JPH0340015B2 - - Google Patents

Info

Publication number
JPH0340015B2
JPH0340015B2 JP58197558A JP19755883A JPH0340015B2 JP H0340015 B2 JPH0340015 B2 JP H0340015B2 JP 58197558 A JP58197558 A JP 58197558A JP 19755883 A JP19755883 A JP 19755883A JP H0340015 B2 JPH0340015 B2 JP H0340015B2
Authority
JP
Japan
Prior art keywords
reaction
oxidation
dipn
nda
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58197558A
Other languages
Japanese (ja)
Other versions
JPS6089445A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58197558A priority Critical patent/JPS6089445A/en
Priority to EP84112596A priority patent/EP0142719B1/en
Priority to DE8484112596T priority patent/DE3464595D1/en
Publication of JPS6089445A publication Critical patent/JPS6089445A/en
Priority to US06/883,479 priority patent/US4709088A/en
Publication of JPH0340015B2 publication Critical patent/JPH0340015B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(a) 産業上の利用分野 本発明は、2,6−ジイソプロピルナフタレン
又はその酸化中間体を分子状酸素により酸化して
2,6−ナフタレンジカルボン酸を製造する方法
に関するものである。更に詳しくは該酸化を脂肪
族モノカルボン酸含有溶媒中重金属及び臭素を含
む触媒の存在下に行つて目的とする2,6−ナフ
タレンジカルボン酸を極めて高い収率で得る方法
に関するものである。 (b) 従来技術 2,6−ナフタレンジカルボン酸(以下これを
“NDA”と略称することがある)或いはそのエス
テル、酸クロライドの如き誘導体は、種々のポリ
エステル、ポリアミドなどの二塩基酸成分として
価値ある化合物であり、殊にNDAとエチレング
リコールとから形成されるポリエチレンナフタレ
ートは、ポリエチレンテレフタレートと較べて耐
熱性、機械的特性がより優れており、フイルムや
繊維製品を与える重合体として有用である。 従来、NDAの製造法としては2,6−ジメチ
ルナフタレンの酸化反応、例えば2,6−ジメチ
ルナフタレンを酢酸溶媒中コバルト、マンガン及
び臭素よりなる触媒の存在下に分子状酸素と接触
酸化せしめる方法が知られている。この方法は
2,6−ジメチルナフタレンからNDAへの酸化
自体は比較的容易であり、目的とするNDAを比
較的高純度且つ高収率で得ることができる。 しかしこの方法における原料である2,6−ジ
メチルナフタレンはその製造法が煩雑であり、大
量且つ安価に得ることは困難である。すなわち、
ナフタレンのメチル化、ジメチルナフタレンの異
性化、モノメチルナフタレンの不均化、その他ト
ランス・アルキル化法などが2,6−ジメチルナ
フタレンの合成法として知られているが、これら
の方法はいずれも2,6−ジメチルナフタレン以
外の他の異性体、殊に2,7−ジメチルナフタレ
ンの生成を避けることができず、混合ジメチルナ
フタレンからの2,6体の単離は2,7一体と融
点、沸点、溶解特性が極めて近似乃至類似してい
るため極めて困難であつた。 一方これに比べて、ジイソプロピルナフタレン
は、ナフタレンとプロピレンとから容易に合成す
ることが出来、混合ジイソプロピルナフタレンか
ら2,6一体の分離、その他アルキル化、不均
化、異性化、トランス・アルキル化も比較的容易
である。 しかし乍ら、本発明者らの研究によれば、2,
6−ジイソプロピルナフタレン(以下これを
“DIPN”と略称することがある)の酸化反応は、
上記公知に従つて酸化すると、P−キシレンや
2,6−ジメチルナフタレンを酸化するに適した
反応条件下では、NDAの収率は極めて低くまた、
多量の副生成物が生成するために得られるNDA
の純度も低く、従つて上記公知方法によつて工業
的にDIPNからNDAを得ることは到底不可能で
あつた(比較例1参照)。 前述したコバルト・マンガンの如き重金属と臭
素よりなる触媒を使用し、脂肪族モノカルボン酸
溶媒中で酸化する方法において種々のアルキル置
換芳香族炭化水素、殊にジメチルナフタレンに代
表されるアルキル置換ナフタレン類を酸化する場
合に、目的生成物が低収率で得られなかつたり或
いはその純度が低い場合には、従来その改善策と
して次の如き2つの方法が採用されている。 その一つはこの酸化反応を多段階に分割し低温
の初期反応から段階的又は連続的に順次反応温度
を高くして反応を完結せしめるいわゆる多段階昇
温反応法である。 例えば、特開昭52−17453号公報には、2,6
−ジメチルナフタレンを100℃および190℃の二段
階の温度で酸化し収率91%でNDAが得られる例
(190℃−段階の酸化では74%)が記載されてい
る。 しかし、このような多段階昇温反応法をDIPN
の酸化の場合に応用しても生成TNA収率は高々
50%程度にしかならず工業的とは言い難い(後述
する比較例2参照)。 改善策のもう一つはこの酸化反応を反応系中の
原料の対溶媒濃度を低く保持して反応させるいわ
ゆる原料低濃度酸化法である。 例えば特公昭56−3337号公報、特開昭50−
142544号公報、特開昭52−7945号公報等には夫々
ジメチル・ナフタレン類およびアセナフテンの酸
化において原料低濃度酸化法を用いて比較的高収
率にNDAまたは対応するナフトエ酸が得られる
事が記載されている。 しかし、このような原料低濃度酸化法をDIPN
の酸化反応の場合に応用しても生成NDA収率は
なお工業的に満足とは言い難い(後述する比較例
3、4、5、6参照)。 このようにDIPNの酸化によるNDAの製造は
アルキル芳香族炭化水素の酸化において従来最も
強力な酸化法と言われる重金属と臭素を用いる酸
化反応の知られた条件を用いても、同法に対する
従来の知見の応用のみではなお充分とは言えず、
従つてこれまでこのような方法によるDIPNから
のNDA製造は工業的に全く顧みられる事がなか
つた。 このように前記DIPNの酸化が満足すべき結果
が得られなかつた理由は、明確には判らないが本
発明者らは多くの実験から、DIPNの酸化におい
ては、その他のアルキル置換芳香族炭化水素の酸
化の場合と異なり反応初期における酸化中間体の
生成が異常に速やかであり、それに伴つて酸化反
応混合物中の触媒が一時的に実質上活性を失いそ
のために目的とする酸化が充分に進行せず、むし
ろ副反応が促進されるためであろうと推察してい
る。かくして本発明者らはDIPNの酸化におい
て、前記副反応によるNDAの収率低下を抑制す
ることを目的として研究を進めた結果、DIPN又
はその酸化中間体を酸化して2,6−ナフタレン
ジカルボン酸(NDA)を酸化する場合、被酸化
物1モルを酸化するために使用される、コバルト
及び/又はマンガンを従来知られている量よりも
遥かに多く使用すると、意外にもNDAの収率が
飛躍的増大することを見出し本発明に到達した。 すなわち本発明はDIPN又はその酸化中間体を
炭素数3以下の脂肪族モノカルボンを少くとも50
重量%含有する溶媒中で分子状酸素により酸化し
2,6−ナフタレンジカルボン酸を製造する方法
において、該酸化を、 (i) コバルト及び/又はマンガンよりなる重金属
及び (ii) 臭素 よりなる触媒の存在下且つ2,6−ジイソプロピ
ルナフタレン又はその酸化中間体を酸化するため
にその1モル当り重金属を少くとも0.2モル使用
して行うことを特徴とする方法である。 本発明において出発原料は2,6−ジイソプロ
ピルナフタレン(DIPN)又はその酸化中間体で
あり、それらは高純度のものが好ましいが必ずし
も純粋である必要はなく、酸化反応に対する影響
或いは生成するNDAの純度、着色に許容される
範囲で他の成分を含んでいてもよい。DIPNの酸
化中間体とは、DIPNの酸化によつて生成し、ま
た反応系内において酸化されることによつて最終
的に目的とするNDAを与えるものである。そこ
で本発明の出発原料を、具体的に示すと下記一般
式() 〔但し式中R1
(a) Industrial Application Field The present invention relates to a method for producing 2,6-naphthalene dicarboxylic acid by oxidizing 2,6-diisopropylnaphthalene or its oxidized intermediate with molecular oxygen. More specifically, the present invention relates to a method for obtaining the desired 2,6-naphthalene dicarboxylic acid in an extremely high yield by carrying out the oxidation in a solvent containing an aliphatic monocarboxylic acid in the presence of a catalyst containing heavy metals and bromine. (b) Prior art 2,6-naphthalene dicarboxylic acid (hereinafter sometimes abbreviated as "NDA") or its derivatives such as esters and acid chlorides are valuable as dibasic acid components of various polyesters, polyamides, etc. Certain compounds, particularly polyethylene naphthalate formed from NDA and ethylene glycol, have better heat resistance and mechanical properties than polyethylene terephthalate, and are useful as polymers for producing films and textile products. . Conventionally, NDA has been produced by an oxidation reaction of 2,6-dimethylnaphthalene, for example, a method in which 2,6-dimethylnaphthalene is catalytically oxidized with molecular oxygen in an acetic acid solvent in the presence of a catalyst consisting of cobalt, manganese, and bromine. Are known. In this method, the oxidation itself of 2,6-dimethylnaphthalene to NDA is relatively easy, and the desired NDA can be obtained with relatively high purity and high yield. However, the manufacturing method for 2,6-dimethylnaphthalene, which is a raw material in this method, is complicated, and it is difficult to obtain it in large quantities at low cost. That is,
