JPH0342539A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH0342539A
JPH0342539A JP17838589A JP17838589A JPH0342539A JP H0342539 A JPH0342539 A JP H0342539A JP 17838589 A JP17838589 A JP 17838589A JP 17838589 A JP17838589 A JP 17838589A JP H0342539 A JPH0342539 A JP H0342539A
Authority
JP
Japan
Prior art keywords
pressure
signal processing
diaphragm
strain
sensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17838589A
Other languages
Japanese (ja)
Inventor
Haruhiko Kawasaki
治彦 川崎
Mutsuo Sugiyama
杉山 六夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
Kayaba Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kayaba Industry Co Ltd filed Critical Kayaba Industry Co Ltd
Priority to JP17838589A priority Critical patent/JPH0342539A/en
Publication of JPH0342539A publication Critical patent/JPH0342539A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve the reliability by constituting plural pressure-sensitive parts different in measurement sensitivity and making one assembly of a signal processing part and the pressure-sensitive parts. CONSTITUTION:A diaphragm 3 is formed on a sensor main body 61, and the diaphragm 3 is deformed when gas to be measured is led from below. Strain resistors A, B, C, and D are formed on the diaphragm 3 by diffusion, and electrodes 4 formed in both ends of resistors A to D are connected to electrodes 6A to 6D by wirings 5A to 5D to constitute one pressure-sensitive part dependent upon bridge connection of strain resistors. Strain resistors A' to D' constitute another pressure-sensitive part in the same manner, and signals are inputted from these pressure-sensitive parts to a signal processing part to discriminate whether abnormality occurs or not, and the signal from the pressure-sensitive part free from abnormality is selected as the sensor output. Thus, output lead wires whose number per one pressure-sensitive part is 4 are collected into four required minimum lead wires in the signal processing part, and the signal processing part and pressure-sensitive parts are constituted into one assembly to shorten the time required for assembling and wiring, and the reliability is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は歪ゲージを用いた圧力センサに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a pressure sensor using a strain gauge.

(従米の技術) 拡散型半導体歪デージを用いた半環体圧カセンサがある
(昭和56年9月財団法人、日本科学技術振興財団・科
学技術館発行「日本の科学と技術」9−10月号第54
頁、第55頁参照)。
(Jubei's technology) There is a semicircular pressure sensor using a diffused semiconductor strain gauge (September 1980, Japan Science and Technology Foundation, Japan Science and Technology Museum, published by Japan Science and Technology, September-October) No. 54
(see page 55).

これを説明すると、第10図で示すように、シリコンダ
イアフラム23の表面層には、歪量に応じて抵抗値を変
化させる4つの歪抵抗体24〜27が拡散形成され、こ
れらの歪抵抗体24〜27を用いて第11図のようにホ
イーストンブリ7ノが組まれる。デージ本体21の裏面
は、PttJ12図のようにくり抜かれ、上方に位置す
る薄い部分がダイアフラム23となっている。
To explain this, as shown in FIG. 10, four strain resistors 24 to 27 whose resistance value changes depending on the amount of strain are diffused and formed in the surface layer of the silicon diaphragm 23. 24 to 27 are used to assemble seven wheystones as shown in FIG. The back surface of the main body 21 is hollowed out as shown in Fig. PttJ12, and the thin part located above serves as a diaphragm 23.

圧力が図示のように上方から加えられると、シリコンダ
イアフラム23が変形し、歪抵抗体24〜27に歪が生
じる。ここに、歪抵抗体24〜27にはピエゾ抵抗効果
により大きな抵抗変化が起こり、ブリッジからは圧力に
比例した出力が得られる。
When pressure is applied from above as shown, the silicon diaphragm 23 deforms, causing strain in the strain resistors 24-27. Here, a large resistance change occurs in the strain resistors 24 to 27 due to the piezoresistance effect, and an output proportional to the pressure is obtained from the bridge.

