JPH034373B2 - - Google Patents

Info

Publication number
JPH034373B2
JPH034373B2 JP57227027A JP22702782A JPH034373B2 JP H034373 B2 JPH034373 B2 JP H034373B2 JP 57227027 A JP57227027 A JP 57227027A JP 22702782 A JP22702782 A JP 22702782A JP H034373 B2 JPH034373 B2 JP H034373B2
Authority
JP
Japan
Prior art keywords
welding
resin
copolymer
tetrafluoroethylene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57227027A
Other languages
Japanese (ja)
Other versions
JPS59120417A (en
Inventor
Masatsune Ogura
Yoshiaki Ishihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemours Mitsui Fluoroproducts Co Ltd
Original Assignee
Du Pont Mitsui Fluorochemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Fluorochemicals Co Ltd filed Critical Du Pont Mitsui Fluorochemicals Co Ltd
Priority to JP57227027A priority Critical patent/JPS59120417A/en
Publication of JPS59120417A publication Critical patent/JPS59120417A/en
Publication of JPH034373B2 publication Critical patent/JPH034373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/052Forming heat-sealable coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2327/18Homopolymers or copolymers of tetrafluoroethylene

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はテトラフルオロエチレン樹脂(以下
TFE樹脂と略記する。)成形体の熔接用前処理剤
及び熔接強度が高く熔接ムラやピンホール発生な
どの問題がないTFE樹脂成形体の熔接方法に関
する。 TFE樹脂は極めて優れた耐熱性、耐薬品性及
び耐溶剤性などの化学材料として必要な諸性質を
兼備しているほか、非粘着性・低摩擦性などの特
異の性質を有していることから、特に苛酷な条件
下で使用され記る化学装置及び機器などのチユー
ブ・ホース・パイプ・バルブ・コツク・パツキ
ン・ガスケツトあるいはライニング材などとして
使用されている。 しかしながら、かかる優れたTFE樹脂の諸特
性にも拘らず、その使用例は比較的小型で且つ簡
単な形状の成形品の場合に限られている。それは
TFE樹脂の成形法が基本的には圧縮成形である
ため複雑な形状の製品を成形するのには適さない
こと、及び圧縮成形物(予備成形物)を高温(約
350〜400℃)で焼成する必要があるため大型の製
品を得るには、大型の焼成炉が必要となり、且つ
大形の製品になるほど焼成時の温度管理が困難な
ものとなるなどの理由による。従つて、比較的簡
単な形状のTFE樹脂の成形品を熔接などの方法
により接続し、大型又は複雑な形状のPTFE製品
を得ることが期待される。 近年、テトラフルオロエチレン・パーフルオロ
(アルキルビニルエーテル)共重合体(以下PFA
と略記する。)を介してPTFEを熔接する方法
(特開昭49−119921号公報)が見出され、従前に
比して高い強度の熔接が可能になつたが、信頼性
の高い熔接を行なうためには、かなり高い圧力を
かける必要があつた(特開昭52−63274〜5号公
報)。このため重ね合せ熔接とか突き合せ熔接で
も圧力を充分にかけられる場合には信頼性の高い
熔接が可能ではあるが、彎曲部における突き合せ
熔接のように圧力をかけることが困難な箇所での
熔接の場合には熔接強度のムラやピンホールの発
生などの問題があつた。 本発明者等は、かゝる問題の解決のために鋭意
研究の結果、熔接前処理剤としてテトラフルオロ
エチレン/パーフルオロアルキルエチレン
(PFAE)共重合体(以下FAE樹脂と略記する)
コロイド粒子を10〜70重量%、シリコーンオイル
を0.3〜5重量%及びノニオン又はアニオン系界
面活性剤を1〜10重量%含む水性分散液をTFE
樹脂成形体の被熔接面に塗布し、350〜500℃の温
度で熔着して厚さ5〜30μの前処理剤層を形成し
た後、FAE樹脂、PEA樹脂、テトラフルオロエ
チレン/ヘキサンフルオロプロピレン共重合体
(以下FEP樹脂と略記する。)又はテトラフルオ
ロエチレン/ヘキサフルオロプロピレン/パーフ
ルオロ(アルキルビニルエーテル)共重合体(以
下EPE樹脂と略記する。)などのTFE共重合体製
の熔接材を用いて外部加熱熔接法により(TFE
樹脂成形体の被熔接面を350〜500℃の温度で熔接
することによつて、熔接ムラや熔接部のピンホー
ル発生などがなく、しかも高い熔接強度の熔接を
行ない得ることを見出し、本発明を完成した。 本発明者等は、先にPFA樹脂コロイド粒子を
含む熔接前処理剤(特開昭57−163524)、EPE樹
脂コロイド粒子を含む熔接前処理剤(特開昭59−
33331)に関する発明を出願したが、これらの熔
接前処理剤の主成分となる重合体はいづれもパー
フルオロカーボン重合体であつて、汎用の水素を
含むフルオロカーボン重合体、例えばフツ化ビニ
ル樹脂、フツ化ビニリデン樹脂、三フツ化エチレ
ン樹脂、エチレン/テトラフルオロエチレン共重
合体(以下ETFE樹脂と略記する。)は熔接にお
いて全く無効であるか又はその効果は極めて低く
使用に耐えるものではなかつた。しかるにFAE
樹脂はその主鎖中に
The present invention uses tetrafluoroethylene resin (hereinafter referred to as
Abbreviated as TFE resin. ) A pretreatment agent for welding molded bodies and a method for welding TFE resin molded bodies that have high welding strength and are free from problems such as welding unevenness and pinhole formation. TFE resin has various properties required as a chemical material, such as extremely excellent heat resistance, chemical resistance, and solvent resistance, as well as unique properties such as non-adhesion and low friction. It is used as tubes, hoses, pipes, valves, gaskets, gaskets, and lining materials for chemical equipment and equipment that are used under particularly harsh conditions. However, despite the excellent properties of TFE resin, its use is limited to relatively small and simple shaped molded products. it is
