JPH0341525B2 - - Google Patents

Info

Publication number
JPH0341525B2
JPH0341525B2 JP23604387A JP23604387A JPH0341525B2 JP H0341525 B2 JPH0341525 B2 JP H0341525B2 JP 23604387 A JP23604387 A JP 23604387A JP 23604387 A JP23604387 A JP 23604387A JP H0341525 B2 JPH0341525 B2 JP H0341525B2
Authority
JP
Japan
Prior art keywords
molten steel
temperature
low
converter
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23604387A
Other languages
Japanese (ja)
Other versions
JPS6479316A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23604387A priority Critical patent/JPS6479316A/en
Publication of JPS6479316A publication Critical patent/JPS6479316A/en
Publication of JPH0341525B2 publication Critical patent/JPH0341525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は低級屑鉄の多量使用時における低P、
低S鋼の溶製方法に関する。 (従来の技術) 近年、鉄鋼業界においては、構造物の解体屑等
の老廃屑の増加に伴ない、この再利用のメリツト
を享受すべく鉄屑の多量使用技術の開発が急がれ
ている。 しかしながら該老廃屑は成分の不明な、低級屑
が主体であり、そのため転炉等の溶製炉で溶解し
た場合しばしば高P、高Sとなり所望の鋼成分に
合致せず、従つて低級な製品としたり、或いは再
溶解をすることにより、他の溶鋼と混合して有害
なP,Sなどを希釈して再溶製をする方法が一般
にとられている。 又、転炉に屑鉄と溶銑を装入して精錬するにあ
たり、鉄屑からのP,Sのピツクアツプを考慮し
て、例えば特開昭52−127420号公報に示すように
低Si含有溶銑にソーダ灰を添加して予め溶銑中の
P,Sを除去し、結果として転炉に装入される鉄
原料のPおよびSの量を低減させておく方法もあ
るが、前述の如く屑鉄の成分を精錬前に完全に把
握することは不可能であるので、結果として過剰
処理となり溶製コストが高くなる。 前述の転炉での再溶製法にしても、再溶製のた
めの費用が必要であり、又後工程の生産を停止す
る等のため生産能力に及ぼす影響は大であるとい
う問題がある。 (発明が解決しようとする問題点) これ等の方法ではいかに高純化精錬を行なつて
もP,Sの除去には限界があり著しい経済的損失
も伴う。また、転炉より出鋼した取鍋内溶鋼の
P,S成分が目標より高めに外れた場合には、取
鍋内での安価な脱P、脱S方法は無く、転炉に返
戻した後、再吹錬する方法が一般に採用されるの
で莫大な損失を伴なう等の欠点を有していた。 本発明は前記した問題点を解決すべく極めて効
率的な溶鋼の脱P、脱S溶製法を提供しようとす
るものである。 (問題点を解決するための手段) 以下本発明による脱P、脱S溶鋼の精錬法につ
いて述べる。 本発明は溶鋼の精錬に際して転炉の潜在機能の
積極的な活用と取鍋の二次精錬炉の潜在機能の併
合活用により著しく優れた溶鋼精錬を実現したも
ので、転炉における低温吹錬と取鍋のAl添加吹
酸昇熱と該取鍋の脱硫精錬とを時系列的に、且つ
有機的に結合することにある。 本発明は転炉内溶鋼の吹錬終り(以下吹止めと
称する)温度を極めて低温とすることにより、転
炉での脱P反応を促進させ低P溶鋼を溶製するこ
とができるという知見に基づくものである。即ち
精錬炉内での脱P反応は式 log(%P2O5)/〔%P〕2×(%T.Fe)=A/T+B
で表わされ る。 ここで(%P2O5)はスラグ中のP2O5濃度、(%
T.Fe)はスラグ中のFeoOnの濃度であり〔%P〕
は溶鋼中のP濃度を表わしている。又、Tは溶鋼
の絶対温度である。 上式から明らかな様に精錬炉内の溶鋼の吹止温
度を低目にすることにより溶鋼中〔P〕濃度は低
くなり、その割合は低温になる程大である。 溶鋼中〔P〕濃度は夫々の溶製炉の脱P能、即
ち上式右辺の係数A,Bの値により決定される
が、本発明に用いて転炉では吹止温度を1650℃か
ら1600℃に下げて出鋼時の温度降下を考慮し取鍋
温度を(LL)+10〜40℃としたことにより溶鋼中
〔P〕濃度は石灰、ドロマイト等の造滓剤を同量
にしたにもかかわらず、0.022%から0.012%に下
つた。 このように低温でかつ低P、高Sで出鋼した取
鍋内溶鋼は次に脱Pするために昇温が必要であ
る。 本発明の如く取鍋内溶鋼を昇温した後脱Sを積
極的に実施する場合の取鍋内溶鋼昇熱装置の具備
条件を実操業上と治金反応から考察した結果、溶
鋼の短時間高速昇温が可能であることが製鋼作業
上最も重要であり、かつ溶鋼の昇温後に行なわれ
る脱S効率を向上させるAl2O3の生成が速やかに
起つていることが重要であることを知見し得た。 取鍋内溶鋼の昇熱方法としては、溶鋼内に浸漬
した浸漬管の中にAlを連続的に投入すると同時
に上方より酸素を吹付けてAlを酸化燃焼させ溶
鋼を昇温する方法(以下CAS−OBと称する)が
前記の条件を十分達成し得ることも判明した。こ
のCAS−OB法はAlを酸素によつて酸化発熱させ
て溶鋼を昇熱するためAlと酸素の量を増加する
ことにより簡単に高い昇温速度が得られ、通常15
〜20℃/minの昇温を行つている。 一方、溶鋼の昇温後の脱SについてもSの活性
を高めるAl2O3の生成が重要である。即ちCAS−
OB法は大気圧下でAlを酸化させるため、Alが優
先的に酸化し効率的にAl2O3を生成する。 このような状態において該溶鋼内に例えば生石
灰、カルシウムカーバイド、ソーダ灰かあるいは
これ等にCaF2等の助剤を配合した脱硫剤を添加
するとともに、鍋底部から不活性ガスを導入し該
溶鋼と脱硫剤を撹拌処理する。この反応は高
Al2O3含有スラグが存在する浸漬管直下において
可及的速やかに進行し、極めて高い脱硫率が達成
される。また、この場合、脱S剤を溶鋼中に浸漬
ランスで吹込む方法が浸漬管内に脱S剤を投入す
るよりも脱S効率が高く、より好ましい。 この様に低級屑を転炉で使用する場合、溶製後
の溶鋼成分のP,Sが高めに外れることが度々で
あるが、転炉での低温吹止めによる脱P量の増
加、その後の取鍋溶鋼のCAS−OBによる短時間
高速昇温、次いで浸漬管内あるいはランスによる
脱S剤の吹込による脱Sにより極めて効率的な鋼
の溶製が可能である。 また、前述の取鍋内溶鋼温度が液相温度(LL)
に対し10℃より低いとAl添加による吹酸昇熱
以前に凝結し大幅な歩留低下及び流動性不良に伴
う反応低下を生ずる。一方40℃よりも高くなる
と転炉の低温精錬が不十分となる低P鋼が得られ
ないとともに、転炉の冷材である低級スタラツ
プ、型銑等の使用が制限される。さらにまた、取
