JPH0343266Y2 - - Google Patents

Info

Publication number
JPH0343266Y2
JPH0343266Y2 JP13604587U JP13604587U JPH0343266Y2 JP H0343266 Y2 JPH0343266 Y2 JP H0343266Y2 JP 13604587 U JP13604587 U JP 13604587U JP 13604587 U JP13604587 U JP 13604587U JP H0343266 Y2 JPH0343266 Y2 JP H0343266Y2
Authority
JP
Japan
Prior art keywords
fibers
sheath
core
yarn
core yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13604587U
Other languages
Japanese (ja)
Other versions
JPS6445180U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13604587U priority Critical patent/JPH0343266Y2/ja
Publication of JPS6445180U publication Critical patent/JPS6445180U/ja
Application granted granted Critical
Publication of JPH0343266Y2 publication Critical patent/JPH0343266Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

【考案の詳細な説明】 〈産業上の利用分野〉 本考案は防風効果が大でありかつ強度および耐
久性にすぐれた防風柵用網(以下防風網と略記す
る)に関するものであり、防砂用にも有用に使用
できるものである。 〈従来技術〉 防風網は植物(主として農作物)の風による葉
面から水分の過剰な蒸散防止、果実の落下防止、
枝の折損や落葉等の防止、あるいは水田の水温上
昇等を目的として使用されるものであり、従来は
合成繊維紡績糸を使用した寒冷紗等のメツシユ状
織物(メツシユ状織物を樹脂加工して目止め、硬
さを付与したもの)が使用されており、この場合
紡績糸の有する羽毛が防風効果(減風、破風効
果)を発揮することが認められている。 しかし寒冷紗等を防風網として設置する場合に
は支柱等を必要とするが、この支柱等が古くなつ
てサビを発生し、これと寒冷紗の摩擦、スレによ
り寒冷紗に破れが発生し、耐久性が劣るという問
題点があつた。 また引張強力が低いことも耐久性不足の一因で
あつた。 このため近年は耐摩耗性のあるポリオレフイン
系のモノフイラメントを使用したラツセル網が用
いられるようになつてきた。しかしモノフイラメ
ント糸は羽毛がないため防風効果(減風破風効
果)が少く、紡績糸使いの寒冷紗と同等の防風効
果を得るためには繊維密度を大巾に上げなければ
ならず、そのため重量が大となり、取り扱い性が
悪く(重くて展張しにくい)またコスト的にも不
利であつた。 〈考案が解決しようとする問題点〉 本考案者等は、従来技術では問題であつた紡績
糸使いの織編物では得られない強度耐久性、特に
支柱とのスレによる耐久性の向上と、モノフイラ
メント糸使いの織編では得られない破風効果の両
者を共に解決するため鋭意検討の結果、本考案に
到達したものである。 〈問題点を解決するための手段〉 本考案は、前述の紡績糸使いの織編物を用いた
防風網、モノフイラメント糸使いの織編物を用い
た防風網の有している問題点を解決する手段とし
て、芯繊維束に強力耐久性向上成分となる高強力
繊維を用い、その回りを短繊維による鞘を構成さ
せた、いわゆるコアヤーンを用いることを特徴と
するものである。 ここでいうコアヤーンは、芯繊維束の回りを短
繊維より成る鞘繊維で構成し、鞘を構成する単繊
維が鞘を構成する他の単繊維を実質的に撚り合さ
れることなく覆つているコアヤーンであつて、下
記式で示される被覆率(%)を満足するものであ
る。 被覆率≧コアヤーン中に占める鞘成分の 体積比率(%)×1.2 被覆率が上式を満足しない場合、同一被覆率を
得るためには鞘繊維の体積比率を上げる必要があ
り、該コアヤーンを用いた織編物の強度及び耐久
性が下ることとなる。 該コアヤーンの芯繊維束は上述の通り、主とし
て強度耐久性を分担する成分であり、したがつて
高強度・高耐久性の繊維が用いられるが、中でも
合成繊維フイラメント糸(長繊維からなる糸)を
用いるのがより好ましい。 該コアヤーンの鞘を構成する短繊維は通常の紡
績に用いられる平均繊維長38mm以上のスライバー
または粗糸が用いられるが、いわゆるトウ紡績
(パーロツク方式、コンバーター方式と言われる
もの)あるいは梳糸紡より成る平均繊維長が70〜
300mmのスライバーまたは粗糸を用いることが好
ましく、平均繊維長が70〜300mmの短繊維を鞘成
分として用いれば鞘成分が芯成分より抜けにくく
なり、後加工(製織、製編等)における工程通過
性が大巾に改良され、さらに防風網の使用中の羽
毛立ちが極度に少くなるのでより好ましい。 コアヤーン中に占める鞘成分の体積比率が30%
以下であれば短繊維に起因する防風効果が十分で
なく、また該体積比率が90%以上であれば強度及
び耐久性が不足し好ましくない。より好ましくは
該体積比率が45〜80%のものである。 コアヤーンを構成する芯繊維束としては、ポリ
エステル繊維、ナイロン繊維、ビニロン繊維、ア
クリル繊維、ポリオレフイン繊維、アラミド繊
維、ポリアリレート繊維等合成繊維が用いられる
が、中でもポリエステル繊維、ナイロン繊維、ビ
ニロン繊維が好適に用いられる。 鞘を構成する短繊維としてはポリエステル繊
維、ビニロン繊維、ナイロン繊維、アクリル繊
維、ポリオレフイン繊維等の合成繊維、綿、麻等
の天然繊維が用いられるが、中でもポリエステル
繊維、ビニロン繊維、ナイロン繊維が好適に用い
られる。 特に鞘繊維としてはビニロン繊維を用いるとビ
ニロン繊維の高耐候性、高耐摩耗性及び目止め加
工の容易さ、目止め加工後の風合いの点でより好
適である。すなわち鞘繊維にビニロン繊維以外の
合成繊維を用いた場合、得られた織編物の目止め
及び硬さづけ加工を行うに際し、目止め加工剤の
中に熱硬化性樹脂(たとえばメラミン−ホルマリ
ン樹脂等)と熱可塑性樹脂(たとえばPVA)を
混合したものを使用しなければ十分な硬さ、目止
め力が得られない。熱硬化性樹脂を用いることは
目止剤のポツトライフを短くしまた硬化のための
熱量が必要となるため経済的に不利となる。一方
ビニロン繊維を鞘繊維としたコアヤーンから成る
織編物の目止め加工は熱可塑性樹脂(たとえば
PVA)のみにより十分な目止め力、硬さが得ら
れ、経済的に有利である。 コアヤーンを構成する芯繊維の単繊維デニール
としては0.7〜10デニール、また芯を構成する繊
維束の総デニールとしては75〜1000デニールが引
張り応力分散性や製造のし易さ等の点で好まし
い。また鞘部に用いられる繊維は、単繊維デニー
ルが1〜15デニールのものが好ましい。 なお本発明に用いられるコアヤーンにおいて、
鞘を構成する単繊維は鞘を構成する他の単繊維と
実質的に撚り合わされていないことが必要であ
り、もし鞘繊維が加撚されて単繊維同志が一体化
して鞘繊維単独で糸となつている場合には、芯繊
維との剥離が生じやすく、耐摩耗性耐久性が不十
分となる。このことについて詳細に説明すると、
加撚された繊維束(ヤーンなど)の単繊維は撚に
よつて動きを制限され(どちらかと言えば動けな
い状態となつている)るため、芯繊維と入り交つ
て絡合性が向上することがなく、故に芯繊維は芯
繊維、鞘繊維は鞘繊維として別々にヤーンを構成
するところから鞘繊維は動き易いこととなる。鞘
繊維が実質的に撚り合わされていなければ鞘繊維
を構成する単繊維が芯繊維と入り交ざつて絡合性
が向上し剥離の少ない糸となる。 次に本発明を図により説明する。 第1図は本発明に用いるコアヤーン(被覆率≒
100%)1の断面を模式的に表わしたものであり、
2は芯繊維束を構成する繊維の単繊維を示し、3
は鞘を構成する繊維の単繊維を示す。 第2図は本発明に用いるコアヤーン(被覆率≒
100%)1の側面図であり、コアヤーン1の表面
が鞘繊維3で被覆されている状態を示す。 第3図は防風網用メツシユ織物の平面図であ
り、図中1はコアヤーン、4はコアヤーンの交点
で樹脂で目止めされた部分を示す。 コアヤーンの被覆率は次の方法により求める。