Since the molding method for TFE resin is basically compression molding, it is not suitable for molding products with complex shapes, and compression molded products (preforms) are processed at high temperatures (approx.
Because it is necessary to bake at temperatures of 350 to 400℃), large-sized products require a large-sized kiln, and the larger the product, the more difficult it is to control the temperature during firing. . Therefore, it is expected that relatively simple-shaped TFE resin molded products can be connected by methods such as welding to obtain large-sized or complicated-shaped PTFE products. In recent years, tetrafluoroethylene/perfluoro(alkyl vinyl ether) copolymer (hereinafter PFA)
It is abbreviated as ) was discovered (Japanese Unexamined Patent Publication No. 119921/1983), which made it possible to weld with higher strength than before. However, in order to perform highly reliable welding, , it was necessary to apply considerably high pressure (Japanese Patent Application Laid-open No. 52-63274-5). For this reason, overlap welding and butt welding can provide highly reliable welding if sufficient pressure can be applied, but it is difficult to weld in places where it is difficult to apply pressure, such as butt welding on curved parts. In some cases, there were problems such as uneven welding strength and the occurrence of pinholes. As a result of intensive research to solve such problems, the present inventors have developed a tetrafluoroethylene/perfluoroalkylethylene (PFAE) copolymer (hereinafter abbreviated as FAE resin) as a welding pretreatment agent.
TFE is an aqueous dispersion containing 10 to 70% by weight of colloidal particles, 0.3 to 5% by weight of silicone oil, and 1 to 10% by weight of nonionic or anionic surfactant.
After coating the surface of the resin molding to be welded and welding at a temperature of 350 to 500°C to form a pretreatment agent layer with a thickness of 5 to 30μ, FAE resin, PEA resin, tetrafluoroethylene/hexanefluoropropylene Welding material made of TFE copolymer such as copolymer (hereinafter abbreviated as FEP resin) or tetrafluoroethylene/hexafluoropropylene/perfluoro(alkyl vinyl ether) copolymer (hereinafter abbreviated as EPE resin). (TFE) by external heat welding method using
It has been discovered that by welding the surfaces of resin molded bodies to be welded at a temperature of 350 to 500°C, it is possible to perform welding with high welding strength without uneven welding or pinholes in the welded portion, and have developed the present invention. completed. The present inventors have previously developed a welding pretreatment agent containing PFA resin colloidal particles (Japanese Patent Laid-Open No. 57-163524), a welding pretreatment agent containing EPE resin colloidal particles (Japanese Patent Laid-Open No. 59-16352),
33331), but the polymers that are the main components of these pre-welding treatment agents are all perfluorocarbon polymers, and general-purpose hydrogen-containing fluorocarbon polymers, such as fluorinated vinyl resins and fluorinated vinyl resins, Vinylidene resin, trifluoroethylene resin, and ethylene/tetrafluoroethylene copolymer (hereinafter abbreviated as ETFE resin) are either completely ineffective in welding, or their effectiveness is extremely low, making them unusable. However, FAE
The resin is in its main chain