(発明が解決しようとする課題) ところで、このような圧力センサにおいては、過大な圧
力が加わると、歪抵抗体の開や電源電圧への接続線に接
続不良や断線を起こすことがあり、その場合には、誤っ
た信号が出力されることになるので、その信号を用いて
圧力制御(たとえば液圧装置システムの制御)を行って
いれば、暴走などのトラブルを売上させる原因となる。
(Problems to be Solved by the Invention) However, in such a pressure sensor, if excessive pressure is applied, the strain resistor may open, or the connection wire to the power supply voltage may become disconnected or disconnected. In this case, an erroneous signal will be output, and if that signal is used to control pressure (for example, to control a hydraulic device system), it may cause problems such as runaway.

このため、圧力を受けて変形するダイアプラム上に計測
感度の相違する複数の感圧部をNIt戊rることが考え
られる。一方の感圧部に異常が生じても、他方の感圧部
が正常である限り、圧力制御を継続させることができる
からである。
For this reason, it is conceivable to provide a plurality of pressure sensitive parts having different measurement sensitivities on a diaphragm that deforms under pressure. This is because even if an abnormality occurs in one pressure sensing part, pressure control can be continued as long as the other pressure sensing part is normal.

しかしながら、2つの感圧部を設けると、信号線の数が
倍の8本となることから、これら8本の信号線をそのま
ま圧力制御部の入力端子へと接続するのでは、誤って配
線する可能性が高く、かつ多くの配線を行うことは煩わ
しくもある。
However, if two pressure sensitive parts are provided, the number of signal lines will be doubled to 8, so connecting these 8 signal lines as they are to the input terminal of the pressure control part will result in incorrect wiring. This is highly possible, and it is also troublesome to perform a lot of wiring.

また、感圧部と圧力制御部とのあいだに信号処理部を設
けるにしても、そのままでは、大型化して扱いにくいこ
ともある。
Further, even if a signal processing section is provided between the pressure sensing section and the pressure control section, the signal processing section may become large and difficult to handle.

この発明はこのような従来の課題に着目してなされたも
ので、複数の感圧部からの信号を受ける信号処理部で、
信号線の数を必要最低限の数に集約するとともに、一体
小型化した信号処理部と複数の感圧部を1つのアセンブ
リーとして構成することにより、配線の煩わしさをなく
し、かつ取扱いも便利なようにする装置を提供すること
を目的とする。
This invention was made with attention to such conventional problems, and is a signal processing section that receives signals from a plurality of pressure sensitive sections.
By consolidating the number of signal lines to the minimum necessary number and configuring the miniaturized signal processing section and multiple pressure sensing sections as a single assembly, it eliminates the hassle of wiring and is convenient to handle. The purpose of the present invention is to provide a device that does the following.

(課題を解決するための手段) この発明は、圧力を受けて変形するダイアフラム上で変
形による歪量の相違する位置に複数の歪抵抗体を形成し
、各歪抵抗体を用いてブリンジ結線することにより複数
の感圧部をNII或するとともに、各感圧部からの信す
に異常があるがどうかを判定する手段と、直配複数の感
圧部からの信号を入力するとともに、前記異常判定手段
からのイ3つを選別信号として入力し、異常のなかった
側の感圧部からの信号をセンサ出力として選別する手段
と、前記複数の異常判定手段からの信号の論理和を出力
するf!−段とからなる信号処理部を設け、がつこの信
号処理部を一体小型化するとともに、この信号処理部お
よび前記複数の感圧部を1つのアセンブリーとして構成
した。
(Means for Solving the Problems) The present invention forms a plurality of strain resistors at positions where the amount of strain due to deformation is different on a diaphragm that deforms under pressure, and connects the strain resistors with a bringe connection using each strain resistor. In this way, a plurality of pressure sensing parts are connected to each other, and a means for determining whether there is an abnormality in the signals from each pressure sensing part, and a means for directly inputting signals from the plurality of pressure sensing parts and detecting the abnormality. A means for inputting the three signals A from the determination means as selection signals, and outputting the logical sum of the signals from the plurality of abnormality determination means and the means for selecting the signal from the pressure sensing section on the side where there is no abnormality as a sensor output. f! A signal processing section consisting of - stages is provided, the signal processing section is integrally miniaturized, and the signal processing section and the plurality of pressure sensing sections are configured as one assembly.