鍋内溶鋼温度を(LL)+10〜40℃とした際の吹止
温度は出鋼時の温度降下を上積した温度となり、
通常30〜60℃加算した超低温吹止温度となり、こ
の温度は通常吹止温度よりも少なくとも40〜50℃
低目となる。 なお、低級屑に限ることなくP,Sの高い低級
銑を用いる場合も同等の効果が得られる。 (実施例) 以下に本発明による低P、低S鋼溶製の一実施
例について述べる。 第1図は本発明の溶製プロセスのフロー概念図
である。 先づ転炉で吹錬するに先立ち、多量の屑鉄と溶
銑を転炉内に装入する。その後上方のランスより
酸素を吹込むことにより溶解精錬される。この際
転炉内には造滓剤を投入し、溶鋼の脱S、脱Pを
行なう。 この時転炉の吹止め温度を取鍋内溶鋼温度が溶
鋼の凝固温度上10〜40℃になるように操業するこ
とが脱P能を高めることに極めて重要である。即
ち前述の如く、脱P能は1/Tに比例するので溶
鋼温度が低い程反比例的に急激に溶鋼Pが低くな
ることを表わしている。 このようにして操業した本発明と従来法との比
較を表1に示す。
(Industrial Application Field) The present invention provides low P when using a large amount of low grade scrap iron,
This invention relates to a method for producing low S steel. (Conventional technology) In recent years, in the steel industry, as the amount of old waste such as demolition waste of structures has increased, there has been an urgent need to develop technology for using large amounts of iron scrap in order to enjoy the benefits of reusing this scrap. . However, this old waste is mainly low-grade waste whose composition is unknown, and therefore, when melted in a smelting furnace such as a converter, it often becomes high P and high S, which does not match the desired steel composition, resulting in a low-grade product. Generally, a method is used in which the harmful P, S, etc. are diluted by mixing with other molten steel, or by remelting. In addition, when charging scrap iron and hot metal into a converter for refining, taking into consideration the pick-up of P and S from iron scrap, for example, as shown in JP-A-52-127420, soda is added to low-Si content hot metal. There is a method of adding ash to remove P and S in the hot metal in advance, thereby reducing the amount of P and S in the iron raw material charged to the converter, but as mentioned above, it is possible to reduce the amount of P and S in the iron raw material charged to the converter. Since it is impossible to fully understand the process before refining, this results in overtreatment and high melting costs. Even with the above-mentioned remelting method using a converter, there are problems in that the cost for remelting is required and the production capacity is significantly affected due to the need to stop production in subsequent steps. (Problems to be Solved by the Invention) In these methods, no matter how highly purified the material is, there is a limit to the removal of P and S, and significant economic losses are also involved. In addition, if the P and S components of the molten steel in the ladle tapped from the converter are higher than the target, there is no inexpensive method for removing P and S in the ladle, and after returning the steel to the converter, However, since the method of reblowing is generally adopted, it has disadvantages such as huge losses. The present invention aims to solve the above-mentioned problems by providing an extremely efficient process for removing P and S from molten steel. (Means for Solving the Problems) A method for refining P-free and S-free molten steel according to the present invention will be described below. The present invention achieves extremely superior molten steel refining by actively utilizing the latent functions of the converter and by combining the latent functions