JPH0342550A - Fluorescent detector for high-performance liquid chromatography - Google Patents

Fluorescent detector for high-performance liquid chromatography

Info

Publication number
JPH0342550A
JPH0342550A JP17720489A JP17720489A JPH0342550A JP H0342550 A JPH0342550 A JP H0342550A JP 17720489 A JP17720489 A JP 17720489A JP 17720489 A JP17720489 A JP 17720489A JP H0342550 A JPH0342550 A JP H0342550A
Authority
JP
Japan
Prior art keywords
laser
titanium
sapphire
light
nonlinear optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17720489A
Other languages
Japanese (ja)
Inventor
Nobuhiro Kodama
展宏 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP17720489A priority Critical patent/JPH0342550A/en
Priority to US07/547,359 priority patent/US5037200A/en
Priority to GB9015163A priority patent/GB2234852A/en
Priority to DE4021955A priority patent/DE4021955A1/en
Publication of JPH0342550A publication Critical patent/JPH0342550A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To measure the fluorescent spectra of a sample to be measured in a selective and stable state by making combination use of a sapphire single crystal added with titanium and a nonlinear optical material to constitute a wavelength variable solid-state laser. CONSTITUTION:The titanium is added at weight % of a prescribed range to sapphire to form the titanium sapphire crystal and is stimulated by a flash lamp, the second harmonic wave of a YAG laser, dyestuff laser, argon laser, copper vapor laser, light emitting diode, or semiconductor laser. The laser oscillator 1 of variable wavelengths is constituted by making combination use of the nonlinear optical material. A sample cell 3 is irradiated via a half mirror 2 and the light is detected by a detector 8 via a polarizer 4, a polarization eliminating plate lens 5, a condenser lens 6, and a spectroscope 7. The wavelength variable width of the laser beam is then wide and the fluorescent spectra are measured with a high sensitivity without making fluorescent labelling for a material having the absorption spectra in this range.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高速液体クロマトグラフィー(以下HPLC
と略記する)用蛍光検出器に関する。更に詳しくは、レ
ーザー光の波長を連続的に変換可能なチタンサファイア
レーザーを励起光源に用いたIIPLC用蛍光検用益光
検出器。
Detailed Description of the Invention [Industrial Field of Application] The present invention is directed to high performance liquid chromatography (hereinafter referred to as HPLC).
(abbreviated as )). More specifically, a useful light detector for fluorescence analysis for IIPLC uses a titanium sapphire laser as an excitation light source, which can continuously convert the wavelength of laser light.

[従来の技術] +1PLC用蛍光検出器は、例えば医学、生化学の分野
に於いて、生理活性物質等の生体試料の高感度定量分析
、即ち検出限界をピコグラムからフェムトグラム又はピ
コモルからフェムトモルまで向上させることが考えられ
る検出器として広い応用が期待される機器である。
[Prior Art] +1 Fluorescence detector for PLC is used for high-sensitivity quantitative analysis of biological samples such as physiologically active substances in the fields of medicine and biochemistry, that is, improving the detection limit from picogram to femtogram or from picomole to femtomole. This device is expected to have a wide range of applications as a detector that can be used to

11PLc用蛍光検出器の励起光源には、種々のレーザ
ーが用いられている。例えばガスレーザーとしてはA「
、II c −N e銅蒸気レーザー、固体レーザーと
してはYAG、半導体レーザー、液体レーザーとしては
色素レーザー、更にXcクラン等々である。
Various lasers are used as excitation light sources for 11PLc fluorescence detectors. For example, as a gas laser, A
, II c-N e copper vapor laser, solid lasers such as YAG and semiconductor lasers, liquid lasers such as dye lasers, and Xc clans.

上記、A「、l1e−Ne、銅蒸気、YAG等のレーザ
ーは波長を連続的に変換して用いることができない。
The above-mentioned lasers such as A', l1e-Ne, copper vapor, YAG, etc. cannot be used by continuously converting the wavelength.

また、半導体レーザーでは数nm程度の範囲でしか変換
できず出力も低い。色素レーザーは可変域が50〜10
0tvの幅であるが、色素の光劣化により、レーザー発
振出力の変動を起こし更に寿命が短く保守も容易でない
Furthermore, semiconductor lasers can only convert within a range of several nanometers, and their output is low. Dye laser has a variable range of 50 to 10
Although the width is 0 tv, photodeterioration of the dye causes fluctuations in laser oscillation output, and furthermore, the lifespan is short and maintenance is not easy.