Methylation of naphthalene, isomerization of dimethylnaphthalene, disproportionation of monomethylnaphthalene, and other trans-alkylation methods are known as methods for synthesizing 2,6-dimethylnaphthalene. The production of isomers other than 6-dimethylnaphthalene, especially 2,7-dimethylnaphthalene, cannot be avoided, and the isolation of 2,6 isomer from mixed dimethylnaphthalene has a melting point, boiling point, This was extremely difficult because the solubility characteristics were extremely similar. On the other hand, diisopropylnaphthalene can be easily synthesized from naphthalene and propylene, and can be easily synthesized from mixed diisopropylnaphthalene by separation of 2,6 monomers and other alkylation, disproportionation, isomerization, and trans-alkylation. It's relatively easy. However, according to the research of the present inventors, 2.
The oxidation reaction of 6-diisopropylnaphthalene (hereinafter sometimes abbreviated as "DIPN") is
When oxidized according to the above-mentioned known method, the yield of NDA is extremely low under reaction conditions suitable for oxidizing P-xylene and 2,6-dimethylnaphthalene.
NDA obtained due to the formation of large amounts of by-products
The purity of DIPN was also low, and therefore it was completely impossible to industrially obtain NDA from DIPN by the above-mentioned known method (see Comparative Example 1). Various alkyl-substituted aromatic hydrocarbons, especially alkyl-substituted naphthalenes represented by dimethylnaphthalene, are oxidized in an aliphatic monocarboxylic acid solvent using a catalyst consisting of heavy metals such as cobalt and manganese and bromine as described above. When the desired product cannot be obtained in low yield or its purity is low when oxidizing , the following two methods have conventionally been adopted as remedies. One of them is the so-called multi-stage temperature-raising reaction method, in which the oxidation reaction is divided into multiple stages and the reaction temperature is raised stepwise or continuously from an initial reaction at a low temperature to complete the reaction. For example, in Japanese Patent Application Laid-open No. 52-17453, there are 2,6
An example is described in which NDA is obtained by oxidizing dimethylnaphthalene in two steps at 100° C. and 190° C. with a yield of 91% (74% in the 190° C.-step oxidation). However, DIPN
Even when applied to the oxidation of
It is only about 50% and cannot be called industrial (see Comparative Example 2 described later). Another improvement measure is the so-called low-concentration raw material oxidation method, in which the oxidation reaction is carried out by keeping the concentration of the raw material to the solvent in the reaction system low. For example, Japanese Patent Publication No. 56-3337, Japanese Patent Application Publication No. 1983-
Publication No. 142544 and Japanese Patent Application Laid-Open No. 1979-7945 disclose that NDA or the corresponding naphthoic acid can be obtained in relatively high yields by using a raw material low concentration oxidation method in the oxidation of dimethyl naphthalenes and acenaphthene. Are listed. However, such low concentration raw material oxidation method is
Even when applied to the case of the oxidation reaction, the yield of NDA produced is still far from being industrially satisfactory (see Comparative Examples 3, 4, 5, and 6 described later). In this way, the production of NDA by oxidation of DIPN is difficult compared to the conventional oxidation reaction method using heavy metals and bromine, which is said to be the most powerful oxidation method in the oxidation of alkyl aromatic hydrocarbons. Applying knowledge alone is still not enough,
Therefore, the production of NDA from DIPN by such a method has not been considered industrially at all. Although the reason why the oxidation of DIPN did not give satisfactory results is not clear, the present inventors have found from many experiments that other alkyl-substituted aromatic hydrocarbons Unlike in the case of the oxidation of Rather, it is surmised that this is because side reactions are promoted. Thus, the present inventors conducted research with the aim of suppressing the decrease in NDA yield due to the side reaction in the oxidation of DIPN. When oxidizing (NDA), using much more cobalt and/or manganese than previously known amounts for oxidizing 1 mole of the oxidized material surprisingly increases the yield of NDA. The present invention was achieved by discovering that this can be dramatically increased. That is, the present invention uses DIPN or its oxidized intermediate to contain at least 50 aliphatic monocarboxes having 3 or less carbon atoms.
In a method for producing 2,6-naphthalene dicarboxylic acid by oxidizing it with molecular oxygen in a solvent containing 2,6% by weight, the oxidation is carried out using a catalyst consisting of (i) a heavy metal consisting of cobalt and/or manganese and (ii) bromine. 2,6-diisopropylnaphthalene or its oxidized intermediate in the presence of at least 0.2 mole of heavy metal per mole thereof. In the present invention, the starting material is 2,6-diisopropylnaphthalene (DIPN) or its oxidized intermediate, and although it is preferable that they have high purity, they are not necessarily pure, and the influence on the oxidation reaction or the purity of the NDA produced , may contain other components within an acceptable range for coloring. The oxidation intermediate of DIPN is produced by oxidation of DIPN, and is oxidized in the reaction system to finally give the desired NDA. Therefore, the starting material of the present invention is specifically shown by the following general formula () [However, R 1 in the formula is

