JPH0341156B2 - - Google Patents

Info

Publication number
JPH0341156B2
JPH0341156B2 JP63244492A JP24449288A JPH0341156B2 JP H0341156 B2 JPH0341156 B2 JP H0341156B2 JP 63244492 A JP63244492 A JP 63244492A JP 24449288 A JP24449288 A JP 24449288A JP H0341156 B2 JPH0341156 B2 JP H0341156B2
Authority
JP
Japan
Prior art keywords
enzyme
soluble
immobilized
poorly water
enzymatic conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63244492A
Other languages
Japanese (ja)
Other versions
JPH0292290A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP24449288A priority Critical patent/JPH0292290A/en
Publication of JPH0292290A publication Critical patent/JPH0292290A/en
Publication of JPH0341156B2 publication Critical patent/JPH0341156B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、固定化酵素を用いた水難溶性基質の
酵素変換方法に関するものであり、さらに詳しく
は、無機塩及び水溶性高分子物質の両成分の存在
下で、疎水性の多孔性担体に吸着固定化した酵素
を使用して水難溶性基質を効率良く酵素変換する
方法に関するものである。 〔従来の技術〕 従来、水難溶性基質を酵素変換する方法に関す
る報告例としては、例えば、酵素にポリエチレン
グリコールを共有結合させることにより有機溶媒
に可溶となつた酵素を用いて水難溶性基質を酵素
変換する方法〔Biochem.Biophycs.Res.
Commun.、122(2)845(1984)〕、シリカゲル表面に
固定化した酵素を有機溶媒に分散させて用いる方
法等があげられる。 一般に、水溶性基質の酵素変換に比べ水難溶性
基質を酵素変換する技術に関しては、研究報告例
は余り多くない。 〔発明が解決しようとする課題〕 ところで、前記した酵素にポリエチレングリコ
ールを共有結合させることにより有機溶媒に可溶
性となつた酵素を用いて、水難溶性基質を変換す
る方法は、酵素と基質とを均一系で反応させるこ
とができるため反応効率の点では優れているが、
当該方法は、ポリエチレングリコールの化学修飾
が必要となること、また、化学修飾したポリエチ
レングリコールと酵素との化学反応を行うため
に、それにより酵素活性が低下すること等の問題
点を有する。一方、シリカゲル表面に固定化した
酵素を有機溶媒に分散させて用いる方法は、酵素
によつては吸着されない場合があり、適用対象が
限定される等の問題点を有する。 〔課題を解決するための手段〕 そこで、本発明者らは、前記従来技術における
問題点を回避し得る新しい酵素変換方法を開発す
ることを目標として鋭意検討を積み重ねた結果、
特定の固定化酵素、すなわち無機塩及び水溶性高
分子物質の両成分の存在下で、疎水性の多孔性担
体に吸着固定化した酵素が、水難溶性基質の変換
に有効であることを見い出して本発明を完成する
に至つた。 すなわち、本発明は、以下の通りである。 (1) 無機塩及び水溶性高分子物質の両成分の存在
下で、疎水性の多孔性担体に吸着固定化した酵
素を使用することを特徴とする水難溶性基質の
酵素変換方法。 (2) 無機塩が、硫酸アンモニウムである上記(1)記
載の酵素変換方法。 (3) 水溶性高分子物質が、ポリエチレングリコー
ルである上記(1)記載の酵素変換方法。 (4) 疎水性の多孔性担体が、活性炭である上記(1)
記載の酵素変換方法。 なお、疎水性の多孔性担体に吸着固定化された
酵素は、従来公知であるが、無機塩及び水溶性高
分子物質の両成分の存在下で、疎水性の多孔性担
体に吸着固定化した酵素は、本発明者らが開発し
たものであり、当該酵素が、水難溶性基質の酵素
変換に有効であることは未だ知られていない新規
事項である。 このように本発明は水難性基質の酵素変換方法
を提供することを目的とするものであり、その構
成は、無機塩及び水溶性高分子物質の両成分の存
在下で、疎水性の多孔性担体に吸着固定化した酵
素を使用して水難溶性基質を酵素変換することを
特徴とするものである。 ここでいう無機塩とは、硝酸アンモニウム、硝
酸ナトリウム、塩化ナトリウム、塩化リチウム及
び硫酸ナトリウム等の一般的な無機塩をすべて含
む。このうち、特に好ましいのは、硫酸アンモニ
ウムである。これらの無機塩の添加量は、水相の
反応液に対し飽和度25〜95%が好ましいが、特に
好ましいのは飽和度40〜80%である。水溶性高分
子物質とは、ポリエチレングリコールやポリプロ
ピレングリコール等のポリアルキレンオキシド
類、デキストラン等の多糖類及びポリアクリルア
ミドやポリビニルアルコール等の合成ポリマー等
を意味するが、特に好ましいのはポリエチレング
リコール等のポリアルキレンオキシド類である。
また、これらの水溶性高分子物質の分子量として
は、1000〜500000が好ましいが、特に好ましくは
2000〜10000であり、その添加量は重量%で2.0〜
60%、好ましくは2.5〜20%である。 疎水性の多孔性担体とは、疎水性基を有するポ
リアクリルアミドゲル、多糖類ゲル、発泡ポリス
チレンゲル、発泡フエノール樹脂ビーズ及び活性
炭等であるが、特に好ましいのは活性炭である。
また、その添加量は特に制限はないが好ましくは
10%付近である。ここで用いる酵素は、特に限定
は無く従来公知の各種のものを単独で又は2種以
上混合して用いることができる。その代表例とし
てはカタラーゼ、グルコースオキシダーゼ等の酸
化酵素類、グリシンアミノトランスフエラーゼ等
の転移酵素類、アスパラキナーゼ、リパーゼ、プ
ロテアーゼ等の加水分解酵素、グルコースイソメ
ラーゼ等の異性化酵素類、アスパラギンシンセタ
ーゼ等のリガーゼ類及びアルコール脱水素酵素等
の酸化還元酵素類を例示できる。このうち好まし
いのは、加水分解酵素や酸化還元酵素であり、特
に好ましいのはリパーゼ、3α−ヒドロキシステ
ロイド脱水素酵素である。 水難溶性基質としてはメントン、メチルイソブ
ブチルカルビノール、酢酸エチル等が挙げられる
が、特にこれらに限定されるものでなく酵素変換
の対象となる水難溶性基質はいずれも使用でき
る。 〔発明の効果〕 本発明の疎水性の多孔性担体に吸着固定化した
酵素は、基質の変換効率が高く、また、酵素の安
定性が優れている等の特徴を有しており、水難溶
性基質を高い変換効率で、安定して酵素変換でき
るという顕著な効果を有するものである。 以下に、本発明の実施例及び比較例を記載し
て、さらに本発明を詳細に説明する。 〔実施例〕 実施例 1 3α−ヒドロキシステロイド脱水素酵素(1.0mg)
を0.1Mリン酸緩衝液(PH7.0)(13μ)へ溶解さ
せ、80mMNADH水溶液(2.0μ)、飽和度90%
硫酸アンモニウム水溶液(37μ)及びポリエチ
レングリコール(MW6000)(4.1mg)を加え、撹
拌した。この組成物にイソオクタン(0.2ml)及
び活性炭(10mg)(粒状シラサギ、武田薬品工業
(株)製)を加え、1時間撹拌した後、油層を除い
た。ローリー法により水相のタンパクを定量した
結果、3α−ヒドロキシステロイド脱水素酵素が
活性炭にほぼ定量的に固定化されていることがわ
かつた。この固定化3α−ヒドロキシステロイド
脱水素酵素に基質混液*)(0.20ml)を加え30℃で
2日間振とうした。2日間振とうした後、油相の
l−メントール濃度をガスクロマトグラフイーで
定量した。油相を除去し、新鮮な基質混液*)
(0.20ml)とNADH(160nmol)とを加え、再び30
℃で48hr振とうした。以後48hr毎この反応操作を
繰り返すことによりl−メントールの生産速度を
追跡した。結果を表1に示す。 *)イソオクタン/メントン/メチルイソブチル
カルビノール(10/1/1、v/v) 比較例 1 3α−ヒドロキシステロイド脱水素酵素(1.0mg)
を0.1Mリン酸緩衝液(PH7.0)(50μ)へ溶解さ
せ、80mMNADH水溶液(2.0μ)及び基質混
*)(0.20ml)を加え、30℃で2日間振とうした。
2日間振とうした後、油相のl−メントール濃度
をガスクロマトグラフイーで定量した。油相を除
去し、新鮮な基質混液*)(0.20ml)とNADH
(160nmol)とを加え、再び30℃で48hr振とうし
た。以後48hr毎この反応操作を繰り返すことによ
りl−メントールの生産速度を追跡した。結果を
表1に示す。 *)イソオクタン/メントン/メチルイソブチル
カルビノール(10/1/1、v/v)
[Industrial Application Field] The present invention relates to a method for enzymatic conversion of a poorly water-soluble substrate using an immobilized enzyme. The present invention relates to a method for efficiently enzymatically converting a poorly water-soluble substrate using an enzyme adsorbed and immobilized on a porous carrier. [Prior Art] Conventionally, there have been reports on methods for enzymatically converting poorly water-soluble substrates, such as enzymatically converting poorly water-soluble substrates using an enzyme that has become soluble in organic solvents by covalently bonding polyethylene glycol to the enzyme. How to convert [Biochem.Biophycs.Res.
Commun., 122 (2) 845 (1984)], and a method in which an enzyme immobilized on the surface of silica gel is dispersed in an organic solvent. In general, there are not many research reports regarding the enzymatic conversion of poorly water-soluble substrates compared to the enzymatic conversion of water-soluble substrates. [Problems to be Solved by the Invention] By the way, the method for converting a poorly water-soluble substrate using the enzyme that has become soluble in an organic solvent by covalently bonding polyethylene glycol to the enzyme described above requires that the enzyme and the substrate be uniformly bonded. Although it is superior in terms of reaction efficiency because it can be reacted in a system,
This method has problems such as requiring chemical modification of polyethylene glycol and a chemical reaction between the chemically modified polyethylene glycol and the enzyme, which reduces enzyme activity. On the other hand, the method of using an enzyme immobilized on the surface of silica gel and dispersing it in an organic solvent has the problem that some enzymes may not be adsorbed, which limits the scope of application. [Means for Solving the Problems] Therefore, the present inventors have conducted extensive studies with the aim of developing a new enzymatic conversion method that can avoid the problems in the conventional techniques.
We have discovered that a specific immobilized enzyme, that is, an enzyme adsorbed and immobilized on a hydrophobic porous carrier in the presence of both inorganic salts and water-soluble polymeric substances, is effective in converting poorly water-soluble substrates. The present invention has now been completed. That is, the present invention is as follows. (1) A method for enzymatic conversion of a poorly water-soluble substrate, characterized by using an enzyme adsorbed and immobilized on a hydrophobic porous carrier in the presence of both an inorganic salt and a water-soluble polymeric substance. (2) The enzymatic conversion method according to (1) above, wherein the inorganic salt is ammonium sulfate. (3) The enzymatic conversion method according to (1) above, wherein the water-soluble polymeric substance is polyethylene glycol. (4) The above (1) in which the hydrophobic porous carrier is activated carbon.
The enzymatic conversion method described. It should be noted that enzymes adsorbed and immobilized on a hydrophobic porous carrier are known in the art. The enzyme was developed by the present inventors, and is a novel item that is not yet known to be effective in enzymatic conversion of poorly water-soluble substrates. As described above, the present invention aims to provide a method for enzymatic conversion of water-resistant substrates. This method is characterized by enzymatically converting a poorly water-soluble substrate using an enzyme adsorbed and immobilized on a carrier. Inorganic salts herein include all common inorganic salts such as ammonium nitrate, sodium nitrate, sodium chloride, lithium chloride, and sodium sulfate. Among these, particularly preferred is ammonium sulfate. The amount of these inorganic salts to be added is preferably 25 to 95% saturation, particularly preferably 40 to 80% saturation. Water-soluble polymer substances include polyalkylene oxides such as polyethylene glycol and polypropylene glycol, polysaccharides such as dextran, and synthetic polymers such as polyacrylamide and polyvinyl alcohol. They are alkylene oxides.
The molecular weight of these water-soluble polymer substances is preferably 1,000 to 500,000, particularly preferably 1,000 to 500,000.
2000~10000, and the amount added is 2.0~2.0% by weight.
60%, preferably 2.5-20%. Hydrophobic porous carriers include polyacrylamide gels, polysaccharide gels, foamed polystyrene gels, foamed phenolic resin beads, activated carbon, etc. having hydrophobic groups, and activated carbon is particularly preferred.
In addition, the amount added is not particularly limited, but preferably
It is around 10%. The enzyme used here is not particularly limited, and various conventionally known enzymes can be used alone or in a mixture of two or more. Representative examples include oxidizing enzymes such as catalase and glucose oxidase, transferases such as glycine aminotransferase, hydrolytic enzymes such as asparakinase, lipase, and protease, isomerizing enzymes such as glucose isomerase, and asparagine synthetase. Examples include ligases such as eg, and oxidoreductases such as alcohol dehydrogenase. Among these, hydrolases and oxidoreductases are preferred, and lipases and 3α-hydroxysteroid dehydrogenases are particularly preferred. Examples of poorly water-soluble substrates include menthone, methyl isobutyl carbinol, ethyl acetate, etc., but the present invention is not particularly limited to these, and any poorly water-soluble substrate that can be subjected to enzymatic conversion can be used. [Effects of the Invention] The enzyme adsorbed and immobilized on the hydrophobic porous carrier of the present invention has characteristics such as high substrate conversion efficiency and excellent enzyme stability. This method has the remarkable effect of stably enzymatically converting substrates with high conversion efficiency. EXAMPLES Below, the present invention will be further explained in detail by describing Examples and Comparative Examples of the present invention. [Example] Example 1 3α-hydroxysteroid dehydrogenase (1.0mg)
Dissolve in 0.1M phosphate buffer (PH7.0) (13μ), 80mM NADH aqueous solution (2.0μ), saturation 90%
Ammonium sulfate aqueous solution (37 μ) and polyethylene glycol (MW6000) (4.1 mg) were added and stirred. This composition was added with isooctane (0.2 ml) and activated carbon (10 mg) (granular white heron, Takeda Pharmaceutical Co., Ltd.
After stirring for 1 hour, the oil layer was removed. As a result of quantifying the protein in the aqueous phase using the Lowry method, it was found that 3α-hydroxysteroid dehydrogenase was almost quantitatively immobilized on activated carbon. Substrate mixture *) (0.20 ml) was added to the immobilized 3α-hydroxysteroid dehydrogenase and shaken at 30°C for 2 days. After shaking for 2 days, the l-menthol concentration in the oil phase was determined by gas chromatography. Remove the oil phase and add fresh substrate mixture *)
(0.20ml) and NADH (160nmol) and again
Shake for 48hr at °C. Thereafter, this reaction operation was repeated every 48 hours to monitor the production rate of l-menthol. The results are shown in Table 1. *) Isooctane/menthone/methylisobutylcarbinol (10/1/1, v/v) Comparative example 1 3α-hydroxysteroid dehydrogenase (1.0mg)
was dissolved in 0.1M phosphate buffer (PH7.0) (50μ), 80mM NADH aqueous solution (2.0μ) and substrate mixture *) (0.20ml) were added, and the mixture was shaken at 30°C for 2 days.
After shaking for 2 days, the l-menthol concentration in the oil phase was determined by gas chromatography. Remove the oil phase and add fresh substrate mixture *) (0.20 ml) and NADH.
(160 nmol) was added and shaken again at 30°C for 48 hours. Thereafter, the production rate of l-menthol was monitored by repeating this reaction every 48 hours. The results are shown in Table 1. *) isooctane/menthone/methylisobutylcarbinol (10/1/1, v/v)