通常、試料の吸収スペクトルは上記のレーザーの波長と
異なっていることが多く、そのため、このようなレーザ
ーを装置に組み込んだ検出器を用いた場合、高感度の定
量分析(例えばピコグラムオーダー)を行うため蛍光ス
ペクトルを1I11定する際に、試料を化学修飾するこ
とによって蛍光標識する必要がある。しかも、例え蛍光
標識したとしても、フェムトオーダーの高感度分析は困
難である。
Normally, the absorption spectrum of a sample is often different from the wavelength of the laser mentioned above, so when using a detector that incorporates such a laser into the device, it is possible to perform highly sensitive quantitative analysis (e.g. picogram order). Therefore, when determining the fluorescence spectrum, it is necessary to fluorescently label the sample by chemically modifying it. Moreover, even if fluorescent labeling is used, high-sensitivity analysis on the femtoorder is difficult.

色素レーザーは可変地域が50〜100na+の幅であ
るが、色素の光劣化によりレーザー発振出力の変動を起
こす。そのため、蛍光スペクトルを容易にかつ常時安定
に測定することが困難である。
Although the dye laser has a variable range of 50 to 100 na+, the laser oscillation output varies due to photodegradation of the dye. Therefore, it is difficult to easily and always stably measure the fluorescence spectrum.

Xeランプの光を分光して用いた場合、約220〜10
00n■の広い範囲の光が得られるが、光の強度がレー
ザー光に比較して弱くこれを用いて高感度定量分析する
ことは困難である。
When using Xe lamp light, it is approximately 220 to 10
Although a wide range of light of 00 nm can be obtained, the intensity of the light is weaker than that of laser light, and it is difficult to perform high-sensitivity quantitative analysis using this light.

[問題を解決するための手段] 本発明者らは、上記した問題のないIIPLc用蛍光検
出器につき鋭意検討した結果、励起レーザー光の光源に
波長可変固体レーザーとして、レーザー媒質がチタンを
添加(異種元素としてドープ)したサファイアである、
いわゆるチタンサファイアレーザーを用いることにより
、前記問題点を解決できることを見い出だし本発明を完
成した。
[Means for Solving the Problems] As a result of intensive study on a fluorescence detector for IIPLc that does not have the above-mentioned problems, the present inventors used a wavelength tunable solid-state laser as the light source of the excitation laser light, and the laser medium added titanium ( Sapphire doped with a foreign element,
The inventors have discovered that the above problems can be solved by using a so-called titanium sapphire laser, and have completed the present invention.

即ち本発明の目的は、被測定試料の蛍光スペクトルを選
択的に且つ安定した状態で容易に測定が可能なHPLC
用蛍光検出器を堤供することである。
That is, an object of the present invention is to provide an HPLC method that can easily measure the fluorescence spectrum of a sample to be measured selectively and in a stable state.
The purpose is to provide a fluorescence detector for

以下本発明を更に詳述する。The present invention will be explained in more detail below.

本発明では、被測定試料に照射するレーザー光の光源に
、波長がある範囲内で連続的に変えることのできる波長
可変固体レーザーを用いることを特徴とするが、ここで
用いる固体レーザーは、チタンを添加したサファイアで
あるチタンサファイアレーザーである。ここでサファイ
アへのチタンの添加量は、0.O1原子%〜0.5原子
%の範囲であることが望ましい。チタン添加量が0.O
1原子%より少ないと増幅度が小さくなりレーザー発振
が困難となる。また同添加量が0.5原子%より多くな
ると発光領域に存在する残留吸収が極端に大きくなり、
レーザー発振効率が低下する。また、発光寿命が短くな
り、そのためフラッシュランプでのチタンサファイアの
光ボンピングが困難となり、更にランプの使用寿命も短
くなる。
The present invention is characterized in that a tunable solid-state laser whose wavelength can be changed continuously within a certain range is used as the light source of the laser light that irradiates the sample to be measured. This is a titanium sapphire laser, which is sapphire doped with. Here, the amount of titanium added to sapphire is 0. The O content is preferably in the range of 1 atomic % to 0.5 atomic %. The amount of titanium added is 0. O
When the amount is less than 1 atomic %, the amplification degree becomes small and laser oscillation becomes difficult. In addition, when the amount of addition exceeds 0.5 at%, the residual absorption existing in the light emitting region becomes extremely large.
Laser oscillation efficiency decreases. Also, the luminous lifetime is shortened, which makes it difficult to optically bomb titanium-sapphire in a flash lamp, and further shortens the service life of the lamp.