of the secondary refining furnace of the ladle. The objective is to organically combine the Al-added blown acid heating in the ladle and the desulfurization refining in the ladle in a chronological manner. The present invention is based on the knowledge that by setting the blowing end (hereinafter referred to as the blow stop) temperature of molten steel in the converter to an extremely low temperature, the deP reaction in the converter can be promoted and low-P molten steel can be produced. It is based on In other words, the dephosphorization reaction in the smelting furnace is expressed by the formula log(%P 2 O 5 )/[%P] 2 × (%T.Fe)=A/T+B
It is expressed as Here, (%P 2 O 5 ) is the concentration of P 2 O 5 in the slag, (%
T.Fe) is the concentration of Fe o On in the slag [%P]
represents the P concentration in molten steel. Further, T is the absolute temperature of molten steel. As is clear from the above equation, by lowering the blow-off temperature of the molten steel in the refining furnace, the concentration of [P] in the molten steel decreases, and its proportion increases as the temperature decreases. The [P] concentration in molten steel is determined by the P removal ability of each smelting furnace, that is, the values of coefficients A and B on the right side of the above equation. By lowering the ladle temperature to (LL) + 10 to 40°C in consideration of the temperature drop during tapping, the concentration of [P] in molten steel can be reduced even if the same amount of slag forming agents such as lime and dolomite are used. Regardless, it fell from 0.022% to 0.012%. The molten steel in the ladle tapped at such a low temperature, low P, and high S needs to be heated in order to remove P. As a result of considering the conditions for a heating device for heating molten steel in a ladle when actively removing S after heating the molten steel in a ladle as in the present invention from actual operation and metallurgical reactions, we found that The ability to rapidly raise the temperature is most important in steelmaking work, and it is important that the generation of Al 2 O 3 , which improves the S removal efficiency after heating the molten steel, occurs quickly. I was able to find out. A method of raising the temperature of molten steel in a ladle is to continuously introduce Al into a immersion tube immersed in the molten steel, and at the same time blow oxygen from above to oxidize and burn the Al, raising the temperature of the molten steel (hereinafter referred to as CAS). -OB) was also found to be able to satisfactorily achieve the above conditions. This CAS-OB method raises the temperature of molten steel by oxidizing Al with oxygen, so a high temperature increase rate can be easily obtained by increasing the amount of Al and oxygen, and usually 15
The temperature is raised at ~20℃/min. On the other hand, the generation of Al 2 O 3 that increases the activity of S is also important for removing S after the temperature of molten steel is increased. That is, CAS-