【式】単位を含むに も拘らず、TFE樹脂熔接前処理剤として有効な
もので、とくに熔接材としてPFA樹脂及びFAE
樹脂を使用した場合には顕著な効果を示すことが
発見された。 FAE樹脂がTFE樹脂熔接前処理剤として有効
な理由は明きらかではないが、パーフルオロアル
キル側鎖が立体的に水素原子を覆いパーフルオロ
カーボン重合体の同様な挙動をとらしめること、
主錯中に含まれる
[Formula] Although it contains units, it is effective as a pre-treatment agent for TFE resin welding, especially for PFA resin and FAE as welding materials.
It has been discovered that the use of resins has a significant effect. The reason why FAE resin is effective as a TFE resin welding pretreatment agent is not clear, but the reason is that the perfluoroalkyl side chain sterically covers hydrogen atoms, causing it to behave similarly to perfluorocarbon polymers.
included in the main complex

【式】単位が熔融時の 主鎖の動きを容易にせしめること及びパーフルオ
ロアルキル側鎖が重合体の界面張力の低下に寄与
し、TFE樹脂の濡れを促進するためと考えられ
る。 本発明において、FAE樹脂とは、TFE93〜
99.5モル%及びPFAE0.5〜7モル%の共重合体で
あつて、パーフルオロアルキル側鎖の鎖長は炭素
数2〜10の範囲とくに3〜7の範囲であることが
好ましい。また、FAE樹脂の熔融粘度は372℃に
おいて1×104〜5×106ポイズの範囲にあること
が好ましい。これは、粘度が余りに低すぎる場合
には前処理剤層そのものが熔接部の弱点になるた
めで、また粘度が高すぎる場合にはTFE樹脂と
熔接材との媒介効果を充分なはたせなくなるため
である。上記FAE樹脂は水に分散しうるため、
またTFE樹脂の被熔接面への塗布を容易にする
ため、0.1〜0.5μの平均粒子径を持つものである
ことが必要である。かかるFAE樹脂は特開昭57
−85810号公報に記載される方法で製造すること
が可能である。 前処理剤中に含まれるFAE樹脂樹脂コロイド
粒子の量は約10〜70重量%であり、その下限値は
限定的なものではないが、含有量が少なくなる程
前処理剤の塗布量を多くする必要があり、必然的
に塗布回数及び熔着回数が増加するため、好まし
くない、少なくとも約10%以上であることが好ま
しい。また、70重量%を越えるFAE樹脂コロイ
ド粒子を含む場合には分散液の安定性が著しく悪
化し、前処理剤の保存中又は使用中にFAE樹脂
コロイド粒子が凝固を起こす虞があり好ましくな
い。上記の理由から、特に好ましいFAE樹脂コ
ロイド粒子の含有量は30〜60重量%である。 本発明に使用されるシリコーンオイルとしては
ジメチルシリコーン、フエニルエチルシリコー
ン、又はこれらの共重合体で通常油性塗料のレベ
リング剤、あるいは帯電防止剤などの用途を有す
るものが有効であり好ましい。 上記前処理剤、即ちFAE樹脂コロイド粒子と
シリコーンオイルとを含む水分散液の安定性を増
加するために通常該分散液中に分散剤としてノニ
オン又はアニオン系界面活性剤を存在させる。分
散剤の量はFAE樹脂コロイド粒子及びシリコー
ンオイルの含有量によつて異なるが、分散質に対
し1〜10重量%である。分散剤の量が1%未満の
場合には、分散液の安定性の向上をあまり期待す
ることができず、逆に10%を超える場合には分散
液の粘度が高くなりすぎる傾向があり、良好な塗
布が困難になる。分散剤として例えばポリオキシ
エチレンアルキルフエニルエーテルやラウリルア
ルコールの硫酸エステル塩などのノニオン及びア
ニオン界面活性剤が好ましいものとして使用され
る。 上記前処理剤の使用方法はTFE樹脂成形体の
被熔接面に該前処理剤を塗布し、ついで350〜500
℃の温度で熔着することにより、TFE樹脂成形
体の被熔接面に厚さ5〜30μの前処理剤層を形成
するものである。前処理剤の熔着温度は350〜500
℃、特に400〜450℃であることが好ましく、一方
熔着温度が350℃未満の場合には熔着が不充分と
なつて熔接強さが低くなり、また、500℃を超え
る場合には基材であるTFE樹脂及び前処理剤の
主成分であるFAE樹脂が熱分解し、同じく熔接
強さを低くするという問題がある。 また、前処理剤の塗布方法は刷毛塗り、吹付
け、流しかけなど一般に用いられる塗布方法のい
かなる方法でも良いが、熔着後の前処理剤層の厚
さが5〜30μになるように塗布することが肝要で
ある。前処理剤層の厚さが5μ未満の場合には充
分な前処理効果が期待できず、また30μを超える
場合には前処理剤の熔着時前処理剤層に亀裂が生
じるため好ましくない。 熔接は例えばFAE樹脂、FEP樹脂、PFA樹脂、
EPE樹脂などの如きTFE共重合体製の熔接棒又
はフイルムなどを用いて行なわれる。特に好まし
い熔接剤は、TFEを80モル%以上、99.5モル%以
下、好ましくはTFEを90モル%以上含むもので
あつて、且つ、372℃における熔融粘度が1×104
〜5×106ポイズであるような前期TFE共重合体
である。TFE含量及び熔融粘度が上記範囲を満
足するTFE共重合体は特に良好な熔接を行える
が、TFE含量が80モル%より低いTFE共重合体
は、一般にその熔融粘度が低くて施工が容易であ
る反面、熔接粘度が低い傾向をしている。一方、
TFE含量が99.5モル%を超えるTFE共重合体は、
熔融粘度が高くなりすぎ施工困難となる傾向を有
する。 本発明の方法は熔接時圧力をかけにくい熱風熔
接において有効で、熔接ムラやピンホール発生の