糸をパネルに平行に捲きつけ、万能投影器または
顕微鏡などによつて表面写真をとり、その写真の
うえに透明な紙をおいて糸の外周をトレースし、
かつ芯繊維の露出している部分を詳細に記入す
る。然るのち糸の外周に沿つて紙を切りとりその
重さを測定してWoとし、次いで芯繊維が露出し
ている部分を切りとつてその重量を測定しW1と
する。被覆率は、 被覆率(%)=Wo−W1/Wo×100 によつて求められる。 但しトレースするコアヤーンの試長は、その糸
の撚が100回出現する長さをいう。 即ち 試長(インチ)=100/撚数(t/in) である。 なおコアヤーン中に占める鞘繊維の体積比率と
は、一定長さのコアヤーンを構成する全繊維の体
積に占める鞘繊維の体積の割合のことであり、該
体積は重量をそれぞれの密度で割ることにより得
られる。 実施例 次の表に示す芯繊維と鞘繊維によりコアヤーン
No.1、No.2、No.3を試作し、それぞれのコアヤー
ンより経緯15×15本/inの平織布を製造した。こ
の基布にPVA又はPVA+メラミン樹脂による目
止め加工処理を行い防風網としてテストを実施し
た。 比較例としてビニロン紡績糸、ポリエステルマ
ルチフイラメント糸を用いて同様のテストを実施
した。 【表】
[Detailed description of the invention] <Industrial application field> The present invention relates to a windbreak fence net (hereinafter abbreviated as windbreak net) that has a large windproof effect and is excellent in strength and durability. It can also be usefully used. <Prior art> Windbreak nets are used to prevent excessive transpiration of water from the leaf surface of plants (mainly agricultural products) caused by the wind, to prevent fruits from falling,
It is used for the purpose of preventing branch breakage and falling leaves, etc., or increasing water temperature in rice fields. Conventionally, mesh-like fabrics such as cheesecloth made of synthetic fiber spun yarn (mesh-like fabrics are processed with resin and made into mesh fabrics) In this case, it is recognized that the feathers of the spun yarn have a windproof effect (wind reduction, gable effect). However, when installing cheesecloth as a windbreak net, pillars are required, but as these pillars get old, they develop rust, and friction and scratching between them and the cheesecloth causes tears in the cheesecloth, reducing its durability. There was a problem that it was inferior. Furthermore, low tensile strength was also a factor in the lack of durability. For this reason, in recent years, ratcell nets using wear-resistant polyolefin monofilaments have come into use. However, since monofilament yarn does not have feathers, it has little windproof effect (wind-reducing gable effect), and in order to obtain the same windproof effect as cheesecloth made from spun yarn, the fiber density must be greatly increased, which results in a heavy weight. It was large in size, difficult to handle (heavy and difficult to spread), and disadvantageous in terms of cost. <Problems to be solved by the invention> The inventors of the present invention aimed to improve the strength and durability that could not be obtained with woven and knitted fabrics using spun yarn, which was a problem with the conventional technology, and in particular to improve the durability due to scratches with the struts. The present invention was arrived at as a result of intensive research in order to solve both the gable effect, which cannot be obtained with weaving and knitting using filament yarns. <Means for solving the problems> The present invention solves the problems of the above-mentioned windbreak nets using woven and knitted fabrics using spun yarn and windbreak nets using woven and knitted fabrics using monofilament yarn. The method is characterized by using a so-called core yarn in which a core fiber bundle is made of a high-strength fiber serving as a component for improving strength and durability, and a sheath of short fibers is formed around the core fiber bundle. The core yarn referred to here is composed of a sheath fiber made of short fibers surrounding a core fiber bundle, and the single fibers making up the sheath cover the other single fibers making up the sheath without being twisted together. It is a core yarn and satisfies the coverage (%) shown by the following formula. Coverage rate ≧ Volume ratio (%) of the sheath component in the core yarn x 1.2 If the coverage rate does not satisfy the above formula, it is necessary to