(作用) 複数の感圧部を有するセンサ本体がちのリード線はたと
えば8本もあったのが、信す処理部での信す処理にて、
信号処理部の出力端子の数が必要最低限の4本に抑えら
れる。ここに、圧力センサを組み立てるに際し、端子数
の減少に応じて配線の煩わしさが減り、かつ誤って配線
する可能性が少なくなる。
(Function) The sensor body, which has multiple pressure-sensitive parts, had as many as eight lead wires, for example, but when the sensor is processed by the sensor processing unit,
The number of output terminals of the signal processing section can be suppressed to the minimum necessary four. When assembling the pressure sensor, the complexity of wiring is reduced as the number of terminals is reduced, and the possibility of erroneous wiring is reduced.

また、複数の感圧部を有するセンサ本体が、体小型化さ
れた信号処理部とともに、ひとつのアセンブリー(集合
体)として構成されると、センサの取扱いが便利となる
Further, if the sensor main body having a plurality of pressure sensitive parts is configured as one assembly together with the miniaturized signal processing part, handling of the sensor becomes convenient.

(実施例) 第1図(よ一実施例の断面図である。取付金具71には
、内部にセンサ本体61を収納するだけのスペース72
と軸芯位置に貫通孔73が設けられ、この孔73にセン
サ本体61の圧力導入部62を嵌装することにより、セ
ンサ本体61が取付金具71に固定される。
(Embodiment) FIG. 1 (This is a sectional view of another embodiment. The mounting bracket 71 has a space 72 that is large enough to accommodate the sensor body 61 inside.
A through hole 73 is provided at the axial center position, and the sensor body 61 is fixed to the mounting bracket 71 by fitting the pressure introduction part 62 of the sensor body 61 into this hole 73.

センサ本体61には計測感度の相違する2つの感圧部3
1.32(17図参照)が構成される。第2図と第3図
にセンサ本体61の要部拡大図を示すと、第2図におい
てシリコンウェファや金属がら形成されるセンサ本体6
1の上部に71膜状のダイアフラム3が形成され、下方
より被測定がスが導かれると、ダイアプラム部分に変形
が生ずる。
The sensor main body 61 has two pressure sensitive parts 3 with different measurement sensitivities.
1.32 (see Figure 17) is constructed. FIGS. 2 and 3 show enlarged views of the main parts of the sensor body 61. In FIG. 2, the sensor body 6 formed of silicon wafer or metal
A 71 membrane-shaped diaphragm 3 is formed on the top of the diaphragm 1, and when a sample to be measured is introduced from below, deformation occurs in the diaphragm portion.

ダイアフラム3には、第3図で示すように、ダイアフラ
ム3のほぼ中心位置に2つの歪抵抗体A。
As shown in FIG. 3, the diaphragm 3 has two strain resistors A located approximately at the center of the diaphragm 3.

Bが、右下方の基部2の近くにほぼ90度離れて2つの
歪抵抗体C,Dがそれぞれ拡散形成され、これら4つの
歪抵抗体A−Dには、歪抵抗体の両端に形成した各電極
4を介して配線5A〜5Dと接続され、各配#i[5A
〜5Dはさらに電極6A〜6Dに接続される。
Two strain resistors C and D are each diffused and formed near the base 2 in the lower right corner at a distance of approximately 90 degrees, and these four strain resistors A to D have a strain resistor formed at both ends of the strain resistor. It is connected to the wirings 5A to 5D via each electrode 4, and each wiring #i[5A
~5D are further connected to electrodes 6A~6D.