本発明では前記したチタンサファイアレーザーと非線形
光学材料を併用することで更に高精度の測定結果を得る
ことのできる装置とすることができる。
In the present invention, by using the above-described titanium sapphire laser in combination with a nonlinear optical material, it is possible to create an apparatus that can obtain even more accurate measurement results.

ここで用いる非線形光学材料は、光の波長を変換するこ
とができる例えばβ−硼酸バリウム、ニオブ酸リチウム
などの無機質結晶、メタニトロアニリンなどの有機質結
晶等である。
The nonlinear optical materials used here include, for example, inorganic crystals such as β-barium borate and lithium niobate, and organic crystals such as metanitroaniline, which can convert the wavelength of light.

次に本発明の構成を、本発明の一実施態様を例として説
明する。
Next, the configuration of the present invention will be explained by taking one embodiment of the present invention as an example.

図1は本発明の一実施態様であるIIPLC用蛍光検用
益光検出器示す概略図である。図中1はチタンサファイ
アレーザー発振器、2はハーフミラ−3は試料セル、4
は偏光子、5は偏光解消板ンズ、6は集光レンズ、7は
分光器、8は検出器(例えば光電子増倍管)である。
FIG. 1 is a schematic diagram showing a fluorescent light detector for IIPLC, which is an embodiment of the present invention. In the figure, 1 is a titanium sapphire laser oscillator, 2 is a half mirror, 3 is a sample cell, and 4
5 is a polarizer, 5 is a depolarizing lens, 6 is a condenser lens, 7 is a spectrometer, and 8 is a detector (for example, a photomultiplier tube).

本発明で用いる測定系の配置は、上記した配置に限定さ
れるものではなく、更に非線形光学材料はチタンサファ
イアレーザー発振器から試料にレーザー光を照射する間
に配置することができる。
The arrangement of the measurement system used in the present invention is not limited to the arrangement described above, and the nonlinear optical material can be arranged while the sample is irradiated with laser light from the titanium sapphire laser oscillator.

本発明で、レーザー媒質であるチタンサファイア結晶を
レーザー発振させるための励起源としては、例えばフラ
ッシュランプ、YAGレーザーの2倍波、色素レーザー
、アルゴンレーザー、銅蒸気レーザ、発光ダイオード、
半導体レーザーなどがある。
In the present invention, excitation sources for laser oscillation of the titanium sapphire crystal, which is a laser medium, include, for example, a flash lamp, a double wave of a YAG laser, a dye laser, an argon laser, a copper vapor laser, a light emitting diode,
Examples include semiconductor lasers.

また、波長のチューニングはプリズム、複屈折フィルタ
ー、回折格子、電気光学結晶、音響光学結晶などを用い
て行うことができる。
Further, wavelength tuning can be performed using a prism, a birefringence filter, a diffraction grating, an electro-optic crystal, an acousto-optic crystal, etc.

図2は、フラッシュランプ励起によるレーザー発振器の
一実施態様の構成を示す概略図である。
FIG. 2 is a schematic diagram showing the configuration of one embodiment of a flash lamp pumped laser oscillator.

図中9はチタンサファイアのロッド、l01llはフラ
ッシュランプ、12.13は反射ミラー、14はプリズ
ム、15はエタロン、1Gは楕円形の集光鏡である。
In the figure, 9 is a titanium-sapphire rod, 1011 is a flash lamp, 12.13 is a reflecting mirror, 14 is a prism, 15 is an etalon, and 1G is an elliptical condenser mirror.

集光鏡の光反射面は銀の蒸着膜で構成すると、サファイ
アの励起光の反射効率が良く好ましい。
It is preferable that the light reflecting surface of the condenser mirror be formed of a vapor-deposited silver film, since the reflection efficiency of the sapphire excitation light is good.

図3は、YACの第2高周波で励起するサファイアレー
ザー発振器の一実施態様の構成を示す概略図である。図
中17はYAGレーザ−,18は非線形光学材料の結晶
、19は集光レンズ、20.21は反射ミラー、22は
チタンサファイヤロッド、23は複屈折フィルターであ
る。
FIG. 3 is a schematic diagram showing the configuration of an embodiment of a sapphire laser oscillator excited with the second high frequency of YAC. In the figure, 17 is a YAG laser, 18 is a crystal of nonlinear optical material, 19 is a condenser lens, 20, 21 is a reflecting mirror, 22 is a titanium sapphire rod, and 23 is a birefringent filter.

上記の方法により、波長を約690〜11050nの間
で連続的に変換することができる。
The above method allows continuous wavelength conversion between approximately 690 and 11050 nm.

また、非線形光学材料を用い、第二高調波を発生させた
場合、約345〜525rvの範囲内で波長を変換する
ことができる。また、第三高調波を発生させた場合、約
230〜350nmの範囲内で波長を変換することがで
きる。
Further, when a second harmonic is generated using a nonlinear optical material, the wavelength can be converted within the range of approximately 345 to 525 rv. Furthermore, when the third harmonic is generated, the wavelength can be converted within the range of about 230 to 350 nm.

[発明の効果] 上記のように、本発明はレーザー光の波長可変幅が広い
ことから、この範囲に吸収スペクトルを持つ物質は、レ
ーザー光の波長を吸収励起波長に合わせることが容易で
、蛍光標識しなくとも高感度で蛍光スペクトルの測定が
可能である。その結果、測定感度が向上し、低下濃度の
試料も充分測定可能となる。
[Effects of the Invention] As described above, since the wavelength tunable range of laser light is wide in the present invention, substances with an absorption spectrum in this range can easily match the wavelength of the laser light to the absorption excitation wavelength, and can exhibit fluorescence. Fluorescence spectra can be measured with high sensitivity even without labeling. As a result, measurement sensitivity is improved, and even samples with reduced concentrations can be measured satisfactorily.

チタンサファイアレーザーは、連続発振、パルスのいず
れも可能で、ピコ秒パルスを利用すれば高時間分解の測
定が可能となる。
Ti:sapphire lasers are capable of both continuous wave and pulsed lasers, and the use of picosecond pulses enables high time-resolved measurements.

本発明は、チタンサファイアレーザーを用い励起光を連
続的に変換可能であるので、蛍光標識することなく披7
1111定試料からの蛍光スペクトルを高選択的に高感
度でまた高時間分躬能で測定可能だあり、また安定かつ
容易にハ1定することができる。
The present invention uses a titanium sapphire laser and can continuously convert excitation light, so it can be displayed without fluorescent labeling.
Fluorescence spectra from 1111 samples can be measured with high selectivity, high sensitivity, and high time resolution, and can be determined stably and easily.

さらに装置は簡易な構成で保守も簡便である。Furthermore, the device has a simple configuration and is easy to maintain.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、本発明のHPLC用蛍光検出器の一実施態様の
構成を示す概略図である。図中1はチタンサファイアレ
ーザー発振器、2はハーフミラ−3は試料セル、4は偏
光子、5は偏光解消板ンズ、6は集光レンズ、7は分光
器、8は検出器を夫々示す。 図2は、フラッシュランプ励起によるレーザー発振器の
一実施態様の構成を示す概略図である。 図中9はチタンサファイアのロッド、10.11はフラ
ッシュランプ、12.13は反射ミラー、14はプリズ
ム、15はエタロン、16は楕円形の集光鏡を夫々示す
。 図3は、YAGの第2高周波で励起するサファイアレー
ザー発振器の一実施態様の構成を示す概略図である。図
中17はYAGレーザ−,18は非線形光学材料の結晶
、19は集光レンズ、20.21は反射ミラー、22は
チタンサファイヤロッド、23は複屈折フィルターを夫
々示す。
FIG. 1 is a schematic diagram showing the configuration of one embodiment of the HPLC fluorescence detector of the present invention. In the figure, 1 is a titanium sapphire laser oscillator, 2 is a half mirror, 3 is a sample cell, 4 is a polarizer, 5 is a depolarizing lens, 6 is a condenser lens, 7 is a spectrometer, and 8 is a detector. FIG. 2 is a schematic diagram showing the configuration of one embodiment of a flash lamp pumped laser oscillator. In the figure, 9 is a titanium-sapphire rod, 10 and 11 are flash lamps, 12 and 13 are reflecting mirrors, 14 is a prism, 15 is an etalon, and 16 is an elliptical condenser mirror. FIG. 3 is a schematic diagram showing the configuration of an embodiment of a sapphire laser oscillator that excites YAG with a second high frequency. In the figure, 17 is a YAG laser, 18 is a crystal of a nonlinear optical material, 19 is a condenser lens, 20, 21 is a reflecting mirror, 22 is a titanium sapphire rod, and 23 is a birefringent filter.

Claims (1)

【特許請求の範囲】 1)チタンを添加したサファイアを波長可変固体レーザ
ーとして用いた高速液体クロマトグラフィー用蛍光検出
器 2)波長可変固体レーザーが、チタンを添加したサファ
イア単結晶と非線形光学材料とを併用したものである特
許請求の範囲第1項記載の検出器
[Claims] 1) Fluorescence detector for high performance liquid chromatography using titanium-doped sapphire as a wavelength tunable solid-state laser 2) A wavelength-tunable solid-state laser that uses a titanium-doped sapphire single crystal and a nonlinear optical material Detector according to claim 1, which is used in combination
JP17720489A 1989-07-11 1989-07-11 Fluorescent detector for high-performance liquid chromatography Pending JPH0342550A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP17720489A JPH0342550A (en) 1989-07-11 1989-07-11 Fluorescent detector for high-performance liquid chromatography
US07/547,359 US5037200A (en) 1989-07-11 1990-07-03 Laser-operated detector
GB9015163A GB2234852A (en) 1989-07-11 1990-07-10 Ti-doped sapphire laser-operated detector
DE4021955A DE4021955A1 (en) 1989-07-11 1990-07-10 LASER OPERATED DETECTING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17720489A JPH0342550A (en) 1989-07-11 1989-07-11 Fluorescent detector for high-performance liquid chromatography

Publications (1)

Publication Number Publication Date
JPH0342550A true JPH0342550A (en) 1991-02-22

Family

ID=16026996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17720489A Pending JPH0342550A (en) 1989-07-11 1989-07-11 Fluorescent detector for high-performance liquid chromatography

Country Status (1)

Country Link
JP (1) JPH0342550A (en)

Similar Documents

Publication Publication Date Title
US5037200A (en) Laser-operated detector
Ballew et al. A single‐sweep, nanosecond time resolution laser temperature‐jump apparatus
Maus et al. New picosecond laser system for easy tunability over the whole ultraviolet/visible/near infrared wavelength range based on flexible harmonic generation and optical parametric oscillation
Bykov et al. Steady-state and transient ultraviolet resonance Raman spectrometer for the 193–270 nm spectral region
Asher Ultraviolet raman spectrometry
Atkinson et al. Picosecond time-resolved fluorescence spectroscopy of K-590 in the bacteriorhodopsin photocycle
Balakrishnan et al. Tunable kHz deep ultraviolet (193–210 nm) laser for Raman application
US20060022145A1 (en) Solid state multi frequency fluorometric measurements system and method
Volkmer et al. Time-resolved nonlinear fluorescence spectroscopy using femtosecond multiphoton excitation and single-photon timing detection
EP0610036B1 (en) Method of spectrometry
Clays et al. Instrumental and analysis improvements in multifrequency phase fluorometry
Menzel et al. Picosecond‐resolution fluorescence lifetime measuring system with a cw laser and a radio
Steinberg [7] Circularly polarized luminescence
Spiro et al. Applications of ultraviolet resonance Raman spectroscopy to proteins
JPH0342550A (en) Fluorescent detector for high-performance liquid chromatography
JPH0367155A (en) Laser raman measuring instrument
JPH0342553A (en) Microscopic raman measuring instrument
Choi et al. Time-resolved anisotropy study on the excited-state intramolecular proton transfer of 1-hydroxyanthraquinone
JPH0342551A (en) Raman detector for high-performance liquid chromatography
JPH0342552A (en) Coherent counter stokes raman measuring instrument
Wang et al. One-, two-, and three-photon absorption induced fluorescence of a novel chromophore in chloroform solution
JP3311406B2 (en) Spectrometer
Lakowicz et al. Fluorescence intensity decays of cyclohexane and methylcyclohexane with two‐photon excitation from a high repetition rate frequency‐doubled dye laser
Anfinrud et al. Picosecond and femtosecond infrared spectroscopy with cw diode lasers
Agal’tsov et al. Photoluminescence of traces of aromatic compounds in aqueous solutions upon excitation by a repetitively pulsed laser