【表】 例1
比較 5.52 5.41 4.86 3.09 1.93
例1
[Table] Example 1
Comparison 5.52 5.41 4.86 3.09 1.93
Example 1

JP24449288A 1988-09-30 1988-09-30 Enzymatic reaction process Granted JPH0292290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24449288A JPH0292290A (en) 1988-09-30 1988-09-30 Enzymatic reaction process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24449288A JPH0292290A (en) 1988-09-30 1988-09-30 Enzymatic reaction process

Publications (2)

Publication Number Publication Date
JPH0292290A JPH0292290A (en) 1990-04-03
JPH0341156B2 true JPH0341156B2 (en) 1991-06-21

Family

ID=17119474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24449288A Granted JPH0292290A (en) 1988-09-30 1988-09-30 Enzymatic reaction process

Country Status (1)

Country Link
JP (1) JPH0292290A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190097A (en) * 1985-12-20 1987-08-20 ウイスコンシン・アルムナイ・リサ−チ・フアウンデイシヨン Production of (s)-alpha-methylaryl acetate
JPH01137987A (en) * 1987-06-29 1989-05-30 Nisshin Oil Mills Ltd:The Production of highly unsaturated fatty acid glyceride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190097A (en) * 1985-12-20 1987-08-20 ウイスコンシン・アルムナイ・リサ−チ・フアウンデイシヨン Production of (s)-alpha-methylaryl acetate
JPH01137987A (en) * 1987-06-29 1989-05-30 Nisshin Oil Mills Ltd:The Production of highly unsaturated fatty acid glyceride

Also Published As

Publication number Publication date
JPH0292290A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
Dong et al. Preparation of cross-linked aggregates of aminoacylase from Aspergillus melleus by using bovine serum albumin as an inert additive
Wilson et al. CLEAs of lipases and poly-ionic polymers: a simple way of preparing stable biocatalysts with improved properties
Rodrigues et al. Modifying enzyme activity and selectivity by immobilization
JPH0632616B2 (en) Method of immobilizing enzyme on carrier
Hsu et al. Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol–gel matrix: effectiveness as a biocatalyst
KR900007631B1 (en) Method for production of an immobilized enryme preparation by means of a crosslinking agent
Secundo et al. Optimization of hydrolase efficiency in organic solvents
Gupta et al. Enzyme stabilization via cross-linked enzyme aggregates
JPS5978687A (en) Immobilization of catalyst on granular carbon
JPS63146791A (en) Immobilization of enzyme and immobilized enzyme
JP2678341B2 (en) Immobilized lipase
JPH0416156B2 (en)
Chen et al. Efficient immobilization of whole cells of Methylomonas sp. strain GYJ3 by sol–gel entrapment
KR100338566B1 (en) Penicillin G Amidase, Glutaryl-7-ACA Acylase or D-Amino Acid Oxidase Fixed on Substrate
US4764467A (en) Preparation of an insoluble biocatalyst
FI101400B (en) Process for the preparation of carrier-bound enzymes
Soares et al. Intensification of lipase performance for long-term operation by immobilization on controlled pore silica in presence of polyethylene glycol
JPH0341156B2 (en)
Konecny et al. Effects of carrier morphology and buffer diffusion on the expression of enzymatic activity
CA1058538A (en) Enzyme bound to polymer which is entrapped in inorganic carrier
GB2129809A (en) Method for production of an immobilized enzyme preparation by means of a crosslinking agent
Kanwar et al. Enhancement of Ethyl Propionate Synthesis by poly (AAc-co-HPMA-cl-MBAm)-immobilized Pseudomonas aeruginosa MTCC-4713, Exposed to Hg 2+ and NH 4+ Ions
JP3218794B2 (en) New surfactant-coated enzyme and its manufacturing method.
JP3025947B2 (en) Method for producing dry immobilized lipase carrier
JPH0583236B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term