increase the volume ratio of the sheath fibers in order to obtain the same coverage rate, and the core yarn cannot be used. The strength and durability of the woven or knitted fabric will decrease. As mentioned above, the core fiber bundle of the core yarn is a component mainly responsible for strength and durability, and therefore high-strength and high-durability fibers are used, among which synthetic fiber filament yarn (yarn consisting of long fibers) It is more preferable to use The short fibers constituting the sheath of the core yarn are slivers or rovings with an average fiber length of 38 mm or more, which are used in ordinary spinning, but they can be made by so-called tow spinning (referred to as parlock method or converter method) or worsted yarn spinning. The average fiber length is 70~
It is preferable to use a 300 mm sliver or roving, and if short fibers with an average fiber length of 70 to 300 mm are used as the sheath component, the sheath component will be more difficult to pull out than the core component, making it easier to pass through the process in post-processing (weaving, knitting, etc.) It is more preferable because the properties of the windbreak net are greatly improved and the amount of fuzzing during use of the windbreak net is extremely reduced. Volume ratio of sheath component in core yarn is 30%
If it is less than this, the windproof effect due to the short fibers will not be sufficient, and if the volume ratio is more than 90%, the strength and durability will be insufficient, which is not preferable. More preferably, the volume ratio is 45 to 80%. Synthetic fibers such as polyester fibers, nylon fibers, vinylon fibers, acrylic fibers, polyolefin fibers, aramid fibers, and polyarylate fibers are used as the core fiber bundles constituting the core yarn, and among them, polyester fibers, nylon fibers, and vinylon fibers are preferred. used for. The short fibers constituting the sheath include synthetic fibers such as polyester fibers, vinylon fibers, nylon fibers, acrylic fibers, and polyolefin fibers, and natural fibers such as cotton and linen, among which polyester fibers, vinylon fibers, and nylon fibers are preferred. used for. In particular, it is more suitable to use vinylon fiber as the sheath fiber in terms of high weather resistance, high abrasion resistance, ease of sealing process, and texture after sealing process. In other words, when synthetic fibers other than vinylon fibers are used for the sheath fibers, thermosetting resins (such as melamine-formalin resin, etc. ) and a thermoplastic resin (for example, PVA) to obtain sufficient hardness and sealing power. The use of a thermosetting resin is economically disadvantageous because it shortens the pot life of the filler and requires a large amount of heat for curing. On the other hand, the sealing of woven or knitted fabrics made of core yarns with vinylon fibers as sheath fibers is done using thermoplastic resins (e.g.
PVA) alone provides sufficient sealing power and hardness, making it economically advantageous. The single fiber denier of the core fibers constituting the core yarn is preferably 0.7 to 10 deniers, and the total denier of the fiber bundles constituting the core is preferably 75 to 1000 deniers from the viewpoint of tensile stress dispersibility and ease of production. Further, the fibers used in the sheath portion preferably have a single fiber denier of 1 to 15 deniers. In addition, in the core yarn used in the present invention,
It is necessary that the single fibers that make up the sheath are not substantially twisted together with other single fibers that make up the sheath. If it is bent, peeling from the core fiber is likely to occur, resulting in insufficient abrasion resistance and durability. To explain this in detail,