防止、熔接強度の向上などに効果がみられる。特
に、熔接材としてFAE樹脂又はPFA樹脂を用い
た場合には有効である。 なお、本発明の熔接は、通常TFE樹脂の熔接
に用いられる温度である350〜500℃で、特に380
〜480℃の範囲で行なうことが推奨される。 実施例 1 安定剤としてポリオキシエチレンフエニル系界
面活性剤(ローム・アンド・ハース社製、トライ
トンX−100)2.6重量%とFAE樹脂コロイド粒子
(FAE樹脂の組成:TFE99.1モル%とパーフルオ
ロブチルエチレン0.9モル%との共重量体、372℃
における熔融粘度9.4×105ポイズ)44重量%とを
含む水性デイスパージヨン100重量部に対し、シ
リコーンオイル(日本ユニカー製、NUCシリコ
ーンブロツクコポリマーL−77)2重量部を添加
することにより、TFE樹脂成形体用熔接前処理
剤を得た。 実施例 2 厚さ2.3mmTFE樹脂製切削シートの突き合せ熔
接面に開先角度60゜とり、実施例1の熔接前処理
剤をガーゼに含ませて該開先面に薄く塗り風乾し
た。風乾後、該先面に温度480℃の熱風を吹き付
け、厚さ約10μの前処理剤の熔着層を得た。次い
で、直径3mmの各フルオロガーボン重合体の熔接
棒により開先面を熱風突き合せ熔接した。熔接条
件は熱風温度420℃、熔接速度80mm/min、風量
750/minである。 得られた熔接シートから、熔接方法に、巾10
mm、長さ100mmの短冊型のサンプルをとり、引き
張り強さ及び伸びを測定した。 また、熔接シートの熔接線上5mにわたり、電
測工業株式会社製ピンホールテスターを使用し
て、電圧20KVで、ピンホール数を測定した。 測定結果を次表に示す。
It is thought that this is because the [Formula] unit facilitates the movement of the main chain when melted, and the perfluoroalkyl side chain contributes to lowering the interfacial tension of the polymer, promoting wetting of the TFE resin. In the present invention, FAE resin refers to TFE93~
It is a copolymer of 99.5 mol % and PFAE 0.5 to 7 mol %, and the chain length of the perfluoroalkyl side chain is preferably in the range of 2 to 10 carbon atoms, particularly 3 to 7 carbon atoms. Further, the melt viscosity of the FAE resin is preferably in the range of 1×10 4 to 5×10 6 poise at 372°C. This is because if the viscosity is too low, the pretreatment agent layer itself will become a weak point in the welded part, and if the viscosity is too high, the mediating effect between the TFE resin and the welding material will not be sufficient. It is. Since the above FAE resin can be dispersed in water,
Furthermore, in order to facilitate the application of the TFE resin to the surfaces to be welded, it is necessary that the resin has an average particle diameter of 0.1 to 0.5μ. Such FAE resin is disclosed in Japanese Patent Application Laid-open No. 1983
It can be produced by the method described in JP-A-85810. The amount of FAE resin colloidal particles contained in the pretreatment agent is about 10 to 70% by weight, and the lower limit is not limited, but the lower the content, the more the amount of pretreatment agent applied. This is not preferable because the number of times of coating and welding inevitably increases, but it is preferable that the amount is at least about 10% or more. Furthermore, if the amount of colloidal FAE resin particles exceeds 70% by weight, the stability of the dispersion will be significantly deteriorated, and the coagulation of the colloidal FAE resin particles may occur during storage or use of the pretreatment agent, which is not preferable. For the above reasons, the