これらの電極6 A = 6 Dはボンディングヮイア
7を介して第2図に示すリード#1IllA〜11Dに
接続される。最終的に4本のリード線11A〜11Dに
て得られる出力端子はjlA図で示すブリッジを構成す
るために必要となるものである。
These electrodes 6A=6D are connected to leads #1IllA-11D shown in FIG. 2 via bonding wires 7. The output terminals finally obtained by the four lead wires 11A to 11D are necessary to construct the bridge shown in the diagram jlA.

ここに、4つの歪抵抗体A−Dをブリツ結線縁可fIF
、にしたものから、第7図に示す1つの感圧部31が構
成される。
Here, the four strain resistors A-D are connected to the fIF
, one pressure sensitive section 31 shown in FIG. 7 is constructed.

同様にして、Pt53図で示すように、ダイアフラム3
の左上方に、4つの歪抵抗体A′〜D′が形成され、こ
れら歪抵抗体A′〜D′も配置16A〜16[)、リー
ド#X20A〜20D(図では2OAのみを示す)など
を介して、第5図で示すようにブリ・7ノ結線される。
Similarly, as shown in Pt53 diagram, diaphragm 3
Four strain resistors A' to D' are formed at the upper left of the screen, and these strain resistors A' to D' are also arranged 16A to 16[), leads #X20A to 20D (only 2OA is shown in the figure), etc. As shown in FIG.

ここでも、4つの歪抵抗体A′D′をブリッジ結線可能
にしたものから、上記感圧部31とは別の感圧部32が
構成される。
Here, too, a pressure sensitive section 32 separate from the pressure sensitive section 31 is constructed of four strain resistors A'D' which can be connected in a bridge manner.

ただし、歪抵抗体A’、B’はこれらに対応する上記歪
抵抗体A、Bと相違して、ダイアフラム3の中心より半
径方向外側に少しずらした位置に形成される。これは、
最も歪量の大きな中心位置から少し外れた位置に歪抵抗
体A’、B’を形成することで、過大な圧力により、た
とえ歪抵抗体A。
However, unlike the corresponding strain resistors A and B, the strain resistors A' and B' are formed at positions slightly shifted outward in the radial direction from the center of the diaphragm 3. this is,
By forming the strain resistors A' and B' at positions slightly away from the center position where the amount of strain is greatest, even if the strain resistor A is damaged due to excessive pressure.

Bのほうが破損されることになっても、歪抵抗体A’、
B’のほうは破損されないで済むようにするためである
。第6図に歪分布を示す(横軸はダイアフラム3の中心
から半径方向外側に離れるy[離を表す)。
Even if B is damaged, the strain resistor A',
This is to prevent B' from being damaged. The strain distribution is shown in FIG. 6 (the horizontal axis represents the distance y away from the center of the diaphragm 3 in the radial direction).

r51図に戻り、1つの感圧部当たり4本のリード線は
それぞれ1つにまとめられ、信号部l!!!部65の入
力端子に接続される。信号処理部65では、出力端子の
数が最低限必要な数にまで集的される。
Returning to figure r51, the four lead wires per pressure sensing section are each combined into one, and the signal section l! ! ! It is connected to the input terminal of section 65. In the signal processing section 65, the number of output terminals is concentrated to the minimum required number.

ここでは、感圧1931.32に断線や故障などの異常
が生じたかどうかの情報を取り出すための端子66Aと
、いずれかの感圧部31.32に異常が生じた場合に、
異常の生じていない側の信号が取り出される端子66B
と、さらに第4図と第5図で示したブリッジを駆動する
ための電源端子66C,アース端子6(5Dの合計4つ
である。
Here, the terminal 66A is used to retrieve information on whether an abnormality such as a disconnection or failure has occurred in the pressure sensing section 1931.32, and the
Terminal 66B from which the signal on the side with no abnormality is taken out
Furthermore, there are a total of four power terminals 66C and ground terminals 6 (5D) for driving the bridge shown in FIGS. 4 and 5.