The movement of the single fibers in a twisted fiber bundle (yarn, etc.) is restricted by the twisting (rather, they are immobile), so they intertwine with the core fibers and improve entanglement. Therefore, since the core fibers and the sheath fibers constitute yarns separately as core fibers and sheath fibers, the sheath fibers are easy to move. If the sheath fibers are not substantially twisted together, the single fibers constituting the sheath fibers will intertwine with the core fibers, resulting in improved entanglement and a yarn with less peeling. Next, the present invention will be explained with reference to the drawings. Figure 1 shows the core yarn used in the present invention (coverage rate≒
100%) is a schematic representation of the cross section of 1,
2 indicates a single fiber of the fibers constituting the core fiber bundle; 3
indicates a single fiber of the fibers that make up the sheath. Figure 2 shows the core yarn used in the present invention (coverage rate≒
100%) 1, showing a state in which the surface of the core yarn 1 is covered with sheath fibers 3. FIG. 3 is a plan view of a mesh fabric for a windbreak net, in which 1 indicates a core yarn, and 4 indicates a portion sealed with resin at the intersection of the core yarns. The coverage of the core yarn is determined by the following method.
Wrap the thread parallel to the panel, take a photo of the surface using a universal projector or microscope, place a piece of transparent paper on top of the photo, and trace the outer circumference of the thread.
Also, fill in the details of the exposed part of the core fiber. Thereafter, a piece of paper is cut along the outer periphery of the yarn, its weight is measured, and its weight is determined as Wo.Then, the portion where the core fiber is exposed is cut and its weight is measured, and its weight is determined as W1. The coverage rate is determined by: Coverage rate (%) = Wo - W1/Wo x 100. However, the sample length of the core yarn to be traced is the length at which the twist of the yarn appears 100 times. That is, trial length (inch) = 100/number of twists (t/in). The volume ratio of the sheath fibers in the core yarn is the ratio of the volume of the sheath fibers to the volume of all the fibers constituting the core yarn of a certain length, and the volume can be calculated by dividing the weight by the density of each fiber. can get. Example A core yarn made of core fibers and sheath fibers shown in the table below.
No. 1, No. 2, and No. 3 were prototyped, and plain woven fabrics with a warp of 15 x 15 yarns/in were manufactured from each core yarn. This base fabric was sealed with PVA or PVA + melamine resin and tested as a windbreak net. Similar tests were conducted using vinylon spun yarn and polyester multifilament yarn as comparative examples. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案を構成するコアヤーンの一例の
断面図であり、1はコアヤーンを、2は芯繊維束
を構成するフイラメントヤーンの単繊維を、3は
鞘を構成する短繊維の単繊維を示す。 第2図は本考案を構成するコアヤーンの一例の
側面図であり、コアヤーンの表面が鞘を構成する
短繊維3によりカバーされていることを示す。 第3図は本考案によりコアヤーン1を用いた織
物よりなる防風網であり、4は経糸と緯糸の交点
で目止剤で目止めされた部分を示す。
FIG. 1 is a cross-sectional view of an example of the core yarn constituting the present invention, where 1 is the core yarn, 2 is the single filament of the filament yarn that makes up the core fiber bundle, and 3 is the single fiber of the short fiber that makes up the sheath. show. FIG. 2 is a side view of an example of the core yarn constituting the present invention, showing that the surface of the core yarn is covered with short fibers 3 constituting a sheath. FIG. 3 shows a windbreak net made of a woven fabric using the core yarn 1 according to the present invention, and 4 indicates a portion sealed with a sealing agent at the intersection of the warp and weft.