particularly preferred content of FAE resin colloidal particles is 30 to 60% by weight. The silicone oil used in the present invention is preferably dimethyl silicone, phenylethyl silicone, or a copolymer thereof, which is usually used as a leveling agent for oil-based paints or as an antistatic agent. In order to increase the stability of the aqueous dispersion containing the above pretreatment agent, ie, FAE resin colloidal particles and silicone oil, a nonionic or anionic surfactant is usually present as a dispersant in the dispersion. The amount of dispersant varies depending on the contents of FAE resin colloidal particles and silicone oil, but is 1 to 10% by weight based on the dispersoid. If the amount of the dispersant is less than 1%, it is not expected to improve the stability of the dispersion very much, and on the other hand, if it exceeds 10%, the viscosity of the dispersion tends to become too high. Good application becomes difficult. Nonionic and anionic surfactants such as polyoxyethylene alkyl phenyl ether and lauryl alcohol sulfate ester salts are preferably used as dispersants. The method of using the above pre-treatment agent is to apply the pre-treatment agent to the surface to be welded of the TFE resin molding, and then
By welding at a temperature of .degree. C., a pretreatment agent layer with a thickness of 5 to 30 .mu.m is formed on the surface of the TFE resin molded article to be welded. The welding temperature of the pretreatment agent is 350 to 500
℃, especially 400 to 450℃. On the other hand, if the welding temperature is less than 350℃, welding will be insufficient and the weld strength will be low, and if it exceeds 500℃, the base temperature will be lowered. There is also the problem that the TFE resin that is the material and the FAE resin that is the main component of the pretreatment agent are thermally decomposed, which also lowers the weld strength. The pretreatment agent may be applied by any commonly used coating method such as brushing, spraying, or pouring, but it should be applied so that the thickness of the pretreatment agent layer after welding is 5 to 30μ. It is essential to do so. If the thickness of the pretreatment agent layer is less than 5μ, a sufficient pretreatment effect cannot be expected, and if it exceeds 30μ, cracks will occur in the pretreatment agent layer during welding of the pretreatment agent, which is not preferred. For example, welding can be applied to FAE resin, FEP resin, PFA resin,
This is carried out using a welding rod or film made of TFE copolymer such as EPE resin. Particularly preferred welding agents contain TFE in an amount of 80 mol% or more and 99.5 mol% or less, preferably 90 mol% or more, and have a melt viscosity of 1×10 4 at 372°C.
