JPH0339698A - Treatment of waste liquid containing nano3 - Google Patents

Treatment of waste liquid containing nano3

Info

Publication number
JPH0339698A
JPH0339698A JP17417089A JP17417089A JPH0339698A JP H0339698 A JPH0339698 A JP H0339698A JP 17417089 A JP17417089 A JP 17417089A JP 17417089 A JP17417089 A JP 17417089A JP H0339698 A JPH0339698 A JP H0339698A
Authority
JP
Japan
Prior art keywords
reaction
recovered
waste liquid
hno3
naoh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17417089A
Other languages
Japanese (ja)
Inventor
Moriyuki Saegusa
三枝 守幸
Takaaki Imoji
出雲路 敬明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP17417089A priority Critical patent/JPH0339698A/en
Publication of JPH0339698A publication Critical patent/JPH0339698A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

PURPOSE:To make NaNO3 non-polluting and to increase the rate of volume reduction by solidification by recovering HNO3 by using sulfuric acid in the treatment of a waster liquid contg. the NaNO3 and further electrolytically treating the Na2SO4 which is the reaction product thereof. CONSTITUTION:The NaNO4-contg. waste liquid 1 and the sulfuric acid from 5 are put into a reaction chamber 2 and are heated by a heater 3 to progress reaction. The HNO3 formed by the reaction is recovered into a nitric acid recovery tank 6. The formed Na2SO4 is transferred, upon ending of the reaction, to an electrolytic cell 4 of a 3-chamber type. The anode side of the 3-chamber type cell is isolated from a treating liquid by an anion film and the cathode side is isolated from the treating liquid by a cation film. The NaOH is recovered to the cathode side by the electrolysis and is transferred to a tank 7. On the other hand, the H2SO4 is recovered and transferred to the anode side. The recovered HNO3 and NaOH are reused in a retreating stage and the H2SO4 is reusable in the HNO3 recovering stage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、硝酸ナトリウム(N aN O2)を多量に
含む廃液を処理する方法に関するものである。さらに詳
しくは本発明は、使用済み原子核燃料の再処理工程で発
生する中・低レベル放射能の廃液を処理するのに適した
、廃液の処理法に関するもの/ である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for treating waste liquid containing a large amount of sodium nitrate (NaN O2). More specifically, the present invention relates to a waste liquid treatment method suitable for treating waste liquid with medium to low level radioactivity generated in the process of reprocessing spent nuclear fuel.

〔従来の技術および課題〕[Conventional technology and issues]

従来、使用済みあるいは核燃料再処理施設で発生する中
・低レベル放射能の廃液は蒸発濃縮され、アスファルト
、セメント等で固化或は水分を除去して乾燥処理され、
保管貯蔵されている。しかしながら、この濃縮廃液は硝
酸ナトリウム(N aN O、)を30〜50%含むた
め、固化処理による減容性が悪い。また、N a N 
Osは酸化性物質であるので、固化剤を酸化劣化させる
おそれもあり、多量のN a N O2を長期間保管す
ることは好ましくない。
Conventionally, waste liquid with medium to low level radioactivity generated at spent or nuclear fuel reprocessing facilities is evaporated and concentrated, solidified with asphalt, cement, etc., or dried by removing moisture.
It is stored and stored. However, since this concentrated waste liquid contains 30 to 50% sodium nitrate (NaN O), its volume reduction through solidification treatment is poor. Also, N a N
Since Os is an oxidizing substance, there is a risk of oxidative deterioration of the solidifying agent, so it is not preferable to store a large amount of NaNO2 for a long period of time.

そこで、N a N O3を無害化し、かつ固化による
減容率も大きくする、廃液の処理法が求められてきた。
Therefore, there has been a demand for a waste liquid treatment method that renders NaNO3 harmless and also increases the rate of volume reduction due to solidification.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明は、N a N Osを含む廃液の処理
法において、硫酸を使用してHNO,を回収し、さらに
その反応生成物であるNIL2SO,を電解処理し、N
 a OH、H2S O4をそれぞれ回収することを特
徴とする、廃液の処理法を提供するものである。
That is, the present invention is a method for treating waste liquid containing NaNOs, in which HNO is recovered using sulfuric acid, and the reaction product NILSO is electrolytically treated to
The present invention provides a method for treating waste liquid, which is characterized by recovering a OH and H2S O4, respectively.

すなわち本発明は、N a N O)を含む廃液から、
HN OsとNaOHを回収するものであり、下記のプ
ロセスから構成される装 ■ 廃液を濃縮処理し、N a N Oxを高濃縮液と
して取出す。
That is, the present invention enables the extraction of waste liquid containing N a N O),
HNOs and NaOH are recovered, and the process consists of the following steps: (1) The waste liquid is concentrated and NaNOx is extracted as a highly concentrated liquid.

■ このNaNO3溶液にH2SO,を加え、N a 
N O3からHN Osを回収する。
■ Add H2SO, to this NaNO3 solution, and
Recover HN Os from N O3.

■ 反応生成物の1つであるNa25O<を電解して、
NaOHとH2SO4をそれぞれ回収する。
■ By electrolyzing Na25O, one of the reaction products,
NaOH and H2SO4 are each recovered.

■およびOの各プロセスで回収したH N OsとNa
OHは、再処理工程で再使用することができる。また■
の反応で回収したH、So、は、■のプロセスで再使用
することができるので、系外に放出される最終要処理物
が極めて少なく、減容率を高めることができる。また最
終固化物であるN a 2 S O4は、酸化性ではな
く安定な化合物であるので、アスファルト、セメント等
の固化剤を劣化させるおそれもない。
■HNOs and Na recovered in each process of
OH can be reused in a reprocessing step. Also ■
Since the H, So, recovered in the reaction (2) can be reused in the process (2), the amount of final treatment products released outside the system is extremely small, and the volume reduction rate can be increased. Furthermore, since the final solidified product, Na 2 S O4, is a non-oxidizing and stable compound, there is no risk of degrading solidifying agents such as asphalt and cement.

以下に、本発明に関係する■と■のプロセスについて、
さらに説明する。
Below, regarding the processes of ■ and ■ related to the present invention,
I will explain further.

i ) N a N O3からのHNO,の回収N a
 N O3にH,SO,を作用させ、複分解によりHN
 O*を発生させ、回収する。この方法は、グリースハ
イム法と呼ばれる硝酸製造法の一つである0分解反応に
よるHNO,は、下記2段の反応式で進行する。
i) Recovery of HNO from NaN O3
By acting H, SO, on N O3, HN is produced by double decomposition.
Generate and collect O*. This method is one of the nitric acid production methods called the Griesheim method, and HNO is produced by a zero decomposition reaction, which proceeds according to the following two-stage reaction formula.

NaNOs +H2SO4→NaHSO4+ ’ANO
s  −■NaN0i+NaHSO4→Na2SO4+
HNO3”・■廃液中のNaNQsの濃度を50%とし
た場合、廃液中のH,SO,濃度が30〜40%となる
ようH2SO,を加える。温度は第1段が約50℃、第
2段が約200℃である。
NaNOs +H2SO4→NaHSO4+ 'ANO
s −■NaN0i+NaHSO4→Na2SO4+
When the concentration of NaNQs in the waste liquid is 50%, H2SO is added so that the concentration of H, SO in the waste liquid becomes 30 to 40%.The temperature is approximately 50°C in the first stage, and The stage is approximately 200°C.

■および■式で回収したH N O3は再処理工程に戻
し、再使用する。
The H 2 N O 3 recovered in formulas ① and ② is returned to the reprocessing step and reused.

一方、反応によって生成したN a 2 S O4は次
のiiで述べるプロセスにて処理する。
On the other hand, Na 2 S O4 produced by the reaction is treated in the process described in the following ii.

ii ) N a2 S O4からのNaOHおよびH
,SO,の回収 i)で生成したN a 2 S O4は電気分解により
陽イオン成分としてNaOHを、陰イオン成分としてH
2S O4をそれぞれ回収する。
ii) NaOH and H from Na2SO4
, SO, produced in step i) is electrolyzed to form NaOH as a cationic component and H as an anionic component.
2SO4 is collected respectively.