Claims (1)

【実用新案登録請求の範囲】 1 芯繊維束の回りを短繊維より成る鞘繊維で構
成し、鞘を構成する単繊維が鞘を構成する他の
単繊維と実質的に撚り合わされることなく該芯
繊維束を覆つているコアヤーンであつて、下記
式で示される被覆率(%)を満足するコアヤー
ンを用いて成る防風網。 被覆率≧コアヤーン中に占める鞘繊維の 体積比率(%)×1.2 2 芯繊維束を構成する繊維が合成繊維フイラメ
ント(長繊維)である実用新案登録請求の範囲
第1項に記載の防風網。 3 鞘を構成する繊維が70〜300mmの平均長を有
する合成繊維より成る短繊維である実用新案登
録請求の範囲第1項又は第2項に記載の防風
網。 4 コアヤーン中に占める鞘成分の体積比が30〜
90%である実用新案登録請求の範囲第1項〜第
3項のいずれかに記載の防風網。 5 コアヤーン中に占める鞘成分の体積比が45〜
80%である実用新案登録請求の範囲第1項〜第
3項のいずれかに記載の記載の防風網。 6 鞘を構成する短繊維がビニロン繊維である実
用新案登録請求の範囲第1項〜第5項のいずれか
に記載の防風網。
[Claims for Utility Model Registration] 1. A core fiber bundle is surrounded by sheath fibers made of short fibers, and the single fibers constituting the sheath are not substantially twisted with other single fibers constituting the sheath. A windbreak net made of a core yarn that covers a core fiber bundle and satisfies a coverage ratio (%) expressed by the following formula. Coverage ratio≧Volume ratio (%) of sheath fibers in the core yarn x 1.2 2. The windbreak net according to claim 1, wherein the fibers constituting the core fiber bundle are synthetic fiber filaments (long fibers). 3. The windbreak net according to claim 1 or 2, wherein the fibers constituting the sheath are short fibers made of synthetic fibers having an average length of 70 to 300 mm. 4 The volume ratio of the sheath component in the core yarn is 30~
The windbreak net according to any one of claims 1 to 3, which has a utility model registration of 90%. 5 The volume ratio of the sheath component to the core yarn is 45~
The windbreak net according to any one of claims 1 to 3, which has a utility model registration of 80%. 6. The windbreak net according to any one of claims 1 to 5, wherein the short fibers constituting the sheath are vinylon fibers.
JP13604587U 1987-09-04 1987-09-04 Expired JPH0343266Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13604587U JPH0343266Y2 (en) 1987-09-04 1987-09-04