˜5×10 6 poise. TFE copolymers whose TFE content and melt viscosity satisfy the above ranges can perform particularly good welding, but TFE copolymers whose TFE content is lower than 80 mol% generally have low melt viscosity and are easy to weld. On the other hand, welding viscosity tends to be low. on the other hand,
TFE copolymers with TFE content exceeding 99.5 mol% are
The melt viscosity tends to become too high, making construction difficult. The method of the present invention is effective in hot air welding, where it is difficult to apply pressure during welding, and is effective in preventing welding irregularities and pinholes, and improving welding strength. This is particularly effective when FAE resin or PFA resin is used as the welding material. Note that the welding of the present invention is carried out at a temperature of 350 to 500°C, which is the temperature normally used for welding TFE resin, and in particular at a temperature of 380°C.
It is recommended to perform the test at a temperature of ~480°C. Example 1 2.6% by weight of a polyoxyethylene phenyl surfactant (manufactured by Rohm & Haas, Triton Coweight with 0.9 mol% fluorobutylethylene, 372℃
By adding 2 parts by weight of silicone oil (NUC Silicone Block Copolymer L-77, manufactured by Nippon Unicar) to 100 parts by weight of an aqueous dispersion containing 44% by weight (melt viscosity of 9.4 x 10 5 poise), TFE A pre-welding treatment agent for resin molded bodies was obtained. Example 2 A bevel angle of 60° was prepared on the butted welded surfaces of 2.3 mm thick TFE resin cut sheets, and the welding pretreatment agent of Example 1 was applied in gauze and thinly applied to the beveled surfaces and air-dried. After air-drying, hot air at a temperature of 480° C. was blown onto the front surface to obtain a welded layer of the pretreatment agent with a thickness of about 10 μm. Next, the groove surfaces were butt-welded with hot air using a welding rod of each fluorocarbon polymer having a diameter of 3 mm. Welding conditions are hot air temperature 420℃, welding speed 80mm/min, and air volume.
750/min. From the obtained welded sheet, depending on the welding method, a width of 10
A rectangular sample with a length of 100 mm and a length of 100 mm was taken, and its tensile strength and elongation were measured. In addition, the number of pinholes was measured over a 5 m distance on the welding line of the welded sheet at a voltage of 20 KV using a pinhole tester manufactured by Densoku Kogyo Co., Ltd. The measurement results are shown in the table below.

