JPH0341146A - Resin composition - Google Patents

Resin composition

Info

Publication number
JPH0341146A
JPH0341146A JP1325234A JP32523489A JPH0341146A JP H0341146 A JPH0341146 A JP H0341146A JP 1325234 A JP1325234 A JP 1325234A JP 32523489 A JP32523489 A JP 32523489A JP H0341146 A JPH0341146 A JP H0341146A
Authority
JP
Japan
Prior art keywords
resin
semiconductor chip
coating
stress
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1325234A
Other languages
Japanese (ja)
Other versions
JPH0639563B2 (en
Inventor
Tasao Soga
太佐男 曽我
Mamoru Sawahata
沢畠 守
Takaya Suzuki
誉也 鈴木
Masatake Nametake
正剛 行武
Fumio Nakano
文雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1325234A priority Critical patent/JPH0639563B2/en
Publication of JPH0341146A publication Critical patent/JPH0341146A/en
Publication of JPH0639563B2 publication Critical patent/JPH0639563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To obtain a semiconductor device with a specified constitution excellent in hot fatigue resistance by pouring a specified resin composition into the gap of the device and curing the composition. CONSTITUTION:In a semiconductor device composed of an electrode terminal 4 of a semiconductor chip 3 and an electrode terminal 2 formed on a substrate 1 in a position opposing the terminal 4 and connected to the terminal 4 through a conductor 5, a resin composition comprising a thermosetting resin, desirably an epoxy resin, 30-55vol.% first powder comprising an inorganic material having a coefficient of thermal expansion lower than that of this resin and desirably comprising at least one member selected from among quartz, SiC, Si3N4, CaCO3 and SiC mixed with beryllium oxide, and 1-20 pts.wt. second powder comprising a rubber-like elastomer, desirably a polybutadiene rubber and/or a silicone rubber, is poured into the gap 6 surrounding the conductor 5 and intervening between the substrate 1 and the semiconductor chip 3 and cured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明、半導体チップの電極端子をCCB法(Cont
rolled Co11apse Bonding法)
により基板上の電極端子に接合した後、樹脂により被覆
してなる構造の半導体装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides electrode terminals of semiconductor chips using the CCB method (Cont
rolled Co11apse Bonding method)
The present invention relates to a semiconductor device having a structure in which the semiconductor device is bonded to an electrode terminal on a substrate and then covered with a resin.

〔従来の技術〕[Conventional technology]

このような構造の半導体装置が適用された具体的な一例
として、第1図に示す要部断面構造図のように、液晶表
示素子の形成されたガラス基板上に、その液晶表示素子
を開動する半導体チップを載置して一体形成したものが
知られている。即ち、ガラス基板1の上面に形成された
電極端子2と、シリコン半導体からなる半導体チップ(
以下、Siチップと称する)3の下面に形成された電極
端子4とを対向配置し、これらの電極端子2,4間をC
CB法により形成されるはんだバンプ5によって接合し
1次にシリコ、ンゲル等の如き柔軟性を有する樹脂6を
、ガラス基板上とSiチップ3の空隙部に充填し、さら
に、Siチップ3の上及び側面を炭酸カルシウムを混入
したビスフェニール型の低膨張エポキシ系樹脂7により
被覆した構造となっている。
As a specific example in which a semiconductor device with such a structure is applied, as shown in the cross-sectional structural diagram of the main part shown in FIG. 1, a liquid crystal display element is opened on a glass substrate on which a liquid crystal display element is formed. A device in which a semiconductor chip is mounted and formed integrally is known. That is, an electrode terminal 2 formed on the upper surface of a glass substrate 1 and a semiconductor chip (
The electrode terminals 4 formed on the lower surface of the 3 (hereinafter referred to as Si chips) are arranged to face each other, and the electrode terminals 2 and 4 are connected by C.
They are bonded by solder bumps 5 formed by the CB method, and then a flexible resin 6 such as silicone or gel is filled into the gap between the glass substrate and the Si chip 3. It has a structure in which the side surfaces are coated with bisphenyl type low expansion epoxy resin 7 mixed with calcium carbonate.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述構造の半導体装置について、40℃←→
100℃の温度条件で温度サイクル試験を行ったところ
、被覆のないもの(以下、裸チップと称する)よりも耐
熱疲労性がかなり劣るという結果が得られた。そこで、
その原因を実験等により検討した結果、(1)樹脂材料
、(2)樹脂被覆構造、及び(3)はんだバンプ構造の
3点について1次に述べるような欠点があることが判っ
た。
However, for the semiconductor device with the above structure, the temperature at 40°C←→
When a temperature cycle test was conducted under a temperature condition of 100° C., the result was that the thermal fatigue resistance was considerably inferior to that of a chip without a coating (hereinafter referred to as a bare chip). Therefore,
As a result of examining the causes of this through experiments and the like, it was found that there are three drawbacks as described below: (1) resin material, (2) resin coating structure, and (3) solder bump structure.

即ち、炭酸カルシウム粉をエポキシ樹脂に混入すると、
膨張係数を大きく下げることができるが。
That is, when calcium carbonate powder is mixed into epoxy resin,
Although it is possible to significantly lower the expansion coefficient.

Siチップやガラス基板に比較するとまだ大であること
、しかも炭酸カルシウムの混入率を増すと樹脂の硬度が
増大することから、必ずしも耐熱疲労性は向上しない。
It is still large compared to Si chips and glass substrates, and furthermore, increasing the proportion of calcium carbonate increases the hardness of the resin, so the thermal fatigue resistance does not necessarily improve.

また、低膨張エポキシ樹脂を用いた樹脂被覆の形状、及
びはんだバンプの形状に関する応力分布。
Also, stress distribution regarding the shape of resin coating using low expansion epoxy resin and the shape of solder bumps.

特に応力集中及びはんだバンプの柔軟性は、耐熱疲労性
に大きく影響する。
In particular, stress concentration and solder bump flexibility greatly affect thermal fatigue resistance.

本発明の目的は、耐熱疲労性を向上させることができる
被覆樹脂の材料、被覆の形状、及びはんだバンプの形状
を有してなる半導体装置を提供することにある。
An object of the present invention is to provide a semiconductor device having a coating resin material, a coating shape, and a solder bump shape that can improve thermal fatigue resistance.

〔課題を解決するための手段〕 本発明は、被覆樹脂はエポキシ樹脂を主材料とし、これ
にエポキシ樹脂よりも小さい熱膨張係数を有する無機材
料からなる第1の粉粒体、及びゴム状弾性材料からなる
第2の粉粒体を少なくとも混入したものとし、 また、前記被覆樹脂は半導体チップの周囲とその上面を
被い、且つ前記半導体チップ周辺の基板上面に形成する
樹脂被覆の幅は、その幅方向の半導体チップ幅の1倍以
上1.5倍以下とし、さらに、はんだバンプ、の形状は
円柱型またはっづみ型に形成することによって、耐熱疲
労性を向上させようとするものである。
[Means for Solving the Problems] The present invention provides that the coating resin is mainly made of epoxy resin, and a first granular material made of an inorganic material having a coefficient of thermal expansion smaller than that of the epoxy resin, and a rubber-like elastic material. At least a second granular material made of a material is mixed therein, and the coating resin covers the periphery and the upper surface of the semiconductor chip, and the width of the resin coating formed on the upper surface of the substrate around the semiconductor chip is as follows: The solder bumps are designed to improve thermal fatigue resistance by making the solder bumps at least 1 times and 1.5 times the width of the semiconductor chip in the width direction, and by forming the solder bumps into a cylindrical or cylindrical shape. .