【式】【formula】

【式】【formula】

【式】及び[Formula] and

【式】よりなる群から選 ばれた基R2は前記R1で示された基及び−COOH
と−CHOよりなる群から選ばれた基であつてR1
と同一であつても或いは異なつていてもよい。〕 出発原料としては、前記式()におけるR1
とR2が、同一もしくは異なり、
The group R 2 selected from the group consisting of [Formula] is the group represented by R 1 above and -COOH
A group selected from the group consisting of and -CHO, and R 1
may be the same or different. ] As a starting material, R 1 in the above formula ()
and R 2 are the same or different,

【式】及び[Formula] and

【式】から選ばれるもの が好ましい。 本発明において、酸化触媒としては前述した通
り (i) コバルト及び/又はマンガンよりなる重金属
(A成分)及び (ii) 臭素(B成分) が使用される。 A成分及びB成分は共に本発明の酸化反応中で
溶解しうる形態であれば金属、元素、化合物のい
ずれであつてもよい。 A成分を形成するコバルト及びマンガンとして
は例えば酸化物、水酸化物、炭酸塩、ハロゲン化
物等に臭化物等の無機塩の他、蟻酸、酢酸、プロ
ピオン酸、ナフテン酸または芳香族カルボン酸特
にNDA等の有機酸塩が挙げられるが、これらの
うち好ましいのは臭化物および脂肪酸塩特に酢酸
塩である。 またB成分を形成する臭素としては酸化反応系
に溶解しBrイオンを発生するものであれば有機
化合物又は無機化合物のいずれであつてもよい。
具体的には、例えば分子状臭素(Br2)、臭化水
素、臭化水素酸塩等の無機臭素化合物又は臭化メ
チル、臭化エチル、ブロモホルム、臭化エチレン
その他の臭化アルキル若しくはブロモ酢酸、多ブ
ロモ酢酸等の臭素化脂肪酸等の有機臭素化合物が
挙げられるがこれらのうち好ましいのは分子状臭
素、臭化水素、臭化ナトリウム、臭化カリウム、
臭化リチウム、臭化アンモニウム、および臭化エ
チル、ブロモ酢酸、または臭化コバルト、臭化マ
ンガン等である。 これらの酸化触媒は一般にその単塩又は錯塩の
イオンとして反応に関与するものと考えられ、従
つて反応中このようなイオンを形成し難い状態で
の金属単体又は不溶性の金属化合物あるいは反応
温度で分解して臭素イオンを脱離し難いような有
機臭素化合物、例えば核臭素化芳香族化合物等は
触媒として使用してもその効果は小さく得策でな
い。 本発明方法は、前述したように酸化すべき
DIPN又は酸化中間体に対して極めて多量のA成
分を使用することが重要であり、そうすることに
よつて目的とするNDAを従来よりも遥かに高い
収率で得ることが出来る。すなわち、原料の
DIPN又はその酸化中間体1モルを酸化するため
にA成分の金属を少くとも0.2モル使用する。こ
の量より少ない金属の使用は反応の急速な開始、
進行によつて一時的に失活状態となつた触媒の、
工業的に許容される時間内での回復・再生が充分
でなく酸化によるNDA収率は低下する。 本発明者らの観測によれば反応収率面からみる
限り原料に対するA成分の使用割合は高ければ高
い程よく、その上限は事実上規定し難い。しかし
工業的に過度の割合は生産性の低下を招来するの
で、実用上の出発原料1モル当りのA成分の比は
モルで0.2〜10.0、好ましくは0.3〜5.0、更に好ま
しくは0.5〜3.0の範囲が適当である。 前記のように従来このような酸化反応において
使用する溶媒に対して原料濃度を反応系内で反応
中常に出来るだけ低く維持し酸化反応を行う事は
よく行われてきた。 しかし、この場合でも反応に使用する触媒の量
はあくまで触媒量であつて、その総量は被酸化物
総量に対して化学量論的にはるかに少い量で行わ
れるのが常であつた。 しかるに本発明では触媒を恰も反応成分の如く
出発原料に対して化学量論的に多量に使用する事
が主生成物NDAの収率、純度の向上を図る上で
必須とされる。 このような効果は従来のアルキル芳香族炭化水
素の酸化反応では全く予想されなかつた驚くべき
事実である。 しかし、この基本的化学現象は前記のようにA
成分のCo、Mnの一時的失活によるものである。
すなわち、通常このような酸化反応系ではA成分
のCo、Mnは反応中その反応系内で常に失活、賦
活を速に繰返しながら反応を継続するのに対し、
DIPN又はその酸化中間体の酸化反応の場合には
失活したA成分の反応系内での賦活・再生が遅い
ため本発明の方法では、これを補う手段として
DIPN又はその酸化中間体に対して多量の触媒を
使用するものである。 本発明の酸化触媒中のA成分としては、コバル
ト、マンガンのいずれか又は両者の混合物が使用
されるが、コバルトよりもマンガンの方がより優
れた活性を示すので好ましい。就中コバルトとマ
ンガンとを混合して使用すると、いずれか単独で
使用する場合に比べて極めて高い活性を示すので
本発明の触媒として最も優れている。 触媒のA成分として、コバルト及びマンガンを
混合して使用する場合その混合割合は、例えば反
応温度、時間、触媒使用量、溶媒使用量などによ
りその好ましい範囲が左右される。しかし、通常
Co:Mnの原子比で表わして1:99〜99:1、特
に10:90〜95:5の範囲が好ましい。 一方、酸化触媒のうちのB成分である臭素は反
応中、その微小部分が揮発性化合物となつて逸散
したり、あるいは反応条件下では分解し難い核臭
化物となつて失われるが、その大部分は反応中反
応系内に留つて失活する事なく、繰返し触媒効果
を発揮する。 従つて臭素はA成分のように出発原料に対して
化学量論的に多量使用する必要はなく、また本質
的に反応系中のA成分の量に比例して用いる必要
もなく、少い割合でも充分効果を奏する。 本発明者らの観測によれば、反応に使用する臭
素の最適温度は使用するA成分濃度のみでなく反
応温度、原料濃度、溶媒量等の他の反応条件にも
依存する。 従つて本発明方法における臭素濃度を一義的に
規制するのは困難であるが一般には使用するA成
分に対し原子比で0.01〜2、好ましくは0.05〜0.5
程度が好ましい。 本発明方法において反応中のDIPNの濃度は前
記の急速な反応進行を防ぐために、あまり高くな
いように保つ事が望まれる。 反応中、反応系内のDIPN濃度は系中に存在す
る触媒中A成分に対し、モル比0.2を越えない事
が好ましく特に0.1以下、とりわけ0.05以下が適
当である。 反応系中DIPNの対A成分のモル比が高いと、
前記の触媒A成分のDIPNに対する化学量論比が
如何に好適に保たれても、反応の急速な進行によ
る副反応の生起を抑える事が困難となり、目的生
成物のNDAの収率が低下する傾向が認められる。 しかし、一般には連続反応または少くともセミ
バツチ反応の場合、反応温度と酸素濃度(酸素分
圧)とを好適条件範囲内に保持する限り原料の反
応による消失は速かであり、反応中の原料濃度を
上記規制値以下に保つ事は比較的容易である。 本発明方法において使用する溶媒は少くともそ
の50%以上が炭素数3以下の低級脂肪族カルボン
酸であればよく、その他は特に規制されない。 低級脂肪族カルボン酸としては蟻酸、酢酸、プ
ロピオン酸、蓚酸、ブロモ酢酸等が挙げられる
が、酢酸が最も適している。 これらは必要に応じて、適宜水、その他の媒体
と混合して使用される。水が含まれる場合、その
割合は30重量%以下、殊に20重量%以下が望まし
い。 溶媒は本質的には原料および触媒の少くとも一
部を溶解し、これらと分子状酸素との接触を助け
るために使用されるがその他にも熱の分散、除熱
や生成物の流動性、生成物の結晶成長等を促進、
助長し、本発明方法の工業的実施を容易にする等
の目的を有している。 従つて、その使用量にはこれらの目的に応じて
定められるべきであり本質的に本発明方法に使用
される溶媒量は規制されないが実用上系中の原料
および目的NDAの合計重量に対して2〜20倍、
好ましくは3〜15倍、特に好ましくは3〜10倍程
度の使用が実施に便利である。 溶媒の使用量が過度に少いと本発明の目的が充
分に達成されず、反応の円滑な進行が妨げられる
が、逆に上記の使用量以上に過度に溶媒を多量に
使用しても反応自体がそれにより促進される事は
なく、かえつて溶媒の酸化燃焼による損失のみが
多くなり得策ではない。 本発明方法において分子状酸素としては純酸素
の他、これを他の不活性ガスで稀釈した混合ガス
が使用されるが、実用上空気が最も入手し易い分
子状酸素含有ガスであり、これをそのままあるい
は必要に応じて適宜酸素あるいは他の不活性ガス
で濃縮あるいは稀釈して使用する事が出来る。 本発明方法の酸化反応は常圧でも可能であるが
加圧下でより一層速やかに進行する。 反応は一般には系中の酸素分圧が高ければ高い
ほど速やかに進行するが実用上の見地からは酸素
分圧0.1Kg/cm2−abs以上、好ましくは0.2Kg/cm2
−abs以上8Kg/cm2−abs以下程度で充分であり、
これを不活性ガスとの混合状態で使用した場合の
全圧でも30Kg/cm2−G以下で反応は速やかに進行
し高収率でNDAを得る事が出来る。従つて、酸
素分圧を8Kg/cm2−abs以上にする事による工業
的利点は少い。 反応は60℃でも進行するが、このとき反応速度
は遅く必らずしも経済的ではない。また反応温度
が220℃を越えると副生成物の生成比率が増加し
NDAの収率は低下する。 また高温下では酢酸等の溶媒の燃焼損失も無視
出来なくなる。一般には好ましい反応温度は80〜
220℃、より好ましくは140〜210℃、特に好まし
くは160〜200℃の範囲が有利である。 本発明方法の酸化反応を実施するに当つては触
媒および溶媒と原料とを同時又は別々に反応容器
に装入して(必要に応じて加温後)これに分子状
酸素含有ガスを吹込み所定の圧力、温度を保持し
ながらNDAが得られるまでの充分な時間反応を
行なう。 反応の進行に伴い、分子状酸素が吸収されると
共に多量の反応熱を発生するので、通常酸化反応
中は外部からの加温、加熱は不要であるばかりで
なく、むしろ除熱して所定反応温度を維持するこ
とが必要である。 この際、除熱は酢酸、水等の反応系媒体の蒸発
や吹込みガスの放出による熱の随伴等の内部除熱
かあるいは外部から水、水蒸気等冷媒を用いて冷
却するか若しくはこれらの双方を併用するか等の
公知の方法により容易に可能である。 反応系中の原料が消失し、反応の終了が近付く
と分子状酸素の吸収が見掛け上殆んど停止する
が、この時点で反応系内にはまだ完全にNDAに
転化していない反応中間体の存在が認められる場
合がある。 このような場合には必要に応じてこれを更に分
子状酸素と接触させるいわゆるポスト・オキシデ
ーシヨンにより反応を完結させるとNDAの収率
が向上すると共に同時に不要な副生成物やその中
間体を酸化分解して生成NDAの純度をも向上せ
しめる事が出来る。 このようなポスト・オキシデーシヨンは主酸化
反応に引き続き酸化反応容器内でそのままかまた
は主酸化反応後、一旦別容器に移してこれを所要
時間分子状酸素と接触させる事により行われる。 この際ポスト・オキシデーシヨンの反応圧力、
温度は主反応の場合と同じである必要はなく、こ
れより高くても低くてもよい。 前記のように本発明の酸化反応では酸化触媒の
A成分が一時的に失活して活性を失うため実用上
原料に対して化学量論的に多量のA成分(Co、
Mn)を使用する必要がある。 反応終了後反応生成混合物からのNDAの分
離・回収およびNDAの精製とNDAを除去した反
応母液の後処理、循環、再使用等は他のNDAの
製造やテレフタル酸の製造において公知の常法に
従つて行う事が出来る。 本発明方法はバツチでも連続でも実施出来るが
バツチ反応では触媒に対する原料濃度が低く必ら
ずしも実用的ではない。 可能な限り酸化反応は連続若しくは触媒溶液中
に原料を少量宛回分または連続で添加して反応を
行ういわゆるセミ・バツチ法の何れかによる事が
好ましい。 以上、本発明方法の実施により従来DIPN又は
その酸化中間体から低収率でしか得られなかつた
NDAが容易に高収率且つ高純度で得られるよう
になり工業的に従来の何れの方法によるよりも安
価で且つ高品質のNDAの供給が可能になつた。 以下実施例およびその比較例を掲げて本発明方
法を詳述する。 なお以下例示において部とはすべて重量部を指
す。 比較例 1 環流冷却器、ガス吹込管、排出管、および撹拌
機を有するチタン・ライニング・オートクレーブ
に 2,6−ジイソプロピル・ナフタレン(DIPN) 2670部 氷酢酸 13350部 酢酸コバルト4水塩(Co(OAc)2・4H2O) 48部 酢酸マンガン4水塩(Mn(OAc)2・4H2O) 95部 〔Co+Mn/DIPN(モル比)=0.046〕 および臭化アンモニウム(NH4Br) 5.7部 を同時に仕込み、温度180℃、圧力30Kg/cm2−G
に保ちはげしく撹拌しながらこれに圧縮空気を酸
素送入速度として毎分80部の割合で流通し、3時
間反応を行つた。 反応後反応物の分析を行つた結果、原料
DIPN180部が残留し、純度85.6%の2,6−ナフ
タレンジカルボン酸(NDA)1106部が得られた。
これは反応したDIPNに対して収率37.3モル%に
相当する。 比較例 2 比較例1と同様の反応装置に 2,6−ジイソプロピル・ナフタレン(DIPN)
1000部 氷酢酸 15000部 酢酸コバルト4水塩 72部 酢酸マンガン4水塩 143部 〔Co+Mn/DIPN(モル比)=0.185〕 および臭化アンモニウム(NH4Br) 85部 を同時に仕込み温度140℃、圧力30Kg/cm2−Gに
保持しはげしく撹拌しながら、これに圧縮空気を
酸素送入速度として毎分40部の割合で流通し、
1hr反応を行つた。ついで30分間で温度を200℃ま
で徐々に昇温した後、更に30分間そのまま200℃
に加熱した。 この間圧縮空気は常に圧力30Kg/cm2−Gで酸素
送入速度として毎分30部の速度で流通を継続し
た。 反応終了後、反応生成物の分析を行つた結果、
原料DIPNはすべて消失しNDA495部が得られ
た。これは収率48.6モル%に相当する。 実施例 1 環流冷却器、ガス吹込管、排出管、原料連続送
入ポンプおよび撹拌機を有するチタン・ライニン
グ・加圧反応容器に 氷酢酸 8274部 酢酸コバルト4水塩(Co(OAc)2・4H2O) 274部 酢酸マンガン4水塩(Mn(OAc)2・4H2O)
539部 〔Co+Mn/DIPN(モル比)=0.598〕 および臭化リチウム1水塩(LiBr・H2O) 35部 を装入して温度200℃、圧力30Kg/cm2−Gに保ち
はげしく撹拌しながらこれに 2,6−ジイソプロピル・ナフタレン(DIPN)
1172部 を毎分19.5部の割合で連続的に1hrフイードする
と共に酸素送入速度として毎分40部の割合で圧縮
空気を流通した。 直ちに反応が始まり酸素の吸収が観測されたが
1時間後DIPNフイードを終えると共に酸素の吸
収は殆んど認められなくなつた。 さらに、そのまま2時間200℃、30Kg/cm2−G
に保つて空気の流通を継続して反応を完結させた
後、反応生成物を取出し主として2,6−ナフタ
レンジカルボン酸(NDA)より成る生成固体沈
澱を別した。 主として触媒液から成る母液は次回の酸化反応
に循環し、固体沈澱は洗浄後乾燥して分析した結
果、純度93.0%のNDA1064部を得た。 生成したNDAの原料DIPNに対する理論収率
は82.5モル%であつた。 なお、原料フイードを停止した直後の反応物中
の原料のDIPNの残留は殆んど痕跡しか認められ
ず、このことから反応中の系内DIPN/Co+Mn
モル比は0.01以下に保たれていたものと思われ
る。 比較例 3 上記実施例1をCo+Mn/DIPN(モル比)=
0.146(Co:Mn:Br=1:2:0.3)とする以外
同じ条件で反応を行つて得られたNDAは純度
87.0%生成収率54.4モル%に過ぎなかつた。 実施例 2 実施例1と同様の反応装置に 氷酢酸 8721部 酢酸コバルト・4水塩 955部 酢酸マンガン・4水塩 1880部 〔Co+Mn/DIPN(モル比)=2.077〕 および臭化リチウム1水塩 122部 を装入して温度160℃、圧力30Kg/cm2−Gに保ち
はげしく撹拌しながらこれに 2,6−ジイソプロピル・ナフタレン(DIPN)
1176部 を毎分19.6部の割合で連続的に1時間フイードす
ると共に、酸素送入速度として毎分40部の割合で
圧縮空気を流通した。空気の流通はDIPNフイー
ド終了後も、さらに2時間160℃、30Kg/cm2−G
で継続して反応を完結した。 反応生成物中の2,6−ナフタレンジカルボン
酸(NDA)は純度93.6%の固体1086部であつた。
これは原料DIPNに対し収率84.9モル%に相当す
る。 なお、原料フイードを停止した直後の反応物中
の原料DIPNの残留は全フイード量の3.04%に過
ぎず従つて反応中の系内DIPN/Co+Mnモル比
は少くとも0.02以下に保たれていたものと思われ
る。 比較例 4 上記実施例2と同様の反応を(Co+Mn)/
DIPN(モル比)=1.44(Co:Mn:Br=1:2:
0.3)とする以外同じ条件で行つた。NDA収率は
50.2モル%であつた。 実施例3〜7及び比較例5〜6 実施例1と同様の反応を 氷酢酸 16884部 酢酸コバルト・4水塩 3817部 酢酸マンガン・4水塩 7512部 〔Co+Mn/DIPN(モル比)=3.897〕 および臭化リチウム1水塩 482部 中へ 2,6−ジイソプロピル・ナフタレン(DIPN)
2505部 をフイード速度41.8部/分でフイードし、温度
180℃、圧力30Kg/cm2−G、酸素送入速度80部/
分でフイード1時間、更にポスト・オキシデーシ
ヨン2時間の反応を行つた。 反応の結果、純度ほぼ100%のNDA2339部が得
られ、これは収率91.7モル%に相当する。 なお、原料フイードを停止した直後の反応物中
の原料DIPNの残留は全フイード量の0.65%に過
ぎず、このことから反応中の系内における
DIPN/(Co+Mn)のモル比は0.002以下に保た
れていたものと思われる。 次に同様の反応をCo:Mn:Brの比を変えない
で、触媒量を変え、いろいろなCo+Mn/DIPN
化学量論比で行つた結果を下記表−1に示す。 Co+Mn/DIPN=0.2を境にしてNDA収率に
著しい相違が認められる。
Preferably, one selected from the following formula: In the present invention, as described above, (i) a heavy metal consisting of cobalt and/or manganese (component A) and (ii) bromine (component B) are used as the oxidation catalyst. Component A and component B may be any metal, element, or compound as long as they can be dissolved in the oxidation reaction of the present invention. Examples of cobalt and manganese forming component A include oxides, hydroxides, carbonates, halides, inorganic salts such as bromides, as well as formic acid, acetic acid, propionic acid, naphthenic acid, or aromatic carboxylic acids, especially NDA. Among these, preferred are bromides and fatty acid salts, especially acetates. Further, the bromine forming component B may be any organic compound or inorganic compound as long as it dissolves in the oxidation reaction system and generates Br ions.
Specifically, for example, molecular bromine (Br 2 ), hydrogen bromide, inorganic bromine compounds such as hydrobromide, methyl bromide, ethyl bromide, bromoform, ethylene bromide, other alkyl bromides, or bromoacetic acid. , organic bromine compounds such as brominated fatty acids such as polybromoacetic acid, but preferred among these are molecular bromine, hydrogen bromide, sodium bromide, potassium bromide,
These include lithium bromide, ammonium bromide, and ethyl bromide, bromoacetic acid, or cobalt bromide, manganese bromide, and the like. These oxidation catalysts are generally considered to participate in the reaction as ions of their single salts or complex salts, and therefore, they are considered to be simple metals or insoluble metal compounds in a state where it is difficult to form such ions during the reaction, or decompose at the reaction temperature. Even if organic bromine compounds which are difficult to desorb bromide ions, such as nuclear brominated aromatic compounds, are used as catalysts, the effect is small and it is not advisable. In the method of the present invention, as described above, the oxidized
It is important to use a very large amount of component A relative to DIPN or the oxidized intermediate, so that the desired NDA can be obtained in a much higher yield than conventionally possible. In other words, the raw material
At least 0.2 mole of the metal of component A is used to oxidize 1 mole of DIPN or its oxidized intermediate. The use of less than this amount of metal results in a rapid onset of the reaction,
The catalyst, which has become temporarily deactivated due to the progress,
Recovery and regeneration within an industrially acceptable time is insufficient, resulting in a decrease in NDA yield due to oxidation. According to the observations of the present inventors, from the viewpoint of reaction yield, the higher the ratio of component A to the raw material, the better, and it is practically difficult to define the upper limit. However, from an industrial perspective, an excessive ratio leads to a decrease in productivity, so the practical ratio of component A per mole of starting material is 0.2 to 10.0, preferably 0.3 to 5.0, more preferably 0.5 to 3.0. The range is appropriate. As mentioned above, in the past, it has been common practice to carry out the oxidation reaction while keeping the concentration of the raw material in the solvent used in the reaction system as low as possible throughout the reaction. However, even in this case, the amount of catalyst used in the reaction is just a catalytic amount, and the total amount is usually much smaller stoichiometrically than the total amount of oxidized materials. However, in the present invention, it is essential to use the catalyst in a stoichiometrically large amount relative to the starting material, just like a reaction component, in order to improve the yield and purity of the main product NDA. Such an effect is a surprising fact that was completely unexpected in conventional oxidation reactions of alkyl aromatic hydrocarbons. However, as mentioned above, this basic chemical phenomenon is
This is due to the temporary deactivation of the components Co and Mn.
In other words, normally in such an oxidation reaction system, the A components Co and Mn continue to react while rapidly repeating deactivation and activation within the reaction system.
In the case of the oxidation reaction of DIPN or its oxidized intermediate, the activation and regeneration of the deactivated component A within the reaction system is slow, so in the method of the present invention, as a means to compensate for this,
A large amount of catalyst is used for DIPN or its oxidized intermediate. As component A in the oxidation catalyst of the present invention, either cobalt, manganese, or a mixture of the two is used, and manganese is preferred because it exhibits better activity than cobalt. In particular, when cobalt and manganese are used in combination, they exhibit extremely high activity compared to when either of them is used alone, and is therefore the most excellent catalyst for the present invention. When a mixture of cobalt and manganese is used as component A of the catalyst, the preferred range of the mixing ratio depends on, for example, reaction temperature, time, amount of catalyst used, amount of solvent used, and the like. But usually
The Co:Mn atomic ratio is preferably in the range of 1:99 to 99:1, particularly 10:90 to 95:5. On the other hand, during the reaction, a small portion of bromine, which is the B component of the oxidation catalyst, becomes a volatile compound and escapes, or becomes a nuclear bromide that is difficult to decompose under the reaction conditions and is lost. The moiety remains in the reaction system during the reaction and repeatedly exhibits the catalytic effect without becoming deactivated. Therefore, unlike component A, bromine does not need to be used in a stoichiometrically large amount relative to the starting material, nor does it essentially need to be used in proportion to the amount of component A in the reaction system; But it's quite effective. According to the observations of the present inventors, the optimum temperature of bromine used in the reaction depends not only on the concentration of component A used but also on other reaction conditions such as reaction temperature, raw material concentration, and amount of solvent. Therefore, it is difficult to uniquely regulate the bromine concentration in the method of the present invention, but generally the atomic ratio is 0.01 to 2, preferably 0.05 to 0.5, relative to the A component used.
degree is preferred. In the method of the present invention, it is desirable to keep the concentration of DIPN during the reaction not too high in order to prevent the above-mentioned rapid reaction progress. During the reaction, the concentration of DIPN in the reaction system preferably does not exceed a molar ratio of 0.2 to the component A in the catalyst present in the system, preferably 0.1 or less, especially 0.05 or less. When the molar ratio of DIPN to component A in the reaction system is high,
No matter how well the stoichiometric ratio of the catalyst A component to DIPN is maintained, it becomes difficult to suppress the occurrence of side reactions due to the rapid progress of the reaction, resulting in a decrease in the yield of the desired product NDA. A trend is observed. However, in general, in the case of a continuous reaction or at least a semi-batch reaction, as long as the reaction temperature and oxygen concentration (oxygen partial pressure) are kept within a suitable range, the loss of raw materials through reaction is rapid, and the raw material concentration during the reaction is It is relatively easy to maintain the above regulation value or less. The solvent used in the method of the present invention may be a lower aliphatic carboxylic acid having at least 50% of carbon atoms, and other solvents are not particularly limited. Examples of lower aliphatic carboxylic acids include formic acid, acetic acid, propionic acid, oxalic acid, and bromoacetic acid, but acetic acid is most suitable. These are used by mixing with water or other medium as appropriate. When water is included, its proportion is desirably 30% by weight or less, particularly 20% by weight or less. Solvents are essentially used to dissolve at least a portion of the raw materials and catalyst and to help bring them into contact with molecular oxygen, but they also serve to dissipate and remove heat, improve the fluidity of the product, etc. Promote crystal growth of products, etc.
The purpose is to facilitate the industrial implementation of the method of the present invention. Therefore, the amount to be used should be determined according to these purposes, and the amount of solvent used in the method of the present invention is essentially not regulated, but in practice it should be determined based on the total weight of the raw materials and target NDA in the system. 2 to 20 times,
It is convenient to use preferably 3 to 15 times, particularly preferably 3 to 10 times. If the amount of solvent used is too small, the purpose of the present invention will not be fully achieved and the smooth progress of the reaction will be hindered.On the other hand, if the amount of solvent used is too large than the above amount, the reaction itself will be hindered. However, this is not a good idea as it will not accelerate the process and will only increase the loss due to oxidative combustion of the solvent. In the method of the present invention, in addition to pure oxygen, a mixed gas diluted with other inert gases is used as molecular oxygen, but air is the most easily available molecular oxygen-containing gas in practice, and It can be used as it is or after being concentrated or diluted with oxygen or other inert gas as necessary. Although the oxidation reaction in the method of the present invention is possible under normal pressure, it proceeds more rapidly under increased pressure. In general, the reaction proceeds more quickly as the oxygen partial pressure in the system is higher, but from a practical standpoint, the oxygen partial pressure should be 0.1 Kg/cm 2 -abs or higher, preferably 0.2 Kg/cm 2
-abs or more 8Kg/cm 2 -abs or less is sufficient,
When this is used in a mixed state with an inert gas, the reaction proceeds rapidly at a total pressure of 30 Kg/cm 2 -G or less, and NDA can be obtained in high yield. Therefore, there is little industrial advantage in increasing the oxygen partial pressure to 8 Kg/cm 2 -abs or higher. Although the reaction proceeds at 60°C, the reaction rate is slow and not necessarily economical. Furthermore, when the reaction temperature exceeds 220°C, the proportion of by-products generated increases.
The yield of NDA decreases. Furthermore, at high temperatures, combustion loss of solvents such as acetic acid cannot be ignored. Generally, the preferred reaction temperature is 80~
A range of 220°C, more preferably 140-210°C, particularly preferably 160-200°C is advantageous. In carrying out the oxidation reaction of the method of the present invention, the catalyst, solvent, and raw materials are charged into a reaction vessel simultaneously or separately (after heating if necessary), and a molecular oxygen-containing gas is blown into the reaction vessel. The reaction is carried out for a sufficient time until NDA is obtained while maintaining the predetermined pressure and temperature. As the reaction progresses, molecular oxygen is absorbed and a large amount of reaction heat is generated, so external heating is usually not necessary during the oxidation reaction, but rather heat is removed to maintain the predetermined reaction temperature. It is necessary to maintain In this case, heat removal can be carried out internally by evaporation of the reaction medium such as acetic acid or water or entrainment of heat by the release of blown gas, or by external cooling using a refrigerant such as water or steam, or both. This can be easily achieved by a known method such as using in combination. When the raw materials in the reaction system disappear and the reaction approaches the end, the absorption of molecular oxygen appears to almost stop, but at this point there are still reaction intermediates in the reaction system that have not been completely converted to NDA. In some cases, the existence of In such cases, if necessary, the reaction can be completed by so-called post-oxidation, in which the product is further brought into contact with molecular oxygen, to improve the yield of NDA and at the same time eliminate unnecessary by-products and their intermediates. It is also possible to improve the purity of NDA produced by oxidative decomposition. Such post-oxidation can be carried out in the oxidation reaction vessel following the main oxidation reaction, or by transferring the main oxidation reaction to a separate vessel and contacting it with molecular oxygen for a required period of time. At this time, the post-oxidation reaction pressure,
The temperature does not need to be the same as for the main reaction, and may be higher or lower. As mentioned above, in the oxidation reaction of the present invention, the A component of the oxidation catalyst temporarily deactivates and loses its activity, so in practice, a stoichiometrically large amount of the A component (Co,
Mn) must be used. After the completion of the reaction, separation and recovery of NDA from the reaction product mixture, purification of NDA, and post-treatment, circulation, and reuse of the reaction mother liquor from which NDA has been removed are performed using conventional methods known in the production of other NDA and terephthalic acid. You can do it accordingly. Although the method of the present invention can be carried out either batchwise or continuously, batch reactions are not necessarily practical because the concentration of raw materials relative to the catalyst is low. As much as possible, it is preferable that the oxidation reaction be carried out continuously or by the so-called semi-batch method in which the reaction is carried out by adding raw materials to the catalyst solution in small batches or continuously. As described above, by carrying out the method of the present invention, DIPN or its oxidized intermediate, which could conventionally be obtained only in low yield, can be removed.
NDA can now be easily obtained in high yield and purity, making it possible to industrially supply NDA at a lower cost and with higher quality than by any conventional method. The method of the present invention will be described in detail below with reference to Examples and Comparative Examples. In the following examples, all parts refer to parts by weight. Comparative Example 1 In a titanium-lined autoclave with a reflux condenser, gas inlet tube, outlet tube, and stirrer, 2,670 parts of 2,6-diisopropyl naphthalene (DIPN), 13,350 parts of glacial acetic acid, and cobalt acetate tetrahydrate (Co(OAc) ) 2・4H 2 O) 48 parts Manganese acetate tetrahydrate (Mn(OAc) 2・4H 2 O) 95 parts [Co + Mn/DIPN (molar ratio) = 0.046] and ammonium bromide (NH 4 Br) 5.7 parts Preparation at the same time, temperature 180℃, pressure 30Kg/cm 2 -G
Compressed air was passed through the mixture at a rate of 80 parts per minute while stirring vigorously, and the reaction was carried out for 3 hours. As a result of analyzing the reactants after the reaction, it was found that the raw materials
180 parts of DIPN remained and 1106 parts of 2,6-naphthalene dicarboxylic acid (NDA) with a purity of 85.6% was obtained.
This corresponds to a yield of 37.3 mol% based on the reacted DIPN. Comparative Example 2 2,6-diisopropyl naphthalene (DIPN) was added to the same reactor as Comparative Example 1.
1000 parts glacial acetic acid 15000 parts cobalt acetate tetrahydrate 72 parts manganese acetate tetrahydrate 143 parts [Co+Mn/DIPN (molar ratio) = 0.185] and 85 parts ammonium bromide (NH 4 Br) were simultaneously charged at a temperature of 140°C and a pressure of While maintaining the temperature at 30Kg/cm 2 -G and stirring vigorously, compressed air was passed through it at a rate of 40 parts per minute as an oxygen supply rate.
The reaction was carried out for 1 hour. Then, the temperature was gradually raised to 200℃ over 30 minutes, and then kept at 200℃ for another 30 minutes.
heated to. During this period, the compressed air was constantly kept flowing at a pressure of 30 kg/cm 2 -G and an oxygen supply rate of 30 parts per minute. After the reaction was completed, analysis of the reaction product revealed that
All of the raw material DIPN disappeared and 495 parts of NDA was obtained. This corresponds to a yield of 48.6 mol%. Example 1 8274 parts of glacial acetic acid and cobalt acetate tetrahydrate (Co(OAc) 2.4H ) were placed in a titanium-lined pressurized reaction vessel equipped with a reflux condenser, a gas blowing pipe, a discharge pipe, a continuous feed pump, and a stirrer. 2 O) 274 parts Manganese acetate tetrahydrate (Mn(OAc) 2・4H 2 O)
539 parts [Co + Mn/DIPN (molar ratio) = 0.598] and 35 parts of lithium bromide monohydrate (LiBr.H 2 O) were charged, and the mixture was kept at a temperature of 200°C and a pressure of 30 Kg/cm 2 -G with vigorous stirring. However, 2,6-diisopropyl naphthalene (DIPN)
1172 parts were continuously fed at a rate of 19.5 parts per minute for 1 hour, and compressed air was passed through at a rate of 40 parts per minute as an oxygen supply rate. The reaction started immediately and absorption of oxygen was observed, but after 1 hour the DIPN feed was stopped and almost no absorption of oxygen was observed. Furthermore, it was kept at 200℃ for 2 hours at 30Kg/cm 2 -G.
After the reaction was completed by maintaining the temperature at a constant temperature and continuing air flow, the reaction product was taken out and the formed solid precipitate consisting mainly of 2,6-naphthalene dicarboxylic acid (NDA) was separated. The mother liquor, which mainly consisted of the catalyst liquid, was recycled to the next oxidation reaction, and the solid precipitate was washed, dried, and analyzed. As a result, 1064 parts of NDA with a purity of 93.0% was obtained. The theoretical yield of the produced NDA based on the raw material DIPN was 82.5 mol%. In addition, only traces of the raw material DIPN remained in the reaction product immediately after the raw material feed was stopped, and this indicates that DIPN/Co+Mn in the system during the reaction.
It seems that the molar ratio was kept below 0.01. Comparative Example 3 The above Example 1 was changed to Co+Mn/DIPN (molar ratio)=
0.146 (Co:Mn:Br=1:2:0.3), but the NDA obtained by performing the reaction under the same conditions has a high purity.
The production yield was only 54.4 mol%, 87.0%. Example 2 In a reaction apparatus similar to Example 1, 8721 parts of glacial acetic acid, 955 parts of cobalt acetate tetrahydrate, 1880 parts of manganese acetate tetrahydrate [Co+Mn/DIPN (molar ratio) = 2.077], and lithium bromide monohydrate were added. 122 parts of 2,6-diisopropyl naphthalene (DIPN) was added to this while stirring vigorously while maintaining the temperature at 160℃ and the pressure at 30Kg/cm 2 -G.
1176 parts were continuously fed at a rate of 19.6 parts per minute for 1 hour, and compressed air was passed at an oxygen supply rate of 40 parts per minute. Air circulation continues for 2 hours at 160℃ and 30Kg/cm 2 -G even after the DIPN feed ends.
The reaction was completed. The 2,6-naphthalene dicarboxylic acid (NDA) in the reaction product was 1086 parts solid with a purity of 93.6%.
This corresponds to a yield of 84.9 mol% based on the raw material DIPN. In addition, the raw material DIPN remaining in the reaction product immediately after stopping the raw material feed was only 3.04% of the total feed amount, so the DIPN/Co+Mn molar ratio in the system during the reaction was maintained at least 0.02 or less. I think that the. Comparative Example 4 The same reaction as in Example 2 above was carried out using (Co+Mn)/
DIPN (molar ratio) = 1.44 (Co:Mn:Br = 1:2:
0.3) under the same conditions. The NDA yield is
It was 50.2 mol%. Examples 3 to 7 and Comparative Examples 5 to 6 The same reaction as in Example 1 was carried out using 16884 parts of glacial acetic acid, 3817 parts of cobalt acetate tetrahydrate, and 7512 parts of manganese acetate tetrahydrate [Co+Mn/DIPN (molar ratio) = 3.897]. and 2,6-diisopropyl naphthalene (DIPN) into 482 parts of lithium bromide monohydrate.
2505 parts were fed at a feed rate of 41.8 parts/min, and the temperature
180℃, pressure 30Kg/cm 2 -G, oxygen supply rate 80 parts/
The reaction was carried out for 1 hour with 1 hour of feed and 2 hours of post-oxidation. As a result of the reaction, 2339 parts of NDA with almost 100% purity were obtained, corresponding to a yield of 91.7 mol%. In addition, the residual raw material DIPN in the reaction product immediately after stopping the raw material feed is only 0.65% of the total feed amount, which means that the amount of raw material DIPN in the system during the reaction is
It seems that the molar ratio of DIPN/(Co+Mn) was kept at 0.002 or less. Next, the same reaction was carried out with various Co+Mn/DIPN by changing the amount of catalyst without changing the ratio of Co:Mn:Br.
The results obtained using stoichiometric ratios are shown in Table 1 below. A significant difference in NDA yield is observed when Co+Mn/DIPN=0.2.

【表】【table】

【表】 なお実施例4〜7において、反応系中の原料
DIPN残量は全フイード量の0.2〜1.0%に過ぎず、
このことから反応中の系内DIPN/Co+Mnモル
比は何れも0.002〜0.03の範囲内であつた。 実施例 8 実施例1と同様の反応装置に 氷酢酸 16844部 酢酸コバルト・4水塩 3287部 〔Co/DIPN(モル比)=1.125〕 および臭化ナトリウム 136部 を装入して温度160℃、圧力30Kg/cm2−Gに保ち
はげしく撹拌しながら、これに 2,6−ジイソプロピルナフタレン(DIPN)
2491部 を毎分41.5部の割合で連続的に1時間フイードす
ると共に酸素送入速度として毎分80部の割合で圧
縮空気を流通した空気の流通はDIPNフイード終
了後もさらに2時間160℃、30Kg/cm2−Gで継続
して反応を完結した。 反応生成物のNDAは純度92.2%の固体1783部
であつた。これは原料DIPNに対し収率64.8モル
%に相当する。 比較例 7 上記実施例8と同様の反応をCo/DIPN(モル
比)=0.150(Co:Br=1:0.1)とする以外同じ条
件で行つた。NDAの収率は40.5モル%であつた。 実施例 9 実施例1と同様の反応装置に 氷酢酸 16772部 酢酸マンガン・4水塩 3235部 〔Mn/DIPN(モル比)=1.142〕 および臭化ナトリウム 136部 を装入して温度180℃、圧力30Kg/cm2−Gに保ち
はげしく撹拌しながらこれに 2,6−ジイソプロピルナフタレン(DIPN)
2454部 を毎分40.9部の割合で連続的に1時間フイードす
ると共に酸素送入速度として毎分80部の割合で圧
縮空気を流通した。空気の流通はDIPNフイード
終了後もさらに2時間180℃、30Kg/cm2−Gで継
続して反応を完結した。 反応生成物中のNDAは純度94.1%の固体2005
部であつた。これは原料DIPNに対し収率75.5モ
ル%に相当する。 比較例 8 上記実施例9と同様の反応をMn/DIPN(モル
比)=0.150(Mn:Br=1:0.1)とする以外同様
の条件で行つた。DNAの収率は51.0モル%であ
つた。
[Table] In Examples 4 to 7, raw materials in the reaction system
The remaining DIPN amount is only 0.2 to 1.0% of the total feed amount,
From this, the molar ratio of DIPN/Co+Mn in the system during the reaction was within the range of 0.002 to 0.03. Example 8 A reactor similar to Example 1 was charged with 16,844 parts of glacial acetic acid, 3,287 parts of cobalt acetate tetrahydrate [Co/DIPN (molar ratio) = 1.125], and 136 parts of sodium bromide, and the temperature was 160°C. Add 2,6-diisopropylnaphthalene (DIPN) to this while maintaining the pressure at 30Kg/cm 2 -G and stirring vigorously.
2491 parts were continuously fed at a rate of 41.5 parts per minute for 1 hour, and compressed air was circulated at a rate of 80 parts per minute as an oxygen supply rate.The air circulation continued at 160°C for 2 hours after the DIPN feed ended. The reaction was continued at 30 Kg/cm 2 -G to complete the reaction. The reaction product NDA was 1783 parts solids with a purity of 92.2%. This corresponds to a yield of 64.8 mol% based on the raw material DIPN. Comparative Example 7 The same reaction as in Example 8 above was carried out under the same conditions except that Co/DIPN (molar ratio) = 0.150 (Co:Br = 1:0.1). The yield of NDA was 40.5 mol%. Example 9 A reactor similar to Example 1 was charged with 16,772 parts of glacial acetic acid, 3,235 parts of manganese acetate tetrahydrate [Mn/DIPN (molar ratio) = 1.142], and 136 parts of sodium bromide, and the temperature was 180°C. Add 2,6-diisopropylnaphthalene (DIPN) to this while maintaining the pressure at 30Kg/cm 2 -G and stirring vigorously.
2454 parts were continuously fed at a rate of 40.9 parts per minute for 1 hour, and compressed air was passed through at a rate of 80 parts per minute as an oxygen supply rate. Air circulation was continued for another 2 hours at 180° C. and 30 Kg/cm 2 -G even after the DIPN feed was completed to complete the reaction. NDA in the reaction product is a solid with a purity of 94.1% 2005
It was hot at the club. This corresponds to a yield of 75.5 mol% based on the raw material DIPN. Comparative Example 8 The same reaction as in Example 9 was carried out under the same conditions except that Mn/DIPN (molar ratio) = 0.150 (Mn:Br = 1:0.1). The yield of DNA was 51.0 mol%.

Claims (1)

【特許請求の範囲】 1 2,6−ジイソプロピルナフタレン又はその
酸化中間体を、炭素数3以下の脂肪族モノカルボ
ンを少くとも50重量%含有する溶媒中で分子状酸
素により酸化し2,6−ナフタレンジカルボン酸
を製造する方法において、該酸化を、 (i) コバルト及び/又はマンガンよりなる重金属
及び (ii) 臭素 よりなる触媒の存在下且つ2,6−ジイソプロピ
ルナフタレン又はその酸化中間体を酸化するため
にその1モル当り重金属を少くとも0.2モル使用
して行うことを特徴とする方法。 2 該酸化を、酸化反応混合物中において存在す
る2,6−ジイソプロピルナフタレンの割合が重
金属1モル当り、0.2モルを越えないようにして
行なう第1項記載の方法。 3 該酸化を140〜210℃の範囲の温度で行なう第
1項記載の方法。 4 該酸化を0.1〜8.0Kg/cm2の酸素分圧下で行な
う第1項記載の方法。 5 該溶媒を酸化反応混合物中に存在する2,6
−ジイソプロピルナフタレン、その酸化中間体及
び2,6−ナフタレンジカルボン酸の合計重量の
1重量部当り少くとも2重量部使用する第1項記
載の方法。
[Scope of Claims] 1 2,6-diisopropylnaphthalene or its oxidized intermediate is oxidized with molecular oxygen in a solvent containing at least 50% by weight of aliphatic monocarboxes having 3 or less carbon atoms. In a method for producing naphthalenedicarboxylic acid, the oxidation is performed in the presence of a catalyst consisting of (i) a heavy metal consisting of cobalt and/or manganese and (ii) bromine, and oxidizing 2,6-diisopropylnaphthalene or an oxidized intermediate thereof. The process is characterized in that it is carried out using at least 0.2 mol of heavy metal per mol of heavy metal. 2. The process according to claim 1, wherein the oxidation is carried out in such a way that the proportion of 2,6-diisopropylnaphthalene present in the oxidation reaction mixture does not exceed 0.2 mol per mol of heavy metal. 3. The method according to paragraph 1, wherein the oxidation is carried out at a temperature in the range of 140 to 210°C. 4. The method according to item 1, wherein the oxidation is carried out under an oxygen partial pressure of 0.1 to 8.0 Kg/ cm2 . 5 The solvent is oxidized with 2,6 present in the reaction mixture.
2. A process according to claim 1, wherein at least 2 parts by weight are used per part by weight of the total weight of diisopropylnaphthalene, its oxidized intermediate and 2,6-naphthalene dicarboxylic acid.
JP58197558A 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid Granted JPS6089445A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP58197558A JPS6089445A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid
EP84112596A EP0142719B1 (en) 1983-10-24 1984-10-18 Process for producing 2,6-naphthalenedicarboxylic acid
DE8484112596T DE3464595D1 (en) 1983-10-24 1984-10-18 Process for producing 2,6-naphthalenedicarboxylic acid
US06/883,479 US4709088A (en) 1983-10-24 1986-07-15 Process for producing 2,6-naphthalene-dicarboxylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58197558A JPS6089445A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid

Publications (2)

Publication Number Publication Date
JPS6089445A JPS6089445A (en) 1985-05-20
JPH0340015B2 true JPH0340015B2 (en) 1991-06-17

Family

ID=16376488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58197558A Granted JPS6089445A (en) 1983-10-24 1983-10-24 Production of 2,6-naphthalenedicarboxylic acid

Country Status (1)

Country Link
JP (1) JPS6089445A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140540A (en) * 1984-12-13 1986-06-27 Teijin Yuka Kk Production of 2,6-naphthalebedicarboxylic acid
JPS62212340A (en) * 1986-03-14 1987-09-18 Kureha Chem Ind Co Ltd Simultaneous production of 2,6-naphthalene-dicarboxylic acid and trimellitic acid
JPS63122645A (en) * 1986-11-11 1988-05-26 Kureha Chem Ind Co Ltd Production of biphenyl-4,4'-dicarboxylic acid
JPH02164845A (en) * 1988-12-19 1990-06-25 Nkk Corp Production of 2,6-naphthalenedicarboxylic acid
JPH02164846A (en) * 1988-12-19 1990-06-25 Nkk Corp Production of 2,6-naphthalenedicarboxylic acid
EP0999199B1 (en) 1998-11-04 2004-03-31 Mitsubishi Gas Chemical Company, Inc. Method of producing naphthalenedicarboxylic acid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho
JPS5217453A (en) * 1975-07-30 1977-02-09 Mitsui Petrochem Ind Ltd Process for preparation of 2,6- naphthalenedicarboxylic acid

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS516953A (en) * 1974-07-02 1976-01-20 Mitsubishi Chem Ind 2*66 nafutarenjikarubonsanno seizoho
JPS5217453A (en) * 1975-07-30 1977-02-09 Mitsui Petrochem Ind Ltd Process for preparation of 2,6- naphthalenedicarboxylic acid

Also Published As

Publication number Publication date
JPS6089445A (en) 1985-05-20

Similar Documents

Publication Publication Date Title
EP0142719B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
US5004830A (en) Process for oxidation of alkyl aromatic compounds
US4314073A (en) Process for the production of an aromatic dicarboxylic acid
US4605763A (en) Process for the purification of terephthalic acid
JP2003520263A (en) Production of high purity aromatic carboxylic acid by oxidation in benzoic acid / water solvent
JP3875134B2 (en) Process for producing aromatic carboxylic acids by liquid phase oxidation of alkylaromatic compounds
EP1003699B1 (en) Purification of difluoromethane by extractive distillation
EP0204119B1 (en) Process for producing 2,6-naphthalenedicarboxylic acid
JPH0340015B2 (en)
JPH0616655A (en) Production of trimellitic anhydride
JPS61140540A (en) Production of 2,6-naphthalebedicarboxylic acid
JPH01121240A (en) Production of 2,6-naphthalenedicarboxylic acid
JPH0564938B2 (en)
JPH0335307B2 (en)
JPH0571574B2 (en)
JPH0529022B2 (en)
JPH0645569B2 (en) Process for producing 2,6-naphthalenedicarboxylic acid
EP0323309A2 (en) Process for the preparation of naphthalene dicarboxylic acids
JP3187212B2 (en) Continuous production method of naphthalenedicarboxylic acid
JPH0564939B2 (en)
JPS61246144A (en) Preparation of 2,6-naphthalenedicarboxilic acid
US4873361A (en) Process for production of p-acetoxybenzoic acid from p-acetoxyacetophenone
JP2730390B2 (en) Method for producing naphthalenedicarboxylic acid
JPH06279356A (en) Production of 2,6-naphthalenedicarboxylic acid
KR100508684B1 (en) The preparation method of aromatic carboxylic acids