【表】 実施例 3 FAE樹脂としてTFE98.7モル%とパーフルオ
ロブチルエチレン1.3モル%との共重合体を使用
したほかは、実施例1と同様にして前処理剤を作
り、実施例2と同様にして熔接を行なつた。 各試料の引張り強さ及び伸びは次表の通りであ
つた。
[Table] Example 3 A pretreatment agent was prepared in the same manner as in Example 1, except that a copolymer of 98.7 mol% TFE and 1.3 mol% perfluorobutyl ethylene was used as the FAE resin. Welding was carried out in the same manner. The tensile strength and elongation of each sample were as shown in the table below.

【表】 比較例 熔接前処理剤を使用しなかつたほかは、実施例
2と同様にして熔接を行なつた。 各試料の引張り強さ及び伸びは次表の通りであ
つた。
[Table] Comparative Example Welding was carried out in the same manner as in Example 2, except that no pre-welding treatment agent was used. The tensile strength and elongation of each sample were as shown in the table below.

【表】【table】

Claims (1)

【特許請求の範囲】 1 平均粒子径が0.1〜0.5μであるテトラフルオ
ロエチレン/パーフルオロアルキルエチレン共重
合体のコロイド粒子を10〜70重量%、シリコーン
オイルを0.3〜5重量%及びノニオン又はアニオ
ン系界面活性剤を1〜10重量%含む水性分散液で
あつて、上記共重合体のテトラフルオロエチレ
ン/パーフルオロアルキルエチレンのモル比が93
〜99.5/7〜0.5であり、パーフルオロアルキル
基の鎖長が炭素数2〜10の範囲であり、且つ上記
共重合体の熔融粘度が372℃において1×104〜5
×106ポイズの範囲にあることを特徴とするテト
ラフルオロエチレン樹脂成形体用の熔接前処理
剤。 2 平均粒子径が0.1〜0.5μであるテトラフルオ
ロエチレン/パーフルオロアルキルエチレン共重
合体のコロイド粒子を10〜70重量%、シリコーン
オイルを0.3〜5重量%及びノニオン又はアニオ
ン系界面活性剤を1〜10重量%含む水性分散液で
あつて、上記共重合体のテトラフルオロエチレ
ン/パーフルオロアルキルエチレンのモル比が93
〜99.5/7〜0.5であり、パーフルオロアルキル
基の鎖長が炭素数2〜10の範囲であり、且つ上記
共重合体の熔融粘度が372℃において1×104〜5
×106ポイズの範囲にあることから成るテトラフ
ルオロエチレン樹脂成形体用の熔接前処理剤を、
テトラフルオロエチレン樹脂成形体の被熔接面に
塗布し、350〜500℃の温度で熔着して厚さ5〜
30μの前処理剤層を形成した後、テトラフルオロ
エチレン共重合体製の熔接材を用いて外部加熱熔
接法によりテトラフルオロエチレン樹脂の被熔接
面を350〜500℃の温度で熔接する、ことを特徴と
するテトラフルオロエチレン樹脂の熔接方法。
[Scope of Claims] 1. 10 to 70% by weight of colloidal particles of tetrafluoroethylene/perfluoroalkylethylene copolymer having an average particle diameter of 0.1 to 0.5μ, 0.3 to 5% by weight of silicone oil, and nonions or anions. An aqueous dispersion containing 1 to 10% by weight of a surfactant, wherein the molar ratio of tetrafluoroethylene/perfluoroalkylethylene in the copolymer is 93.
99.5/7 to 0.5, the chain length of the perfluoroalkyl group is in the range of 2 to 10 carbon atoms, and the melt viscosity of the copolymer is 1 x 104 to 5 at 372°C.
A pre-welding treatment agent for tetrafluoroethylene resin moldings, characterized in that it is in the range of ×10 6 poise. 2 10 to 70% by weight of colloidal particles of tetrafluoroethylene/perfluoroalkylethylene copolymer with an average particle diameter of 0.1 to 0.5μ, 0.3 to 5% by weight of silicone oil, and 1% of nonionic or anionic surfactant. An aqueous dispersion containing ~10% by weight, wherein the molar ratio of tetrafluoroethylene/perfluoroalkylethylene of the above copolymer is 93
99.5/7 to 0.5, the chain length of the perfluoroalkyl group is in the range of 2 to 10 carbon atoms, and the melt viscosity of the copolymer is 1 x 104 to 5 at 372°C.
A pre-welding treatment agent for tetrafluoroethylene resin moldings consisting of x106 poise,
Coat the surface of the tetrafluoroethylene resin molded product to be welded and fuse it at a temperature of 350 to 500℃ to a thickness of 5 to 50℃.
After forming a 30 μm pretreatment agent layer, weld the surfaces of the tetrafluoroethylene resin to be welded at a temperature of 350 to 500°C by external heat welding using a welding material made of tetrafluoroethylene copolymer. A distinctive method of welding tetrafluoroethylene resin.
JP57227027A 1982-12-27 1982-12-27 Pretreating agent for welding and welding method Granted JPS59120417A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227027A JPS59120417A (en) 1982-12-27 1982-12-27 Pretreating agent for welding and welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227027A JPS59120417A (en) 1982-12-27 1982-12-27 Pretreating agent for welding and welding method

Publications (2)

Publication Number Publication Date
JPS59120417A JPS59120417A (en) 1984-07-12
JPH034373B2 true JPH034373B2 (en) 1991-01-22

Family

ID=16854363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227027A Granted JPS59120417A (en) 1982-12-27 1982-12-27 Pretreating agent for welding and welding method

Country Status (1)

Country Link
JP (1) JPS59120417A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052627A1 (en) * 2002-12-12 2004-06-24 Daikin Industries, Ltd. Covering material for welding, jointed structures, welding procedure, welded articles and composite structures

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018090323A (en) * 2016-12-01 2018-06-14 サンフロロシステム株式会社 Member that comes into contact with chemical when flowing chemical for producing semiconductor product
WO2019017488A1 (en) * 2017-07-21 2019-01-24 東邦化成株式会社 Tank, and chemical solution supply system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004052627A1 (en) * 2002-12-12 2004-06-24 Daikin Industries, Ltd. Covering material for welding, jointed structures, welding procedure, welded articles and composite structures

Also Published As

Publication number Publication date
JPS59120417A (en) 1984-07-12

Similar Documents

Publication Publication Date Title
JP3109523B2 (en) Gel containing copolymer of tetrafluoroethylene
US4555543A (en) Fluoropolymer coating and casting compositions and films derived therefrom
US5464904A (en) Low-melting tetrafluoroethylene copolymer and its uses
US5266639A (en) Low-melting tetrafluorethylene copolymer and its uses
US8158260B2 (en) Molding method and molded article of fluoropolymer with multilayered particulate structure
US4504528A (en) Process for coating aqueous fluoropolymer coating on porous substrate
US5547761A (en) Low melting tetrafluoroethylene copolymer and its uses
KR100569037B1 (en) Primers for ETFE Powder Coating, Primers for ETFE Coating, and Coated Articles
US6673416B1 (en) Polytetrafluoroethylene mold articles coated with fused fluoropolymer resin
JP4162261B2 (en) Tetrafluoroethylene copolymer composition for coating
KR101300395B1 (en) Fluoropolymer bonding compositions
TW202348651A (en) Melt processible fluororesin composition and injection molded article formed from same
JP3564128B2 (en) Perfluoroelastomer binding
JPH034373B2 (en)
JPH033699B2 (en)
US3502498A (en) Metal-fluorocarbon adherent composite structures and process for preparing same
JP2718042B2 (en) Fluoro rubber powder composition
JPS637139B2 (en)
Reardon et al. Critical surface tensions of tetrafluoroethylene-perfluoro (propyl vinyl ether) copolymers
WO2010080202A1 (en) Thick film fluoropolymer powder coating
KR20240000567A (en) Paint compositions and laminates
ITMI950088A1 (en) PROCEDURE FOR ANCHORING A PERFLUOROPOLYMER TO A SUBSTRATE