これら各出力端子66A〜66Dは、信G−mを介して
コネクタ81の各端子82A〜82Dに接続される。信
号処理部65とコネクタ81とはモールド材75にて円
筒状部材63内に固定される。
Each of these output terminals 66A to 66D is connected to each terminal 82A to 82D of the connector 81 via a signal G-m. The signal processing section 65 and the connector 81 are fixed within the cylindrical member 63 with a molding material 75.

また、信号処理部65は、高集積化のためのプロセスI
支術(たとえば微細パターン形成、エツチング、イオン
注入、絶縁膜形成、配線の各技術)を用り・て一体かつ
小型化(たとえば))イブリッドIC化、ICチップ化
)される。
Further, the signal processing unit 65 includes a process I for high integration.
By using techniques such as fine pattern formation, etching, ion implantation, insulating film formation, and wiring techniques, it is integrated and miniaturized (for example, hybrid IC, IC chip).

上記信号処理部65の具体的回路を第7図に示すと、増
幅・整形回路33.34で感圧ff1S31.32にて
センシングされた圧力値(微小信号)が増幅されるとと
もに、圧力値と電圧値との対応やオフセット調整などが
行なわれる。
A specific circuit of the signal processing unit 65 is shown in FIG. 7. In the amplification/shaping circuit 33.34, the pressure value (minimal signal) sensed by the pressure sensitive ff1S31.32 is amplified, and the pressure value and Correspondence with voltage values and offset adjustment are performed.

コンパレータ(j%常判定手段)35.36では、増幅
・整形回路33.34からの電圧値と所定値を比較する
ことにより、圧力検出値が予め定められた正常な圧力範
囲外にあるかどうかが判定され、正常な圧力範囲外にあ
れば、対応するセンサ感圧部31.32に異常ありとの
イ言号(たとえば/)イレベルの信号)が出力される。
The comparator (j% normality determination means) 35.36 compares the voltage value from the amplification/shaping circuit 33.34 with a predetermined value to determine whether the detected pressure value is outside the predetermined normal pressure range. is determined, and if the pressure is outside the normal pressure range, a signal indicating that there is an abnormality is output to the corresponding sensor pressure sensing section 31, 32 (for example, a signal of /).

たとえば、過大な圧力がダイアフラム3に加わることに
より、歪量の大きな位置に形成された歪抵抗体A−Dの
ほうに、かりにm線や故障を生じたとすれば、これがコ
ンパレータ35にて判定され、コンパレータ35からは
異常ありの信号が出力される。一方、歪抵抗体A’ 〜
D′のほうには断線などがないので、コンパレータ36
からは異常なしとの信号が出力される。
For example, if excessive pressure is applied to the diaphragm 3 and the strain resistor A-D formed at a position with a large amount of strain is caused to have an m-ray or a failure, the comparator 35 will determine that this is the case. , the comparator 35 outputs a signal indicating that there is an abnormality. On the other hand, strain resistor A' ~
Since there is no disconnection on D' side, comparator 36
will output a signal indicating that there is no abnormality.