Since the OB method oxidizes Al under atmospheric pressure, Al oxidizes preferentially and efficiently generates Al 2 O 3 . In this state, a desulfurizing agent such as quicklime, calcium carbide, soda ash, or a mixture of these with an auxiliary agent such as CaF 2 is added to the molten steel, and an inert gas is introduced from the bottom of the pot to remove the molten steel. Stir the desulfurizing agent. This reaction is highly
Desulfurization proceeds as quickly as possible directly under the immersion pipe where Al 2 O 3 -containing slag exists, achieving an extremely high desulfurization rate. Further, in this case, a method in which the desulfurization agent is injected into the molten steel using an immersion lance is more preferable than a method in which the desulfurization agent is introduced into the immersion tube because the S removal efficiency is higher. When low-grade scrap is used in a converter like this, the P and S of the molten steel components after melting often become too high. Extremely efficient steel melting is possible by rapidly raising the temperature of molten steel in a ladle using CAS-OB, and then removing S by blowing a desulfurizing agent into a dipping tube or using a lance. In addition, the temperature of the molten steel in the ladle mentioned above is the liquidus temperature (LL).
On the other hand, if the temperature is lower than 10°C, the blown acid will condense before it is heated by the addition of Al, resulting in a significant decrease in yield and a decrease in reaction due to poor fluidity. On the other hand, if the temperature is higher than 40°C, low-P steel cannot be obtained due to insufficient low-temperature refining in the converter, and the use of low-grade stirrup, molded pig iron, etc., which are cold materials for the converter, is restricted. Furthermore, when the temperature of molten steel in the ladle is set to (LL) + 10 to 40℃, the blow-off temperature is the temperature obtained by adding the temperature drop during tapping,
The ultra-low blowout temperature is typically 30 to 60°C higher, and this temperature is at least 40 to 50°C higher than the normal blowout temperature.
It will be low. Note that the same effect can be obtained not only when using low-grade pig iron but also when using low-grade pig iron with high P and S contents. (Example) An example of producing low P and low S steel according to the present invention will be described below. FIG. 1 is a conceptual flow diagram of the melting process of the present invention. Before blowing in a converter, a large amount of scrap iron and hot metal are charged into the converter. It is then melted and refined by blowing oxygen through an upper lance. At this time, a slag-forming agent is introduced into the converter to remove S and P from the molten steel. At this time, it is extremely important to operate the converter so that the blow-off temperature and the temperature of the molten steel in the ladle are 10 to 40°C above the solidification temperature of the molten steel in order to improve the dephosphorization ability. That is, as described above, since the P removal ability is proportional to 1/T, this means that the lower the molten steel temperature, the more rapidly the molten steel P decreases inversely proportionally. Table 1 shows a comparison between the present invention and the conventional method operated in this manner.