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13604587U JPH0343266Y2 (en) 1987-09-04 1987-09-04

Publications (2)

Publication Number Publication Date
JPS6445180U JPS6445180U (en) 1989-03-17
JPH0343266Y2 true JPH0343266Y2 (en) 1991-09-10

Family

ID=31396192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13604587U Expired JPH0343266Y2 (en) 1987-09-04 1987-09-04

Country Status (1)

Country Link
JP (1) JPH0343266Y2 (en)

Also Published As

Publication number Publication date
JPS6445180U (en) 1989-03-17

Similar Documents

Publication Publication Date Title
Gandhi Woven textiles: Principles, technologies and applications
CN103806155B (en) A kind of manufacture method of high-performance composite yarn
CN216838363U (en) Lightweight wool yarn
CN213704776U (en) Sun-proof curtain fabric
JPH0343266Y2 (en)
CN210684056U (en) Tungsten filament yarn and textile thereof
CN208701299U (en) A kind of complex yarn of high mechanical strength
CN216338188U (en) High-strength plant fiber composite yarn capable of resisting bacteria and preventing insects
CN214992188U (en) Luminous six-grade bird eye cloth
CN213056250U (en) Anti-stitch knitted fabric
CN212375452U (en) Vortex spinning high-abrasion-resistance yarn
CN212138588U (en) Colored light conversion net
CN211848270U (en) High-elasticity air-coated yarn
CN210394693U (en) Bamboo fiber antibacterial fabric
JPH0519347Y2 (en)
CN208395364U (en) A kind of complex yarn
JPH0197229A (en) Extensible schenile yarn
CN219886272U (en) Radiation-proof fancy yarn
CN211947363U (en) High-toughness clothing line
CN217895851U (en) Shading sun-proof yarn
JPS63251022A (en) Agricultural cheese cloth
JP6075148B2 (en) Spun yarn and fabric using the same
CN219446380U (en) Composite knitted fabric
JPH0616937Y2 (en) Thread
CN218701878U (en) Novel knitted grey fabric