〔実施例〕〔Example〕

以下1本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

まず1本発明の被覆樹脂材料について説明する。First, the coating resin material of the present invention will be explained.

エポキシ樹脂の熱膨張係数αROは約100XIO−’
 / ’Cであり、半導体チップ、例えばSiチップの
熱膨張係数αs i ; 3 X 10− ’ / ”
C−や、基板、例えばガラス基板のソーダガラスの熱膨
張係数αo ; 9.33x 10−” / ”Cに比
べて大きい、一般に、耐熱疲労性を向上させるには、熱
膨張係数が半導体チップや基板のそれに近い被覆樹脂を
適用することが望ましい。
The coefficient of thermal expansion αRO of epoxy resin is approximately 100XIO-'
/'C, and the thermal expansion coefficient αs i of a semiconductor chip, for example, a Si chip; 3 x 10-'/''
9.33 It is desirable to apply a coating resin similar to that of the substrate.

そこで、エポキシ樹脂に炭酸カルシウムや石英粉等の如
き、熱膨張係数の小さな無機材料(以下、低膨張化材と
称する)を混入して低膨張化するようにしている。例え
ば、体積にして50%の石英粉を混入すると、熱膨張係
数αRは約25X10−’/℃に低下する。しかし、混
入率を高くするにしたがって樹脂の粘度が高くなり、流
動性が低下する。流動性が低下すると、被覆工程におい
ては、はんだバンプ周囲の空隙部に樹脂が侵入しにくく
なって、空隙部が残ったり、基板との密着性が低したり
、被覆の作業性が低下するという問題が生ずる。この結
果、逆に耐熱疲労性及び耐湿性が低下してしまうことが
ある。また、混入率を高くすると樹脂の柔軟性が低下し
て、基板との接着部に応力が集中するため、この応力に
よりガラス等の基板が破損されてしまうことがある。
Therefore, an inorganic material with a small coefficient of thermal expansion (hereinafter referred to as a low-expansion material), such as calcium carbonate or quartz powder, is mixed into the epoxy resin to reduce the expansion. For example, when 50% by volume of quartz powder is mixed, the coefficient of thermal expansion αR decreases to about 25×10 −′/° C. However, as the mixing rate increases, the viscosity of the resin increases and fluidity decreases. When fluidity decreases, it becomes difficult for the resin to penetrate into the voids around the solder bumps during the coating process, resulting in voids remaining, poor adhesion to the board, and reduced coating workability. A problem arises. As a result, thermal fatigue resistance and moisture resistance may be adversely reduced. Furthermore, when the mixing rate is increased, the flexibility of the resin decreases and stress is concentrated at the bonded portion with the substrate, which may damage the substrate such as glass.

したがって、単に低膨張化材を混入して低膨張化するだ
けでは、耐熱疲労性の向上に一定の限度があるため、さ
らにその流動性及び柔軟性を改善する必要がある。
Therefore, there is a certain limit to improving thermal fatigue resistance by simply mixing a low-expansion material to lower the expansion, so it is necessary to further improve the fluidity and flexibility.

そこで、本発明は低膨張化材に加えて粒状の弾性材料1
例えばポリブタジェンやシリコン等のゴム粒子を分散混
入し、これによって柔軟性及び流動性を向上させようと
するものである。つまり、被覆樹脂内のゴム粒子は応力
緩衝材とし作用するので柔軟性が向上して応力集中や歪
が緩和されることから、これによって耐熱疲労性を向上
させようとするものである。また、粒状のゴム粒子の作
用によって流動性を向上させようとするものである。し
かし、後述するように、ゴム粒子の混入率にも最適な範
囲がある。例えば、粒径1μmレベルのポリブタン1ン
(CTBN  1300x9)からなるゴム粒子を混入
した場合、エポキシ樹脂に対するゴム粒子の重量比を1
00対20以上(以下、重量部または単に部と称し、例
えば20部以上と表現する)にすると、ゴム粒子の分散
が不均一になってしまうとともに、ポリブタジェンの熱
膨張係数αPBは約80 X 10−’/℃と大きいの
で、混入後の被覆樹脂の熱膨張係数αRが大となってし
まい、耐熱疲労性を低下させる原因となるのである。ま
た、流動性向上の効果にあっても飽和現象があるので大
幅向上は期待できない。
Therefore, the present invention provides a granular elastic material 1 in addition to the low expansion material.
For example, rubber particles such as polybutadiene or silicone are dispersed and mixed in to improve flexibility and fluidity. In other words, the rubber particles in the coating resin act as a stress buffer, improving flexibility and relieving stress concentration and strain, thereby improving thermal fatigue resistance. Further, it is intended to improve fluidity through the action of granular rubber particles. However, as will be described later, there is an optimum range for the mixing ratio of rubber particles. For example, when rubber particles made of polybutane 1300x9 (CTBN 1300x9) with a particle size of 1 μm are mixed, the weight ratio of the rubber particles to the epoxy resin is 1 μm.
If the ratio is 0.00 to 20 or more (hereinafter referred to as parts by weight or simply parts, for example, expressed as 20 parts or more), the dispersion of rubber particles will become uneven, and the thermal expansion coefficient αPB of polybutadiene will be approximately 80 x 10 -'/°C, which increases the coefficient of thermal expansion αR of the coating resin after mixing, which causes a decrease in thermal fatigue resistance. Furthermore, even with the effect of improving fluidity, there is a saturation phenomenon, so a significant improvement cannot be expected.

これらのことを、実施例を用いて行った実験結果に基づ
いて説明する。第1表に、エポキシ樹脂(EP−828
)を主材料とし1粒径的lpmの石英粉を低膨張化材と
し、粒径的1μmのポリブタジェンの均一なゴム粒子を
緩衝材とし、それらの混入率の異なる種々の樹脂により
被覆した半導体装置を試料として、前述と同一の温度サ
イクル試験を行った判定結果を示す、なお、基板、半導
体チップ及びはんだバンプは第1図図示と同一構成のも
のとし、判定は、樹脂被覆を施さない裸チップのものに
比較して、早いサイクルにて故障に至った試料を不合格
として×印で示し、合格したものについては故障率を基
準に、優れている順に0、Δ印で示した。故障率の一例
として、第2図(A)に石英粉の混入率を35体積%に
固定し、ポリブタジェンゴム粒子の混入率を変化させた
場合を、第2図(B)にポリブタジェンゴム粒子の混入
率をIO部に固定し1石英粉の混入率を変化させた場合
を、それぞれ示す、なお、第2図(A)(B)図中実線
で示したものは、1サイクル/工時間の温度サイクル試
験を900サイクル行った例であり、図中点線で示した
ものは同様に500サイクルの例である。
These matters will be explained based on the results of experiments conducted using Examples. Table 1 shows epoxy resin (EP-828
) as the main material, 1 lpm quartz powder as the low expansion agent, 1 μm particle size uniform rubber particles of polybutadiene as the buffer material, and covered with various resins with different mixing ratios. This is the result of the same temperature cycle test as above using the same sample as above.The substrate, semiconductor chip, and solder bumps are of the same configuration as shown in Figure 1, and the judgment is based on the bare chip without resin coating. Samples that failed in an earlier cycle than the sample were marked with an x as a failure, and those that passed were marked with a 0 or Δ mark in order of superiority based on the failure rate. As an example of the failure rate, Fig. 2 (A) shows the case where the mixing rate of quartz powder is fixed at 35% by volume and the mixing rate of polybutadiene rubber particles is varied, and Fig. 2 (B) shows the case where the mixing rate of polybutadiene rubber particles is fixed at 35% by volume. The cases in which the mixing rate of Gen rubber particles is fixed in the IO part and the mixing rate of 1 quartz powder are varied are shown. In addition, the solid lines in Figure 2 (A) and (B) indicate 1 cycle. This is an example in which a temperature cycle test of /manufacturing time was performed for 900 cycles, and the dotted line in the figure is also an example for 500 cycles.