【表】【table】

【表】 表1は脱Pのために使用する転炉投入用石灰の
使用量を等量としかつパウダーインジエクシヨン
(PI)あるいはCASで使用する脱S剤を等量にし
て従来法と比較したものである。 転炉吹止め時のPは吹止温度が本発明法では
1600℃であるが従来法は1670℃と高温になり、そ
の結果本発明法ではP=0.009%まで下げ得た。 又PIによる脱Sについても効率が極めて良く
S=0.005%まで下つている。 このように本発明法によれば合計の処理時間を
極度に延長する(CAS−OBによる昇熱時間)こ
となく十分満足出来る低P、低S鋼を効率的に得
ることが出来た。 (発明の効果) 以上述べた如く、本発明は従来益々増加するで
あろう低級屑鉄を転炉で多量溶解する上での高
S、高P救済として効率的な脱P、脱S法を提供
するものであり産業上裨益なところが極めて大で
ある。
[Table] Table 1 compares the conventional method with the same amount of lime used for dephosphorization and the same amount of desulfurization agent used in powder injection (PI) or CAS. This is what I did. P at the time of converter blow-off is determined by the blow-off temperature in the method of the present invention.
The conventional method resulted in a high temperature of 1670°C, whereas the method of the present invention was able to lower P to 0.009%. In addition, the efficiency of S removal by PI is extremely high and S = 0.005%. As described above, according to the method of the present invention, it was possible to efficiently obtain a sufficiently satisfactory low P and low S steel without extremely prolonging the total processing time (heating time due to CAS-OB). (Effects of the Invention) As described above, the present invention provides an efficient de-P and de-S method as a remedy for high S and high P when melting a large amount of low-grade scrap iron in a converter, which is expected to increase more and more. The industrial benefits are extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の溶製プロセスフローである。 FIG. 1 is a melting process flow of the present invention.

Claims (1)

【特許請求の範囲】 1 転炉精錬を超低温吹止めとし、転炉から出鋼
した取鍋内溶鋼温度を該溶鋼の液相温度(LL)
より10〜40℃高目にするとともに、該取鍋内溶鋼
に浸漬管を挿入し、該浸漬管を介して金属Alあ
るいはAl合金を添加しつつランスにより吹酸昇
熱した後、該溶鋼にフラツクスを添加して脱
〔S〕することを特徴とする低P,S溶鋼の精錬
法。
[Claims] 1. Converter refining is performed at an ultra-low temperature stop, and the temperature of the molten steel in the ladle discharged from the converter is defined as the liquidus temperature (LL) of the molten steel.
At the same time, an immersion pipe is inserted into the molten steel in the ladle, and metal Al or Al alloy is added through the immersion pipe, and the temperature is increased by blowing acid with a lance. A refining method for low P, S molten steel characterized by adding flux to remove [S].
JP23604387A 1987-09-19 1987-09-19 Method for refining low p, s molten steel Granted JPS6479316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23604387A JPS6479316A (en) 1987-09-19 1987-09-19 Method for refining low p, s molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23604387A JPS6479316A (en) 1987-09-19 1987-09-19 Method for refining low p, s molten steel

Publications (2)

Publication Number Publication Date
JPS6479316A JPS6479316A (en) 1989-03-24
JPH0341525B2 true JPH0341525B2 (en) 1991-06-24

Family

ID=16994913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23604387A Granted JPS6479316A (en) 1987-09-19 1987-09-19 Method for refining low p, s molten steel

Country Status (1)

Country Link
JP (1) JPS6479316A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973651B1 (en) * 2003-07-16 2010-08-02 주식회사 포스코 Process for excluding phosphate of ingot steel
CN112126737B (en) * 2019-06-24 2022-04-15 上海梅山钢铁股份有限公司 Production method of low-sulfur alloy molten steel

Also Published As

Publication number Publication date
JPS6479316A (en) 1989-03-24

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JP5549198B2 (en) Steel making method using steel scrap
US4373949A (en) Method for increasing vessel lining life for basic oxygen furnaces
JPH0341525B2 (en)
JPH0141681B2 (en)
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP3158912B2 (en) Stainless steel refining method
JPH08104911A (en) Method for melting phosphorus-containing steel
JP3776778B2 (en) Method of removing vanadium from molten iron
JP4411934B2 (en) Method for producing low phosphorus hot metal
JPH05156338A (en) Method for reusing low phosphorus converter slag
JPH05148525A (en) Treatment of molten iron
JP3736229B2 (en) Hot metal processing method
JP2017171975A (en) Dephosphorization agent for molten pig iron and dephosphorization method
JP4224197B2 (en) Hot metal dephosphorization method with high reaction efficiency
JP2009249666A (en) Dephosphorization refining method for molten iron
JP3419254B2 (en) Hot metal dephosphorization method
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH05320731A (en) Method for effectively utilizing collected dust of aod furnace
JPS6154081B2 (en)
JP3898964B2 (en) Dephosphorization method for hot metal
JPS63157809A (en) Blowing method for converter
JPH0526842B2 (en)
JPH0437137B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees