周波数変化
が屈曲点±ΔFNA1の範囲内では周波数検出特性に
変化はなく、その他の範囲では周波数に比例して
変化する。
Therefore, the addition circuit 15 and the nonlinear adjustment rate setter 1
6 generates a two-stage curved line characteristic output D or D' with the bending point as the boundary in response to a change in the frequency of the generator with respect to the grid reference frequency. That is, the frequency detection characteristic does not change within the range of the inflection point ±ΔF NA1 of the generator frequency, and changes in proportion to the frequency in other ranges.

第5図aは上述の設定値+ΔFNA1,−ΔFNA1,+
ΔFNA2,−ΔFNA2に対する検出部5Bの出力Bと加
算回路22の出力Cとこれらを加え合わせた出力
Dの特性を示し、そのときの発電機出力PNAと速
度特性を第5図bに実線で示すように2段折線の
非直線調定率特性を得ることができる。また、設
定器166を最大出力よりも下げれば、範囲±
ΔFNA1〜ΔFNA2での出力Cの傾斜が変わり、第
5図bに破線で示す二段折線調定率特性にも変え
ることができる。さらに、設定器162,163
設定値を零にすると、出力Bに対するC,Dは第
6図aに示す関係になり、そのときの発電機出力
と速度特性は第6図bに実線で示す一段折線特性
に変更できるし、その特性も設定器166を最大
値よりも下げると破線で示す特性変更ができる。
Figure 5a shows the above set values +ΔF NA1 , -ΔF NA1 , +
The characteristics of the output B of the detection unit 5B, the output C of the adder circuit 22, and the output D which is the sum of these are shown for ΔF NA2 and -ΔF NA2 , and the generator output P NA and speed characteristics at that time are shown in Fig. 5b. As shown by the solid line, a non-linear adjustment rate characteristic of a two-step broken line can be obtained. Also, if the setting device 16 6 is lowered than the maximum output, the range ±
The slope of the output C between ΔF NA1 and ΔF NA2 changes, and can also be changed to the two-step curved line adjustment rate characteristic shown by the broken line in FIG. 5b. Furthermore, when the setting values of the setting devices 16 2 and 16 3 are set to zero, the relationship between C and D with respect to the output B becomes as shown in Fig. 6a, and the generator output and speed characteristics at that time are shown by the solid line in Fig. 6b. The characteristic can be changed to the one-step broken line characteristic shown by , and by lowering the setting device 16 6 below the maximum value, the characteristic can be changed to the broken line characteristic.

以上のとおり、本発明は、発電機速度帰還系に
第1、第2の設定周波数範囲を持つ非線形伝達関
数回路を具え、剛性復元設定部を直線特性とした
ため、系を安定化しかつ任意の二段折線非直線調
定率を得ることができるし、第1の設定範囲を零
にすることで容易に一段折線非直線調定率に変更
でき一段折線と二段折線の共通回路として汎用性
に優れる。
As described above, the present invention includes a nonlinear transfer function circuit having the first and second set frequency ranges in the generator speed feedback system, and has a linear characteristic for the stiffness restoration setting section, so that the system can be stabilized and arbitrary frequency ranges can be set. It is possible to obtain a non-linear adjustment rate for a single-step broken line, and by setting the first setting range to zero, it can be easily changed to a non-linear adjustment rate for a single-step broken line, providing excellent versatility as a common circuit for a single-step broken line and a two-step broken line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の制御方式を示すブロツク図、第
2図は従来の非直線調定率特性図、第3図は本発
明のブロツク図、第4図は第3図における非線形
伝達関数回路の一実施例を示す回路図、第5図及
び第6図は本発明の制御動作を示す特性図、第7
図は第4図の各部特性図である。 1…速度設定部、2…出力設定部、4…発電
機、5A,5B…回転数検出部、7…剛性復元設
定部、8…速度制御演算増幅部、10…加減速度
検出部、11…加減速度制御演算部、13…ガバ
ナ開度検出部、14…ガバナ開度制御演算増幅
部、16…非直線調定率設定部、161…系統基
準周波数設定器、162,163,164,165
屈曲点設定器、166…非直線傾斜設定器、17
…加算回路、18,19…第1の屈曲点設定回
路、20,21…第2の屈曲点設定回路、22…
加算回路。
Fig. 1 is a block diagram showing a conventional control system, Fig. 2 is a conventional nonlinear regulation rate characteristic diagram, Fig. 3 is a block diagram of the present invention, and Fig. 4 is an example of the nonlinear transfer function circuit in Fig. 3. A circuit diagram showing an embodiment, FIGS. 5 and 6 are characteristic diagrams showing control operations of the present invention, and FIG.
The figure is a characteristic diagram of each part of FIG. 4. DESCRIPTION OF SYMBOLS 1... Speed setting part, 2... Output setting part, 4... Generator, 5A, 5B... Rotation speed detection part, 7... Rigidity restoration setting part, 8... Speed control arithmetic amplification part, 10... Acceleration/deceleration detection part, 11... Acceleration/deceleration control calculation section, 13... Governor opening detection section, 14... Governor opening control calculation amplifier section, 16... Non-linear adjustment rate setting section, 16 1 ... System reference frequency setting device, 16 2 , 16 3 , 16 4 ,16 5 ...
Bend point setter, 16 6 ... Non-linear slope setter, 17
... Addition circuit, 18, 19... First bending point setting circuit, 20, 21... Second bending point setting circuit, 22...
addition circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 系統に連系して使用される発電機を一段折線
特性及び二段折線特性の非直線調定率に制御する
において、前記発電機のガバナ開度に対して調定
率で定められた一定比率の出力を得る剛性復元設
定部7と、前記発電機の周波数検出信号と系統基
準周波数との偏差を検出する第1の加算回路17
と、系統基準周波数を中心として夫々正負に設定
する第1の屈曲点設定値に対して前記偏差が小さ
いときに出力零になりかつ該偏差が大きいときに
その差出力を得る正負一対の第1の屈曲点設定回
路18,19と、系統基準周波数を中心として
夫々正負に設定する第2の屈曲点設定値に対して
夫々前記第1の屈曲点設定回路の出力が小さいと
きに出力零になりかつ該出力が大きいときにその
差出力を得る正負一対の第2の屈曲点設定回路2
0,21と、前記第1及び第2の屈曲点設定回路
の各出力を加算し前記折線特性の傾斜を定める非
直線傾斜設定器の設定値に比例した出力を得る第
2の加算回路22と、前記発電機の周波数検出信
号に前記第2の加算回路の出力を加算して発電機
の速度検出信号にする第3の加算回路15と、前
記発電機の速度設定値と前記速度検出信号との偏
差を得る第1の比較部3と、この比較部の出力と
前記剛性復元設定部の出力との偏差を得る第2の
比較部6と、この比較部の出力から速度制御演算
をして前記ガバナ開度の制御出力を得る速度制御
部8〜14とを備えたことを特徴とする電気式調
速機の非直線調定率制御装置。
1. In controlling a generator used in connection with the power grid to a non-linear regulation rate with a single-fold line characteristic and a double-fold line characteristic, a constant ratio determined by the regulation rate to the governor opening of the generator is controlled. a stiffness restoration setting section 7 that obtains an output, and a first addition circuit 17 that detects a deviation between the frequency detection signal of the generator and the grid reference frequency.
and a pair of positive and negative first inflection point set values that are respectively set positive and negative around the grid reference frequency, and which have an output of zero when the deviation is small and a difference output when the deviation is large. The output becomes zero when the output of the first bending point setting circuit is small with respect to the bending point setting circuits 18, 19 of and a pair of positive and negative second bending point setting circuits 2 that obtain the difference output when the output is large.
0, 21, and a second adding circuit 22 which adds each output of the first and second bending point setting circuits and obtains an output proportional to a setting value of a non-linear slope setting device that determines the slope of the broken line characteristic. , a third addition circuit 15 that adds the output of the second addition circuit to the frequency detection signal of the generator to generate a speed detection signal of the generator, and a speed setting value of the generator and the speed detection signal. A first comparison section 3 obtains the deviation of A non-linear regulating rate control device for an electric speed governor, comprising speed control sections 8 to 14 that obtain a control output of the governor opening.
JP3222980A 1980-03-14 1980-03-14 Nonlinear speed regulation control system for electric governor Granted JPS56129598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3222980A JPS56129598A (en) 1980-03-14 1980-03-14 Nonlinear speed regulation control system for electric governor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3222980A JPS56129598A (en) 1980-03-14 1980-03-14 Nonlinear speed regulation control system for electric governor

Publications (2)

Publication Number Publication Date
JPS56129598A JPS56129598A (en) 1981-10-09
JPH0343873B2 true JPH0343873B2 (en) 1991-07-04

Family

ID=12353134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3222980A Granted JPS56129598A (en) 1980-03-14 1980-03-14 Nonlinear speed regulation control system for electric governor

Country Status (1)

Country Link
JP (1) JPS56129598A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5890217A (en) * 1981-11-25 1983-05-28 Fuji Electric Co Ltd Electric speed governor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397104A (en) * 1977-02-04 1978-08-25 Hitachi Ltd Turbine controlling device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5397104A (en) * 1977-02-04 1978-08-25 Hitachi Ltd Turbine controlling device

Also Published As

Publication number Publication date
JPS56129598A (en) 1981-10-09

Similar Documents

Publication Publication Date Title
US4287429A (en) Apparatus for automatically controlling the active power produced by the generator of a hydraulic turbine-generator unit
JPH0343873B2 (en)
US4109190A (en) Circuit for increasing the operating speed range of a velocity servo system
US3701889A (en) Variable-structure automatic control system
JPH0888990A (en) Position controller for motor
JPH0343874B2 (en)
JP2640596B2 (en) Power generation control device
JP2932444B2 (en) Motor servo control device
JPS61244287A (en) Speed control circuit of motor
JPH04121024A (en) Power fluctuation control method and device
JP2849943B2 (en) Power generation control device
JPH0565890B2 (en)
JPS6323760B2 (en)
JPS59183402A (en) Automatic control circuit for integration and proportion operation
JPS61128303A (en) Proportional integrating device
JPS5890217A (en) Electric speed governor
JPH08308297A (en) Electric governor
JPS6169335A (en) Controller of stationary reactive power control device
SU993436A1 (en) Ultrasonic device with automatic stabilization of oscillations amplitude of electromechanic transducer
SU881653A1 (en) Cascade system for regulating production process
SU847273A1 (en) Self-adjusting regulator
JPS61226573A (en) Water level controller
JPS61240872A (en) Speed controller of motor
JPS634302A (en) Feedback process controller
SU637790A1 (en) Position control system