また、被覆樹脂には硬化温度を低くするための添加剤、
例えば硬化促進剤としてイソダゾル(2部4MH2)を
5重量%、硬化剤としてジシアンアミドを10重量%、
シランカップリング剤(A−187)を2重量%等を混
入し、硬化温度130℃、*化温度を時間として基板の
熱的影響を避けるようにした。
In addition, additives are added to the coating resin to lower the curing temperature.
For example, 5% by weight of isodazole (2 parts 4MH2) as a curing accelerator, 10% by weight of dicyanamide as a curing agent,
A silane coupling agent (A-187) was mixed in an amount of 2% by weight, and the curing temperature was set at 130° C., and the * temperature was set as the time to avoid thermal influence on the substrate.

第1表に示す判定結果から、低膨張化剤と緩衝剤の混入
効果について考察する。まず、ポリブタジェンの混入率
が0部、即ち石英粉のみを混入した試料は、全て裸チッ
プのものより悪い判定結果となっているが、樹脂被覆さ
れた試料相互間で定量的に比較すると1石英粉の混入率
を高めるにしたがい熱疲労寿命が増大されるということ
を実験で確認している。但し、石英粉の混入により流動
性が低下して、Siチップ3下側とはんだバンプ5の周
囲への浸透が悪くなるので、この点からみて1石英粉の
混入率は60体積%が限界である。
Based on the determination results shown in Table 1, the effect of mixing the low expansion agent and buffering agent will be discussed. First, samples with a polybutadiene content of 0 parts, that is, samples containing only quartz powder, all had worse judgment results than those with bare chips, but when compared quantitatively between resin-coated samples, 1 quartz powder was mixed. It has been confirmed through experiments that the thermal fatigue life increases as the powder content increases. However, the mixing of quartz powder lowers the fluidity and makes it difficult to penetrate into the lower side of the Si chip 3 and around the solder bumps 5, so from this point of view, the limit for the mixing rate of 1 quartz powder is 60% by volume. be.

一方、ポリブタジェンは若干混入するだけで、第2図(
A)に示すように、急激に故障率が低下されており、緩
衝材及び流動化材としての効果が顕著に表れ、耐熱疲労
性において裸チップよりも優れた特性が得られた。但し
、ポリブタジェン混入率を高くすると、前述したように
、その分散が不均一となり、耐熱疲労性が低下する。
On the other hand, polybutadiene is only slightly mixed, as shown in Figure 2 (
As shown in A), the failure rate was rapidly reduced, the effect as a buffering material and fluidizing material was remarkable, and properties superior to bare chips in terms of thermal fatigue resistance were obtained. However, if the polybutadiene mixing ratio is increased, the dispersion becomes non-uniform as described above, and the thermal fatigue resistance decreases.

これらのこと及び第1表から1石英粉の混入率は30〜
55体積%、ポリブタジェンゴム粒子の混入率は1〜2
0部の範囲に選定することにより、裸チップよりも優れ
た耐熱疲労性のものとすることができる0例えば、石英
粉50体積%、ポリブタジェン5部を混入したものの耐
熱疲労性(寿命)は、裸チップの3倍以上であり、信頼
性が大幅に向上された。
From these facts and Table 1, the mixing rate of 1 quartz powder is 30~
55% by volume, the mixing rate of polybutadiene rubber particles is 1-2
For example, the thermal fatigue resistance (life) of a chip mixed with 50% by volume of quartz powder and 5 parts of polybutadiene is as follows: This is more than 3 times that of a bare chip, and reliability has been greatly improved.

なお、低膨張化材としては石英の他、炭酸カルシウム、
炭化シリコン、ぶ化シリコン、または酸化ベリリウム混
入の炭化シリコン等の如き、いわゆる熱膨張係数の小さ
な無機材料が適用可能であり、同一の効果が得られる。
In addition to quartz, low-expansion materials include calcium carbonate,
Inorganic materials with a so-called small coefficient of thermal expansion, such as silicon carbide, silicon nitride, or silicon carbide mixed with beryllium oxide, can be used, and the same effect can be obtained.

この低膨張化材の粒径にあっても、上記実施例の1μm
に限られるものではない。
Even if the particle size of this low expansion material is 1 μm as in the above example,
It is not limited to.

また1弾性材としてはポリブタジェンゴム粒子の他、シ
リコンゴム粒子等の如き、いわゆる弾性の大きなゴム粒
子が適用可能であり、その粒径にあっても、1μmに限
られるものではない。
Further, as the first elastic material, in addition to polybutadiene rubber particles, so-called highly elastic rubber particles such as silicone rubber particles can be used, and the particle size thereof is not limited to 1 μm.

次に、樹脂被覆の形状について説明する。Next, the shape of the resin coating will be explained.

前述したように1石英粉等の低膨張化材を混入しても、
エポキシ樹脂の熱膨張係数αRはソーダガラスや半導体
チップに比べてまだ大きな値である。そして、それらの
部材間の熱膨張量の差により生ずる応力によって半導体
チップ、はんだバンプ、ガラス基板、又はそれら部材の
接続部が破損されるのである。実験によると、はんだバ
ンプと半導体チップとの接続部が、繰返し応力に対して
最も弱いことが判った。
As mentioned above, even if low expansion materials such as quartz powder are mixed in,
The coefficient of thermal expansion αR of epoxy resin is still larger than that of soda glass or semiconductor chips. The semiconductor chip, solder bumps, glass substrate, or connection portions of these members are damaged due to stress caused by the difference in the amount of thermal expansion between these members. Experiments have shown that the connection between the solder bump and the semiconductor chip is the most vulnerable to repeated stress.

そこで、その接続部に発生する応力を低減することがで
きる樹脂被覆の形状、即ち、半導体チップ上面の被覆厚
みと、半導体チップ周辺部の被覆幅について、有限要素
法により求めた。
Therefore, the shape of the resin coating that can reduce the stress generated at the connection part, that is, the coating thickness on the upper surface of the semiconductor chip and the coating width around the semiconductor chip, was determined using the finite element method.

即ち、半導体チップ上面の被覆厚みt++aとしたとき
、はんだバンプと半導体チップの接続部にかかる最大応
力(破損に関係する引張応力)を求め、第3図(A)に
裸チップにおける最大引張応力に対する比率として示し
た。なお、第3図(B)、(C)に示すように、ガラス
基板1、半導体チップ3は6m角のSiチップ、はんだ
チップ5は球欠体形状のものとし、樹脂被覆7は全体@
Lを15m角一定としたものをモデルとし1図示矢印9
の方向の最大応力を求めたものである。矢印9の位置に
おける応力は、温度が室温(20℃)から100℃に変
化したときは引張応力となり、室温(20℃)から−4
0℃に変化したときは圧縮応力になる。また、樹脂はエ
ポキシ樹脂に石英粉のみを混入した流動性の劣るものと
し、基板1とチップ3のとの間に空隙8が生じたものを
モデルとした。
That is, when the coating thickness on the top surface of the semiconductor chip is t++a, the maximum stress (tensile stress related to breakage) applied to the connection between the solder bump and the semiconductor chip is determined, and Fig. 3 (A) shows the maximum stress applied to the bare chip with respect to the maximum tensile stress. Shown as a ratio. As shown in FIGS. 3(B) and 3(C), the glass substrate 1, the semiconductor chip 3 is a 6 m square Si chip, the solder chip 5 is in the shape of a truncated ball, and the resin coating 7 is entirely @
The model is one in which L is constant at 15 m square. 1 Arrow 9
The maximum stress in the direction of is calculated. The stress at the position of arrow 9 becomes tensile stress when the temperature changes from room temperature (20°C) to 100°C, and from room temperature (20°C) to -4°C.
When the temperature changes to 0°C, compressive stress occurs. In addition, the resin was made of an epoxy resin mixed with only quartz powder and had poor fluidity, and a model was used in which a gap 8 was created between the substrate 1 and the chip 3.

第3図(A)から明らかなように、被覆厚みtが増すに
つれて、半導体チップ3とはんだバンプ5の接続部にか
かる最大引張応力が大きくなることから、被覆厚みtは
薄いほどよいということになるが、機械的保護及び耐湿
性保持から許容最小厚みが制限され、tは1±0.5m
の範囲で選定することが望ましい。
As is clear from FIG. 3(A), as the coating thickness t increases, the maximum tensile stress applied to the connection between the semiconductor chip 3 and the solder bumps 5 increases, so the thinner the coating thickness t, the better. However, the minimum allowable thickness is limited due to mechanical protection and moisture resistance, and t is 1 ± 0.5 m.
It is desirable to select within the range of .

一方、第4図(A)に半導体チップの周辺に形成される
樹脂被覆の幅と、前記接続部にかかる最大応力との関係
を示す、なお、モデルは第4図(B)、(C)に示すよ
うに第3図(B)、(C)と同様のものであり、被覆厚
みtを1.5nn一定、半導体チップ3の幅を2a、半
導体チップ端縁から被覆外縁までの寸法、即ち半導体チ
ップ周辺領域に形成される被覆の幅を悲とした。
On the other hand, Fig. 4(A) shows the relationship between the width of the resin coating formed around the semiconductor chip and the maximum stress applied to the connection part.The model is shown in Fig. 4(B) and (C). As shown in FIG. 3(B) and (C), the coating thickness t is constant at 1.5 nn, the width of the semiconductor chip 3 is 2a, and the dimension from the edge of the semiconductor chip to the outer edge of the coating, i.e. The width of the coating formed in the peripheral area of the semiconductor chip was determined.

第4図(A)に示すように、Q / aが増すにつれて
最大引張応力が現象する傾向にある。このことは、周辺
域の被覆幅悲が広くなると、被覆幅悲の中心(図示B、
B’)より内側の被覆が温度上昇時に内側方向に伸び、
これによって半導体チップ3に対して圧縮方向に応力が
作用すると考えられる。なお、このことは計算によって
確認している。
As shown in FIG. 4(A), the maximum tensile stress tends to increase as Q/a increases. This means that when the coverage width of the peripheral area becomes wider, the center of the coverage width (as shown in figure B)
B') The inner coating stretches inward when the temperature rises,
It is thought that this causes stress to act on the semiconductor chip 3 in the compressive direction. This fact has been confirmed through calculation.

したがって、Q / aを大にすれば最大引張応力を減
少することができる。即ち、被覆樹脂の熱膨張係数が大
であっても、被覆形状を適切なものとすることにより、
裸チップのものより耐熱疲労性を向上させることができ
る。しかし、Q / a≧3.0以上にしても、最大引
張応力の低減効果が小さくなる反面、ガラス基板1と樹
脂被覆7との接合部のガラス破損が起こりやすくなるこ
と、及び樹脂被覆14全体の面積的制限を考慮すると、
Q / aは2〜3が望ましい範囲である。因に、最適
な形状の一例を示せば、半導体チップ上面の被覆厚みt
は0.5nn、Q/aは2となる。
Therefore, the maximum tensile stress can be reduced by increasing Q/a. In other words, even if the thermal expansion coefficient of the coating resin is large, by making the coating shape appropriate,
Thermal fatigue resistance can be improved compared to bare chips. However, even if Q/a≧3.0 or more, the effect of reducing the maximum tensile stress will be reduced, but on the other hand, glass breakage will easily occur at the joint between the glass substrate 1 and the resin coating 7, and the entire resin coating 14 will be damaged. Considering the area limitation of
Q/a is preferably in the range of 2 to 3. Incidentally, to give an example of the optimal shape, the coating thickness t on the top surface of the semiconductor chip
is 0.5nn, and Q/a is 2.

次に、はんだバンプの形状について説明する。Next, the shape of the solder bump will be explained.

上述した被覆樹脂材料及び被覆形状についての実施例で
は、はんだバンプの形状が球欠体の場合として説明した
が、樹脂の変形に追従できるはんだバンプ形状、又はは
んだバンプにかかる応力を低減できる形状にすれば、#
熱疲労性は飛躍的に向上される筈である。
In the above-mentioned examples regarding the coating resin material and the coating shape, the solder bump shape was described as a rounded part, but the solder bump shape could be a shape that can follow the deformation of the resin or a shape that can reduce the stress applied to the solder bump. if,#
Thermal fatigue resistance should be dramatically improved.

そこで、はんだバンプの形状を第5図(A)〜(D)に
示す形状に形成し、熱疲労寿命と機械的強度とを実験的
に求めた。なお、第5図(A)〜(D)に示すはんだバ
ンプは全て同一体積とし、CCB法において半導体チッ
プと基板との間隙寸法を変えることによって、はんだバ
ンプの高さ及び中央部の径すを変えた。
Therefore, the shapes of solder bumps were formed as shown in FIGS. 5(A) to 5(D), and the thermal fatigue life and mechanical strength were experimentally determined. The solder bumps shown in FIGS. 5(A) to 5(D) all have the same volume, and by changing the gap size between the semiconductor chip and the substrate in the CCB method, the height and center diameter of the solder bumps can be adjusted. changed.

第6図は上述のように形成されたはんだバンプを有する
裸チップに対し、縦横の強制歪を与えたとき、熱疲労寿
命及び機械的強度がどのようになるかを示した線図であ
る。同図において、横軸にはんだバンプの中央の径すと
端子径Cの比b / cをとり、縦軸に第5図(D)に
示す球欠体型の熱疲労寿命を1とし、これに対する各形
状の熱疲労寿命を比で示すとともに、同様に圧縮強度又
は引張強度からなる機械的強度の比で示した。
FIG. 6 is a diagram showing how the thermal fatigue life and mechanical strength change when vertical and horizontal forced strain is applied to a bare chip having solder bumps formed as described above. In the same figure, the ratio b/c of the center diameter of the solder bump to the terminal diameter C is plotted on the horizontal axis, and the thermal fatigue life of the ball-cut type shown in FIG. 5 (D) is plotted as 1 on the vertical axis. The thermal fatigue life of each shape is shown as a ratio, and also as a ratio of mechanical strength consisting of compressive strength or tensile strength.

第6図図示曲線(I)に示すように、熱疲労寿命特性は
、b/cが大になるほど、即ち球欠体形状になるほど急
激に悪くなることが判る。このことは、はんだバンプ内
の応力分布がその形状によて大きく異なっているためで
ある。即ち、第5図(A)、(B)に示したb / c
 < 1のいわゆるつづみ型のはんだバンプにかかる応
力を有限要素法により求めたところ、第7図(A)に示
す分布となることが判った。同図において、矢印は各区
画領域における応力の方向とその大きさを表しており、
応力はほぼ一様に分布していることが判る。
As shown in the curve (I) in FIG. 6, it can be seen that the thermal fatigue life characteristics deteriorate rapidly as b/c increases, that is, as the shape becomes a truncated sphere. This is because the stress distribution within the solder bump varies greatly depending on its shape. That is, b/c shown in FIGS. 5(A) and (B)
When the stress applied to the so-called Tsuzumi-type solder bumps with < 1 was determined by the finite element method, it was found that the stress was distributed as shown in FIG. 7(A). In the figure, the arrows represent the direction and magnitude of stress in each section,
It can be seen that the stress is distributed almost uniformly.

これに対し、第5図(D)に示したb / c > 1
の球欠体型のはんだバンプの場合は、第7図(B)に示
す応力分布となり、両端の接合界面部に応力が集中し、
この部分から熱疲労破断が発生する。
On the other hand, b/c > 1 shown in Fig. 5(D)
In the case of a spherical solder bump, the stress distribution is shown in Figure 7 (B), and the stress is concentrated at the bonding interface at both ends.
Thermal fatigue fracture occurs from this part.

また、はんだバンプの高さが大になるつづみ型ものにあ
っては、一定量の変形に対して歪は相対的に小さくなる
ことから、熱疲労寿命が向上されるのである。しかし、
b / cをさらに小さくした極端なつづみ型にすると
、応力が中央部に集中するようになるのと、第6図図中
曲線(II)で示す機械的強度が低下するので、はんだ
バンプが破断してしまうことから、熱疲労寿命の増大が
おさえられてしまう。
In addition, in the case of a solder bump type in which the height of the solder bump is large, the strain becomes relatively small for a certain amount of deformation, so the thermal fatigue life is improved. but,
If b/c is made even smaller to make the solder bump shape more extreme, the stress will be concentrated in the center and the mechanical strength shown by curve (II) in Figure 6 will decrease, so the solder bumps will be Since it breaks, the increase in thermal fatigue life is suppressed.

従って、はメツだバンプの形状は少なくともb/c=1
の円柱型とし、好ましくは0.5≦b / cくlの範
囲のつづみ型とするのがよい。
Therefore, the shape of the bump is at least b/c=1
It is preferable to have a cylindrical shape, preferably a cylindrical shape in the range of 0.5≦b/cc.

ところで、上述は裸チップのものであるが、樹脂被覆を
施したものの場合は、樹脂の熱膨張係数が大であること
から、はんだバンプの形状としては大きな変形量に対し
て追従できるものが望ましい、この点についても、つづ
み型は高さが大きいことから、前述したように、一定変
形量に対し相対的に歪が小さくなるので望ましいことに
なる。
By the way, the above description is of a bare chip, but in the case of a resin-coated chip, since the coefficient of thermal expansion of the resin is large, it is desirable that the shape of the solder bump can follow a large amount of deformation. In this respect as well, the tsume type is desirable because it has a large height and, as mentioned above, the strain is relatively small for a given amount of deformation.

例えば、第8図(A)に示すように、はんだバンプ10
はつづみ型のものとし、低膨張化エポキシ樹脂からなる
樹脂被rI111を施した場合、はんだバンプ10に作
用する変形応力は、同図(B)の矢印12.13に示す
縦・横方向に作用する。
For example, as shown in FIG. 8(A), solder bumps 10
When the solder bump 10 is made into a hazel shape and is coated with a resin coating rI111 made of a low-expansion epoxy resin, the deformation stress acting on the solder bump 10 will be in the vertical and horizontal directions as shown by the arrows 12.13 in the same figure (B). act.

第8図(A)、(B)図示のものにおいて、ガラス基板
1の熱膨張係数をα□Siチップ3の熱膨張係数をαS
8、樹脂被覆11の熱膨張係数をαR1横方向最大変形
量をΔQx、縦方向最大変形量をΔQy、Siチップ3
の1辺を2a、はんだバンプ10の高さをh、せん断歪
をγ、軸方向歪をε、温度変化量をへT、定数をに1.
 k2. A。
8(A) and (B), the thermal expansion coefficient of the glass substrate 1 is α□The thermal expansion coefficient of the Si chip 3 is αS
8. The thermal expansion coefficient of the resin coating 11 is αR1, the maximum horizontal deformation is ΔQx, the vertical maximum deformation is ΔQy, and the Si chip 3
One side of is 2a, the height of the solder bump 10 is h, the shear strain is γ, the axial strain is ε, the amount of temperature change is T, and the constant is 1.
k2. A.

合計歪をE、熱疲労寿命をNtとすると、次式(1)〜
(5)が成立する。
If the total strain is E and the thermal fatigue life is Nt, then the following formula (1) ~
(5) holds true.

ΔQx”a  (at  ass)  ΔT     
 ・(L)Δ12y=hαRΔT          
  ・・・(2)γ=に、IIQX        ・
・・(3)・−に、AQy        ・・・(4
)II Nt  ”A・□=A           ・・・(
5)R2γ2+ε2 これらの式から、はんだバンプの高さhが大であれば、 樹脂被覆の熱膨張によって生ずるΔ氾χ。
ΔQx”a (at ass) ΔT
・(L)Δ12y=hαRΔT
...(2) γ=, IIQX ・
... (3) -, AQy ... (4
) II Nt ”A・□=A ・・・(
5) R2γ2+ε2 From these equations, if the height h of the solder bump is large, ∆ flood χ caused by thermal expansion of the resin coating.

AQyに対し、歪γ、εは小さくなる。Strains γ and ε become smaller with respect to AQy.

したがって、っづみ型のはんだバンプとすることにより
、はんだバンプ高さhが大であることから歪が小さくな
り、しかも応力集中が緩和されることから、はんだバン
プと半導体チップとの接合部の破損が低減されて、耐熱
疲労性が著るしく向上するという効果がある。
Therefore, by using the solder bump type, the solder bump height h is large, so the strain is small, and the stress concentration is alleviated, resulting in damage to the joint between the solder bump and the semiconductor chip. This has the effect of significantly improving thermal fatigue resistance.

なお、はんだの熱膨張係数は約25X10−’/℃程度
であり、低膨張化エポキシ樹脂と同等であることから、
はんだバンプ自体が樹脂被覆によって拘束されることは
少ない。
Note that the thermal expansion coefficient of solder is approximately 25 x 10-'/°C, which is equivalent to a low-expansion epoxy resin.
The solder bump itself is rarely restrained by the resin coating.

以上、本発明の被覆樹脂材料、被覆形状、及びはんだバ
ンプ形状をそれぞれ個別に適用した実施例について説明
したが、それらの実施例を組み合わせることによって、
−層耐熱疲労特性に優れたものとすることができること
は言うまでもない。
The embodiments in which the coating resin material, coating shape, and solder bump shape of the present invention are applied individually have been described above, but by combining these embodiments,
- It goes without saying that the layer can be made to have excellent thermal fatigue resistance.

なお、半導体チップの半導体素子が形成されている面は
、はんだバンプが接合されている面であるが、一般にこ
の面にはSiO□又はポリイミドなどの薄膜により保護
されている。しかし、はんだバンプが接合される部分は
それらの薄膜が形成されていないため、耐湿性の問題に
ついて考察する。一般に知られているD I P (D
ual InlinePackage )型の樹脂モー
ルド半導体装置にあっては、リードフレームのタブ上に
Siチップが接続され、素子側の端子はアルミニウム(
AQ)線を超音波ボンディング法により接続し、その全
体を樹脂モールドした構造となっている。ところが、リ
ード線と樹脂の界面を伝わって水分が侵入し。
Note that the surface of the semiconductor chip on which the semiconductor element is formed is the surface to which the solder bumps are bonded, and this surface is generally protected by a thin film of SiO□ or polyimide. However, since these thin films are not formed in the areas where the solder bumps are bonded, we will consider the issue of moisture resistance. The commonly known D I P (D
In a resin-molded semiconductor device of the ual InlinePackage) type, the Si chip is connected to the tab of the lead frame, and the terminals on the element side are made of aluminum (
AQ) wires are connected by ultrasonic bonding, and the entire structure is resin molded. However, moisture entered through the interface between the lead wire and the resin.

さらにAQ線にまで伝わってAQlJAを腐食したり、
Al1線と素子の接合界面を腐食させて断線等の故障が
発生していた。
Furthermore, it may be transmitted to the AQ line and corrode AQlJA,
The bonding interface between the Al1 wire and the element corroded, causing failures such as wire breakage.

しかし、本発明に係るCCB法により形成された構造の
樹脂被覆されたものによれば、樹脂被覆部分に上記DI
Pのリードの如き引出し線が無いこと、半導体チップ周
囲の被覆幅が大きいのでガラス基板と樹脂の界面から水
分は侵入しにくいこと、及びはんだ(Pb−5%Sn、
Pb−60%Sn)はAQ線に比べて耐食性に優れてい
ることなどから、総じて耐湿性に優れていると言うこと
ができる。
However, according to the resin-coated structure formed by the CCB method according to the present invention, the resin-coated portion has the above-mentioned DI.
There are no lead wires such as P leads, the coating width around the semiconductor chip is large, so it is difficult for moisture to enter from the interface between the glass substrate and the resin, and the solder (Pb-5%Sn,
Since Pb-60%Sn) has better corrosion resistance than AQ wire, it can be said that it has better moisture resistance overall.

さらに、厳しく耐湿性を要求される場合には。Furthermore, when moisture resistance is strictly required.

第9図に示すように、柔軟なシリコンゲル14を半導体
チップ3の下に充填する2液被覆法が有効である。シリ
コンゲル14は柔軟なことからはんだバンプ5表面、ガ
ラス基板上表面及び半導体チップ3表面との馴じみが良
く、水分の侵入を阻止することができる。しかん、シリ
コンゲル14の熱膨張係数は約tooxlo−’/’C
と大きいので、はんだバンプ5の表面を薄く被覆する程
度が望ましい、また、樹脂被覆11とガラス基板1との
界面に防湿効果を有するアクリル樹脂膜15を予め薄く
コーティングしておくと、ガラス割れを防止することが
できる。
As shown in FIG. 9, a two-liquid coating method in which a flexible silicone gel 14 is filled under the semiconductor chip 3 is effective. Since the silicone gel 14 is flexible, it fits well with the surface of the solder bump 5, the upper surface of the glass substrate, and the surface of the semiconductor chip 3, and can prevent moisture from entering. However, the coefficient of thermal expansion of the silicone gel 14 is about tooxlo-'/'C.
Therefore, it is desirable to coat the surface of the solder bump 5 thinly.Also, if the interface between the resin coating 11 and the glass substrate 1 is thinly coated with an acrylic resin film 15 having a moisture-proofing effect in advance, glass cracking can be prevented. It can be prevented.

次に、第10図に示した一実施例装置により、はんだバ
ンプ形状を所望のっづみ型に形成する方法について説明
する。
Next, a method of forming a solder bump shape into a desired shape using the apparatus shown in FIG. 10 will be described.

第10図に示す装置は、ガラス基板1に半導体チップ3
をCCB法により接合する装置である。
The device shown in FIG. 10 has a semiconductor chip 3 on a glass substrate 1.
This is a device that joins materials using the CCB method.

また、ガラス基板1は液晶表示装置の表示素子16の基
板を兼ねているものの例である。
Further, the glass substrate 1 is an example of one that also serves as a substrate for a display element 16 of a liquid crystal display device.

本製法は、ソーダガラス等のガラス基板1は急激に加熱
すると割れる恐れがあり、また液晶の表示素子16等に
対する熱影響を軽減するため、半導体チップ3を予熱し
た後、ガラス基板1を透過させて赤外線をはんだバンプ
5に一定時間照射して溶融させ、そして半導体チップ3
とガラス基板lの間隔を引き伸して、はんだバンプ5の
形状を所望形状に形成しようとすることにある。
In this manufacturing method, the glass substrate 1 made of soda glass or the like may break if heated rapidly, and in order to reduce the heat effect on the liquid crystal display element 16, etc., the semiconductor chip 3 is preheated, and then the glass substrate 1 is allowed to pass through the glass substrate 1. The solder bumps 5 are irradiated with infrared rays for a certain period of time to melt them, and then the semiconductor chip 3 is
The purpose is to extend the distance between the glass substrate 1 and the glass substrate 1 to form the solder bumps 5 into a desired shape.

第10図に示すように、予め蒸着法等により電極端子面
にはんだが盛られた半導体チップ3を、その電極端子面
を上側にして予熱板21上に載置する。その半導体チッ
プ3の上にガラス基板1を対向する電極端子の位置を合
わせて載置する。液晶の許容温度は最大130℃である
ことから、予熱板21とは熱的に遮へいするようにして
いる。
As shown in FIG. 10, a semiconductor chip 3 whose electrode terminal surfaces are coated with solder in advance by vapor deposition or the like is placed on a preheating plate 21 with its electrode terminal surfaces facing upward. The glass substrate 1 is placed on the semiconductor chip 3 with the opposing electrode terminals aligned. Since the maximum permissible temperature of the liquid crystal is 130° C., it is designed to be thermally shielded from the preheating plate 21.

はんだの組成は耐熱疲労性に優れたPb−5%Sn(融
点約310℃)とし、電極端子上のはんだに予めロジン
系フラックスを塗布した。
The composition of the solder was Pb-5% Sn (melting point: about 310° C.), which has excellent thermal fatigue resistance, and rosin-based flux was applied to the solder on the electrode terminals in advance.

接合工程を第1を図に示したはんだバンプ5の実測温度
の時間変化曲線を参照しながら説明する6まず、予熱ヒ
ータ22により半導体チップ3側から接合部全体を10
0℃程度に予熱する。しかる後、赤外線ランプ23によ
りはんだバンプ5部に赤外線を照射する0次に、はんだ
が溶融すると同時にチップ吸引装置24を開動して、基
板1と半導体チップ3の間隔を所定間隔25に引伸ばす
The bonding process will be explained with reference to the time change curve of the measured temperature of the solder bump 5 shown in the first figure.6 First, the entire bonding portion is heated from the semiconductor chip 3 side using the preheating heater 22.
Preheat to around 0℃. Thereafter, the solder bumps 5 are irradiated with infrared rays by the infrared lamp 23, and at the same time as the solder melts, the chip suction device 24 is activated to extend the distance between the substrate 1 and the semiconductor chip 3 to a predetermined distance 25.

これと同時に、赤外線うシブ23、予熱ヒータ22を切
り、冷却管26に冷却水を通して冷却し、はんだバンプ
を凝固させるようにする。なお、はんだの溶融時間は約
15秒であり、その間にチップ吸引装W24が作動して
初期間隔27から所定間隔2Sに引伸ばされる。この引
伸ばしに要する時間は約1秒程度である。また、はんだ
バンプ5の形状は、予熱板21の突起高さ28を調整す
ることにより変えることができる。
At the same time, the infrared rays 23 and preheater 22 are turned off, and cooling water is passed through the cooling pipe 26 to cool the solder bumps and solidify them. The melting time of the solder is approximately 15 seconds, during which time the chip suction device W24 is operated to extend the initial distance 27 to the predetermined distance 2S. The time required for this stretching is about 1 second. Further, the shape of the solder bump 5 can be changed by adjusting the protrusion height 28 of the preheating plate 21.

なお、はんだ組成は、上記のものに代えて。In addition, the solder composition is replaced with the one mentioned above.

Pb−60%Sn(融点191℃)を用いてもよく、そ
の場合低融点でCCB接合可能であることから、熱影響
を避けたい基板等の場合には好適である。
Pb-60%Sn (melting point: 191° C.) may be used, and in that case, CCB bonding is possible at a low melting point, so it is suitable for substrates where it is desired to avoid heat effects.

また、アルミナ基板等のように赤外線を透過しないもの
には適用することはできず、周知の方法(特開昭50−
131647号公報)の如く、半導体チップ側から加熱
溶融させるようにしなければならない。
In addition, it cannot be applied to materials that do not transmit infrared rays, such as alumina substrates, and the well-known method (Japanese Patent Application Laid-Open No.
131647), the semiconductor chip must be heated and melted from the side.

上述の製法は、上面に電極膜の形成されたガラス基板に
、半導体チップをCCB接合してなる構造のものに適用
した実施例であるが、以下に述べる構造を有する半導体
装置にも適用可能であり、同様の効果を得ることができ
る。
The above manufacturing method is an example in which it is applied to a structure in which a semiconductor chip is CCB bonded to a glass substrate on which an electrode film is formed, but it can also be applied to a semiconductor device having the structure described below. Yes, you can get the same effect.

第12図に示す実施例は、スルーホールビン型の低膨張
多層プリント基板3工に適用したものであり、同図(A
)は断面構造図、(B)は半導体チップ3の下面図、(
C)は多層プリント基板31の下面図である。図に示す
ように、電極端子数の多い半導体チップ(例えば超LS
Iにあっては端子数が200個以上にも達する)の場合
、ワイヤボンディング方式で基板の端子と接続すること
は困難である。したがって、CCB法による接合構造が
好適であり、上記製法を適用することによって、耐熱疲
労性に優れた信頼性の高いものとすることができる。
The embodiment shown in Fig. 12 is applied to three through-hole bottle-type low-expansion multilayer printed circuit boards.
) is a cross-sectional structural diagram, (B) is a bottom view of the semiconductor chip 3, (
C) is a bottom view of the multilayer printed circuit board 31. As shown in the figure, semiconductor chips with a large number of electrode terminals (for example, ultra-LS
In the case of I, the number of terminals reaches 200 or more), it is difficult to connect to the terminals of the board by wire bonding. Therefore, a bonded structure based on the CCB method is suitable, and by applying the above manufacturing method, a highly reliable structure with excellent thermal fatigue resistance can be obtained.

なお、多層プリント基板31としては、ガラスもしくは
セラミック材料からなる単一基板、又はガラス繊維含有
エポキシ、ガラス繊維含有ポリイミドもしくは高弾性率
高強力繊維を含有するエポキシ又はポリイミド多層基板
等が知られている。
As the multilayer printed circuit board 31, a single substrate made of glass or ceramic material, a glass fiber-containing epoxy, a glass fiber-containing polyimide, or an epoxy or polyimide multilayer substrate containing high elastic modulus and high strength fibers are known. .

なお、高弾性率高張力繊維の具体例としては、ケプラー
(米国デュポン社製)が知られている。また、多層セラ
ミック基板等にも適用可能なことは言うまでもない。
Note that Kepler (manufactured by DuPont, USA) is known as a specific example of the high elastic modulus and high tensile strength fiber. It goes without saying that it is also applicable to multilayer ceramic substrates and the like.

第13図は、第12図図示実施例のものに放熱フィン3
3をはんだ34により取付けたものである。半導体チッ
プ3の上面にCr −Cu −A uをメタライズし、
はんだ34ははんだバンプ5よりも一段低融点のはんだ
を用いる0例えば、はんだバンプ5がPb−5%Snで
あれば、はんだ34はPb−60%Sn、5n−3,5
%Ag(融点約220℃)、Au−20%Sn(融点2
80℃)等を用いる。また、半導体チップ3の発熱量に
よって、要求される放熱特性が緩やかな場合には、第1
4図に示すように、放熱フィン33を樹脂接着とすれば
、被[樹脂により一度で接合させることができ、製作工
程が簡単化される。
FIG. 13 shows the radiation fin 3 of the embodiment shown in FIG.
3 is attached with solder 34. Metallize Cr-Cu-Au on the top surface of the semiconductor chip 3,
For example, if the solder bump 5 is Pb-5%Sn, the solder 34 is Pb-60%Sn, 5n-3,5.
%Ag (melting point approximately 220°C), Au-20%Sn (melting point 2
80°C) etc. In addition, if the required heat dissipation characteristics are moderate depending on the amount of heat generated by the semiconductor chip 3, the first
As shown in FIG. 4, if the heat dissipation fins 33 are bonded with resin, they can be bonded in one step using the resin, which simplifies the manufacturing process.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、耐衝撃、耐振動
等に優れている樹脂被覆型の効果に加えて。
As explained above, according to the present invention, in addition to the effects of the resin-coated type, which is excellent in shock resistance, vibration resistance, etc.

耐熱疲労性が向上されるという効果がある。This has the effect of improving thermal fatigue resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例の断面構造図、第2図(A)。 CB)はそれぞれ本発明の一実施例の故障率を示す線図
、第3図(A)は被覆厚と応力との関係の一例を示す線
図であり、同図(B)、(C)はその説明図、第4図(
A)は半導体チップ幅に対する被覆幅と応力との関係の
一例を示す線図であり、同図(B)、(c)はその説明
図、第5図(A)〜(D)ははんだバンプの形状図、第
6図ははんだバンプ形状と熱疲労寿命及び機械的強度と
の関係を示す線図、第7図(A)、(B)ははんだバン
プの応力分布図、第8図(A)は本発明の一実施例の断
面構造図、同図(B)は説明図、第9図は本発明の他の
実施例の断面構造図、第10図は本発明法の適用された
CCBC合接による装置の構成図、第11図は第10図
図示実施例の動作説明のためのはんだバンプ温度を示す
線図、第12図(A)〜(C)、第13図及び第14図
は本発明の他の実施例の構造図ぐある。 1・・・ガラス基板、2・・・電極端子、3・・・半導
体チップ、5・・・はんだバンプ、7,11・・・被覆
樹脂、10・・・はんだバンプ、15・・・アクリル樹
脂膜、31・・・多層プリント基板。
FIG. 1 is a cross-sectional structural diagram of a conventional example, and FIG. 2 (A). CB) is a diagram showing the failure rate of an embodiment of the present invention, FIG. 3(A) is a diagram showing an example of the relationship between coating thickness and stress, and FIG. is its explanatory diagram, Figure 4 (
A) is a diagram showing an example of the relationship between coating width and stress with respect to the semiconductor chip width, FIGS. 5(B) and 5(c) are explanatory diagrams, and FIGS. Figure 6 is a diagram showing the relationship between solder bump shape, thermal fatigue life and mechanical strength, Figures 7 (A) and (B) are stress distribution diagrams of solder bumps, and Figure 8 (A ) is a cross-sectional structural diagram of one embodiment of the present invention, FIG. 9 (B) is an explanatory diagram, FIG. 9 is a cross-sectional structural diagram of another embodiment of the present invention, and FIG. 11 is a diagram showing the solder bump temperature for explaining the operation of the embodiment shown in FIG. 10; FIGS. 12(A) to (C); FIGS. 13 and 14; FIG. is a structural diagram of another embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Glass substrate, 2...Electrode terminal, 3...Semiconductor chip, 5...Solder bump, 7, 11...Coating resin, 10...Solder bump, 15...Acrylic resin Film, 31...Multilayer printed circuit board.

Claims (1)

【特許請求の範囲】[Claims] 1、液状エポキシ樹脂100重量部、液状ポリブタジエ
ン系ゴム1〜20重量部、ジシアンジアミド0〜10重
量部、カップリング材0〜2重量部、イミダゾール0.
5〜5重量部からなる樹脂と、全体として20〜65体
積%を占める石英粉とからなることを特徴とする樹脂組
成物。
1. 100 parts by weight of liquid epoxy resin, 1 to 20 parts by weight of liquid polybutadiene rubber, 0 to 10 parts by weight of dicyandiamide, 0 to 2 parts by weight of coupling agent, 0.
A resin composition characterized by comprising a resin comprising 5 to 5 parts by weight and quartz powder accounting for 20 to 65% by volume as a whole.
JP1325234A 1989-12-15 1989-12-15 Manufacturing method of semiconductor device Expired - Lifetime JPH0639563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325234A JPH0639563B2 (en) 1989-12-15 1989-12-15 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325234A JPH0639563B2 (en) 1989-12-15 1989-12-15 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58171992A Division JPS6063951A (en) 1983-09-16 1983-09-16 Semiconductor device and manufacture thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2246822A Division JPH03245558A (en) 1990-09-17 1990-09-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPH0341146A true JPH0341146A (en) 1991-02-21
JPH0639563B2 JPH0639563B2 (en) 1994-05-25

Family

ID=18174528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325234A Expired - Lifetime JPH0639563B2 (en) 1989-12-15 1989-12-15 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0639563B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130112A (en) * 1996-03-19 2000-10-10 Hitachi, Ltd. Semiconductor device
WO2000052739A3 (en) * 1999-03-03 2001-01-11 Intel Corp A controlled collapse chip connection (c4) integrated circuit package that has a filler which seals an underfill material
US6528345B1 (en) 1999-03-03 2003-03-04 Intel Corporation Process line for underfilling a controlled collapse
JP2005183777A (en) * 2003-12-22 2005-07-07 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
US7019410B1 (en) * 1999-12-21 2006-03-28 Micron Technology, Inc. Die attach material for TBGA or flexible circuitry
US7141448B2 (en) 1999-03-03 2006-11-28 Intel Corporation Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials
US7239068B2 (en) * 2002-03-29 2007-07-03 Fujitsu Media Devices Limited Method for mounting surface acoustic wave element and surface acoustic wave device having resin-sealed surface acoustic wave element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756954A (en) * 1980-09-22 1982-04-05 Hitachi Ltd Resin-sealed electronic parts
JPS57131223A (en) * 1981-02-06 1982-08-14 Hitachi Ltd Resin composition
JPS57180626A (en) * 1981-04-30 1982-11-06 Hitachi Ltd Thermosetting resin composition
JPS5834824A (en) * 1981-08-26 1983-03-01 Sumitomo Bakelite Co Ltd Epoxy resin composition and its production
JPS5873126A (en) * 1981-10-27 1983-05-02 Seiko Keiyo Kogyo Kk Mounting method of semiconductor device
JPS58107641A (en) * 1981-12-21 1983-06-27 Seiko Keiyo Kogyo Kk Sealing method for semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756954A (en) * 1980-09-22 1982-04-05 Hitachi Ltd Resin-sealed electronic parts
JPS57131223A (en) * 1981-02-06 1982-08-14 Hitachi Ltd Resin composition
JPS57180626A (en) * 1981-04-30 1982-11-06 Hitachi Ltd Thermosetting resin composition
JPS5834824A (en) * 1981-08-26 1983-03-01 Sumitomo Bakelite Co Ltd Epoxy resin composition and its production
JPS5873126A (en) * 1981-10-27 1983-05-02 Seiko Keiyo Kogyo Kk Mounting method of semiconductor device
JPS58107641A (en) * 1981-12-21 1983-06-27 Seiko Keiyo Kogyo Kk Sealing method for semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130112A (en) * 1996-03-19 2000-10-10 Hitachi, Ltd. Semiconductor device
WO2000052739A3 (en) * 1999-03-03 2001-01-11 Intel Corp A controlled collapse chip connection (c4) integrated circuit package that has a filler which seals an underfill material
US6238948B1 (en) 1999-03-03 2001-05-29 Intel Corporation Controlled collapse chip connection (C4) integrated circuit package that has a fillet which seals an underfill material
US6528345B1 (en) 1999-03-03 2003-03-04 Intel Corporation Process line for underfilling a controlled collapse
US7141448B2 (en) 1999-03-03 2006-11-28 Intel Corporation Controlled collapse chip connection (C4) integrated circuit package which has two dissimilar underfill materials
US7019410B1 (en) * 1999-12-21 2006-03-28 Micron Technology, Inc. Die attach material for TBGA or flexible circuitry
US7239068B2 (en) * 2002-03-29 2007-07-03 Fujitsu Media Devices Limited Method for mounting surface acoustic wave element and surface acoustic wave device having resin-sealed surface acoustic wave element
JP2005183777A (en) * 2003-12-22 2005-07-07 Nichia Chem Ind Ltd Semiconductor device and its manufacturing method
JP4496774B2 (en) * 2003-12-22 2010-07-07 日亜化学工業株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH0639563B2 (en) 1994-05-25

Similar Documents

Publication Publication Date Title
US6627997B1 (en) Semiconductor module and method of mounting
US6784541B2 (en) Semiconductor module and mounting method for same
US5864178A (en) Semiconductor device with improved encapsulating resin
US6674172B2 (en) Flip-chip package with underfill having low density filler
JP2723123B2 (en) Chip carrier with protective coating for circuit forming surface
EP0189791A2 (en) Solder interconnection structure for joining semiconductor devices to substrates, and process for making
JPH08195414A (en) Semiconductor device
JP2000036552A (en) Semiconductor device and separately taking out method of metal component in sealing material used therein
JP4206631B2 (en) Thermosetting liquid sealing resin composition, method for assembling semiconductor element, and semiconductor device
JP3999840B2 (en) Resin sheet for sealing
US5895976A (en) Microelectronic assembly including polymeric reinforcement on an integrated circuit die, and method for forming same
JPH0341146A (en) Resin composition
US6680436B2 (en) Reflow encapsulant
JPH03245558A (en) Semiconductor device
JPS6063951A (en) Semiconductor device and manufacture thereof
JPH1187424A (en) Semiconductor device and production thereof
JP3779091B2 (en) Resin composition for sealing
JPS6124253A (en) Structure for semiconductor package
JP3125137B2 (en) Semiconductor device
JP5105099B2 (en) Liquid epoxy resin composition for semiconductor encapsulation, and flip chip type semiconductor device encapsulated using it as an underfill material
JP2000269387A (en) Semiconductor sealing resin and semiconductor device using the same
JP2001207031A (en) Resin composition for semiconductor sealing and semiconductor device
JPH08162573A (en) Semiconductor device
JPH05175262A (en) Resin sealing semiconductor device
JPH09172110A (en) Semiconductor device