信号選別回路(信号選別手段)37では増幅・整形回路
33.34からの2つの出力電圧を入力するとともに、
コンパレータ35,3(3からの信号を選別信号として
受けており、コンパレータ35から異常ありの信号が出
力されると、異常があったほうの増幅・整形回路33か
らの出力電圧を遮断し、残りのほうの増幅・整形回路3
4からの出力電圧をセンサ出力として送り出す。つまり
、片方の感圧部31が破損、故障しても、破損等のしな
かったもう片)jの感圧部32からのセンサ出力が選別
される。なお、いずれの感圧部31.32にも異常がな
い場合にどちらの感圧部からの出力電圧を選別するかは
予め定めておく。
The signal selection circuit (signal selection means) 37 inputs the two output voltages from the amplification/shaping circuits 33 and 34, and
Comparators 35, 3 (3) receive signals from 3 as selection signals, and when a signal indicating an abnormality is output from the comparator 35, the output voltage from the amplification/shaping circuit 33 with the abnormality is cut off, and the remaining Amplification/shaping circuit 3
The output voltage from 4 is sent out as a sensor output. That is, even if one pressure sensing section 31 is damaged or malfunctions, the sensor output from the other pressure sensing section 32 that is not damaged or the like is selected. Note that when there is no abnormality in any of the pressure sensing sections 31, 32, it is determined in advance which pressure sensing section the output voltage is to be selected.

また、コンパレータ35,30からの2つの信弓゛は論
理和ブロック(論理和出力手段)38に入力されてまと
められる。
Further, the two signals from the comparators 35 and 30 are input to a logical sum block (logical sum output means) 38 and are combined.

ここで、この例の作用を説明すると、第1図において、
複数の感圧部31.32を有するセンサ本体61からの
リード線11A〜IID、20A〜20Dは合計8本も
あったのが、信号処理部65での信す処理にて、出力端
子66A〜66Dの数が必要最低限の4つに抑えられる
。この結果、第1図に示した圧力センサを組み立てるに
あたっては、端子数の減少に応じて配線の煩わしさが減
り、配線に要する時間が短くて済む。かつ、端子数の減
少に伴い、誤って配線する可能性が少なくなり、センサ
の信頼性が増す。
Here, to explain the effect of this example, in Fig. 1,
There were a total of eight lead wires 11A to IID and 20A to 20D from the sensor main body 61 having a plurality of pressure sensitive parts 31 and 32, but through the signal processing in the signal processing part 65, the output terminals 66A to 66 The number of 66Ds can be suppressed to the minimum necessary four. As a result, when assembling the pressure sensor shown in FIG. 1, the complexity of wiring is reduced as the number of terminals is reduced, and the time required for wiring can be shortened. Moreover, with the reduction in the number of terminals, the possibility of incorrect wiring is reduced, increasing the reliability of the sensor.

また、センサ本体61が、一体重型化された信号処理部
65とともに、ひとつのアセンブリー(集合体)として
構成されると、センサの取扱いが便利となる。たとえば
、第1図のように、測定箇所にOりング76を介して取
付金具71をねじ込み、後はコネクタ81への4端子プ
ラグ(図示しない)のつなぎこみを行うだけで、圧力セ
ンサの8!器への装着が完了する。
Furthermore, if the sensor main body 61 is configured as one assembly together with the integrated signal processing section 65, handling of the sensor becomes convenient. For example, as shown in FIG. 1, all you have to do is screw the mounting bracket 71 into the measurement location via the O-ring 76, and then connect the 4-terminal plug (not shown) to the connector 81. ! Installation on the device is completed.

ttS8図と第9図は他の実施例である。この例では、
第8図で示すように、右に設けられるダイアフラム25
の厚さを左に設けられるダイアプラム26の厚さよりも
厚く形成し、第9図のように、この厚いほうのダイアフ
ラム25に歪抵抗体A′〜D′を拡散形成したものであ
る。
ttS8 and FIG. 9 are other embodiments. In this example,
As shown in FIG. 8, the diaphragm 25 provided on the right
The thickness of the diaphragm 25 is thicker than that of the diaphragm 26 provided on the left, and the strain resistors A' to D' are diffused into the thicker diaphragm 25, as shown in FIG.

(発明の効果) この発明では、力を受けて変形するダイアプラム上に計
測感度の相違する複数の感圧部を構成する一方で、複数
の感圧部からの信号を受ける信号処理部において信号線
の数を必要最低限の数に集約するとともに、一体重型化
した信号処理部と複数の感圧部を1つのアセンブリーと
して構成するため、センサの信頼性が増すとともに、取
扱いが便利となる。
(Effects of the Invention) In the present invention, a plurality of pressure sensitive parts having different measurement sensitivities are configured on a diaphragm that deforms in response to force, and a signal line is connected to a signal processing part that receives signals from the plurality of pressure sensitive parts. In addition to consolidating the number of sensors to the minimum necessary number, the integrated signal processing section and the plurality of pressure sensing sections are configured as a single assembly, which increases the reliability of the sensor and makes handling convenient.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例の断面図、第2図と第3図はそれぞれ
前記実施例のセンサ本体の要部拡大断面図と拡大平面図
、第4図と第5図はそれぞれこの実施例のブリフジを示
す回路図、tjrJG図はこの実施例の歪分布を示す特
性図、第7図はこの実施例の信号処理回路のブロック図
、第8図と第9図はそれぞれ他の実施例のセンサ本体の
断面図と平面図である。 第10図は従来例のセンサ本体の平面図、第11図は従
来例のブリッジを示す回路図、第12図は従来例のセン
サ本体の断面図である。 3・・・ダイアフラム、5A〜5D・・・配線、6A−
6D・・・電極、IIA〜IID・・・リード線、16
A〜1f3D・・・配線、17A〜17D・・・電極、
A−D・・・歪抵抗体、A′〜D′・・・歪抵抗体、2
5.26・・・ダイアプラム、31.32・・・感圧部
、33.34・・・増幅・整形回路、35.36・・・
コンパレータ(異常tq定手段)、37・・・信号選別
回路(信号選別手段)、38・・・論理和ブロンク(論
理和出力手段)、61・・・センサ本体、65・・・信
号処理部、G6A〜66D・・・出力端子、71・・・
取付金具、81・・・コネクタ。
FIG. 1 is a sectional view of one embodiment, FIGS. 2 and 3 are an enlarged sectional view and an enlarged plan view of the main part of the sensor body of the above embodiment, respectively, and FIGS. 4 and 5 are respectively of this embodiment. The circuit diagram showing the bridge, the tjrJG diagram is a characteristic diagram showing the distortion distribution of this embodiment, FIG. 7 is a block diagram of the signal processing circuit of this embodiment, and FIGS. 8 and 9 are sensors of other embodiments. FIG. 2 is a sectional view and a plan view of the main body. FIG. 10 is a plan view of a conventional sensor main body, FIG. 11 is a circuit diagram showing a conventional bridge, and FIG. 12 is a sectional view of a conventional sensor main body. 3...Diaphragm, 5A-5D...Wiring, 6A-
6D...electrode, IIA-IID...lead wire, 16
A~1f3D... Wiring, 17A~17D... Electrode,
A-D...Strain resistor, A'-D'...Strain resistor, 2
5.26... Diaphragm, 31.32... Pressure sensitive section, 33.34... Amplification/shaping circuit, 35.36...
Comparator (abnormal tq determining means), 37... Signal selection circuit (signal selection means), 38... OR bronch (OR output means), 61... Sensor body, 65... Signal processing section, G6A~66D...output terminal, 71...
Mounting bracket, 81...connector.

Claims (1)

【特許請求の範囲】[Claims] 圧力を受けて変形するダイアフラム上で変形による歪量
の相違する位置に複数の歪抵抗体を形成し、各歪抵抗体
を用いてブリッジ結線することにより複数の感圧部を構
成するとともに、各感圧部からの信号に異常があるかど
うかを判定する手段と、前記複数の感圧部からの信号を
入力するとともに、前記判定手段からの信号を選別信号
として入力し、異常のなかった側の感圧部からの信号を
センサ出力として選別する手段と、前記複数の判定手段
からの信号の論理和を出力する手段とからなる信号処理
部を設け、かつこの信号処理部を一体小型化するととも
に、この信号処理部および前記複数の感圧部を1つのア
センブリーとして構成したことを特徴とする圧力センサ
A plurality of strain resistors are formed at positions with different amounts of strain due to deformation on a diaphragm that deforms under pressure, and each strain resistor is connected to a bridge to form a plurality of pressure sensitive parts. means for determining whether or not there is an abnormality in the signals from the pressure-sensing parts; and a side for inputting the signals from the plurality of pressure-sensing parts and inputting the signals from the determining means as a selection signal; A signal processing section including means for selecting signals from the pressure sensitive section as sensor outputs and means for outputting a logical sum of the signals from the plurality of determination means is provided, and this signal processing section is integrated and miniaturized. Additionally, a pressure sensor characterized in that the signal processing section and the plurality of pressure sensing sections are configured as one assembly.
JP17838589A 1989-07-11 1989-07-11 Pressure sensor Pending JPH0342539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17838589A JPH0342539A (en) 1989-07-11 1989-07-11 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17838589A JPH0342539A (en) 1989-07-11 1989-07-11 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH0342539A true JPH0342539A (en) 1991-02-22

Family

ID=16047568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17838589A Pending JPH0342539A (en) 1989-07-11 1989-07-11 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH0342539A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005464A1 (en) * 1995-07-28 1997-02-13 Robert Bosch Gmbh Testable membrane sensor with two full bridges
JP2001304998A (en) * 2000-04-27 2001-10-31 Denso Corp Pressure sensor
EP1087219A3 (en) * 1999-09-24 2002-03-13 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP2002243567A (en) * 2001-02-22 2002-08-28 Minebea Co Ltd Semiconductor type pressure sensor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005464A1 (en) * 1995-07-28 1997-02-13 Robert Bosch Gmbh Testable membrane sensor with two full bridges
EP1087219A3 (en) * 1999-09-24 2002-03-13 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
US6422088B1 (en) 1999-09-24 2002-07-23 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
EP1666862A3 (en) * 1999-09-24 2006-12-20 Denso Corporation Sensor failure or abnormality detecting system incorporated in a physical or dynamic quantity detecting apparatus
JP2001304998A (en) * 2000-04-27 2001-10-31 Denso Corp Pressure sensor
JP2002243567A (en) * 2001-02-22 2002-08-28 Minebea Co Ltd Semiconductor type pressure sensor

Similar Documents

Publication Publication Date Title
US6658948B2 (en) Semiconductor dynamic quantity sensor
EP1571434B1 (en) Strain detector and pressure sensor
EP2458359A1 (en) Semiconductor pressure sensor, pressure sensor device, electronic apparatus, and method for manufacturing semiconductor pressure sensor
US20040150385A1 (en) Integrated galvanomagnetic sensor array system
EP3581952B1 (en) Sensor saturation fault detection
US5460044A (en) Semiconductor acceleration detecting apparatus
JP2001272293A (en) Pressure sensor
JP4438222B2 (en) Physical quantity detection device
JPH10170370A (en) Pressure sensor
JP3274034B2 (en) Semiconductor acceleration detector
EP0266681A2 (en) Method of adjusting bridge circuit of semiconductor pressure sensor
WO2020175155A1 (en) Pressure sensor
KR102011005B1 (en) Integrated pressure and water sensor
JPH0342539A (en) Pressure sensor
JP4379993B2 (en) Pressure sensor
WO1996022515A1 (en) Apparatus for detection of a diaphragm rupture in a pressure sensor
JP2003214967A (en) Bridge circuit type sensor element
US6938501B2 (en) Semiconductor dynamic quantity sensor
JP4517490B2 (en) Sensor device
JP2895262B2 (en) Composite sensor
KR102382142B1 (en) Pressure Sensor Package Using One Mold Package
JPH0337503A (en) Strain gage
JPH0337537A (en) Pressure sensor
JP4352555B2 (en) Pressure sensor
JPH09196967A (en) Semiconductor dynamic-quantity sensor