回収したNaOHは再処理工程で再使用し、またH2S
O4は■のHNO,回収工程で再使用することができる
The recovered NaOH is reused in the reprocessing process, and H2S
O4 can be reused in the HNO recovery process described in (1).

Na25O,の電解条件の1例を下記に示す。An example of electrolytic conditions for Na25O is shown below.

Na2SO4+ HzO→H2SO< + 28aOH
Na2SO,: 1mol’/ 1以上型流密度 :4
^/d−2 電流効率 =40% 生成液濃度:陰極NaOH3,6mol/ 1陽極H2
SO41,1mof/ 1 上記iおよびiiのプロセスの流れを第1図に示す。
Na2SO4+ HzO→H2SO< + 28aOH
Na2SO,: 1 mol'/1 or more Mold flow density: 4
^/d-2 Current efficiency = 40% Product solution concentration: Cathode NaOH3.6 mol/1 Anode H2
SO41,1mof/1 The flow of the above processes i and ii is shown in FIG.

第1図において、■はN a N O3含有廃液貯蔵タ
ンクであり、■は硫酸貯蔵タンクである。まず■の反応
槽に、■からのN a N Os含有廃液および■から
の硫酸を装入し、■の反応槽を■のヒーターで加熱し、
前述の反応を進行させる6反応により生成したHNO,
は■の硝酸回収タンクに回収される0反応終了後、反応
生成物であるNa、SO。
In FIG. 1, ■ is a waste liquid storage tank containing NaN O3, and ■ is a sulfuric acid storage tank. First, the NaNOs-containing waste liquid from ■ and the sulfuric acid from ■ are charged into the reaction tank (■), and the reaction tank (■) is heated with the heater (■).
HNO produced by the 6 reactions that proceed with the aforementioned reactions,
After the reaction is completed, the reaction products Na and SO are recovered in the nitric acid recovery tank (①).

は■の3室型の電解槽に移送される。is transferred to the three-chamber electrolytic cell shown in (■).

この■の3室型セルは、陽極側はアニオン膜によって処
理液と隔離され、同様に陰極側はカチ木ン膜によって処
理液と隔離されている。電解によりNaOHは陰極側に
回収され、■のNaOHタンクに移送される。一方、H
2SO,は陽極側に回収され、■の硫酸タンクに移送さ
れる。これらはそれぞれ、次の再処理工程や、N a 
N O3回収工程に使用されることは、前述したとおり
である。
In this three-chamber type cell (2), the anode side is isolated from the processing solution by an anion membrane, and the cathode side is similarly isolated from the processing solution by a cathode membrane. NaOH is recovered to the cathode side by electrolysis and transferred to the NaOH tank (2). On the other hand, H
2SO, is recovered on the anode side and transferred to the sulfuric acid tank (2). These are required for the next reprocessing process and Na
As mentioned above, it is used in the NO3 recovery process.

ここで、廃液処理・固化の減容性について簡単に試算す
る。
Here, we will briefly calculate the volume reduction properties of waste liquid treatment and solidification.

N aN O350aa/ o(重量%)溶液LM’を
処理した場合、これをアスファルトで固化した場合は固
化体の体積は約IM’となり、減容率は1でしかない、
これを本発明の方法で処理すると、次のように減容率が
非常に高くなる。
When a NaN O350aa/o (wt%) solution LM' is treated and solidified with asphalt, the volume of the solidified material is approximately IM', and the volume reduction rate is only 1.
When this is treated by the method of the present invention, the volume reduction rate becomes extremely high as shown below.

すなわち、プロセスi〉の反応を完全に進めると、生成
物はHNO2およびN a 2 S O4となるが、N
 a 2 S O4が固体となり回収が困難になるので
、回収率を90%に留とめておく、ここで500k。
In other words, if the reaction of process i> is completed, the products will be HNO2 and Na 2 SO4, but N
Since a 2 SO4 becomes solid and difficult to recover, the recovery rate is kept at 90%, which is 500k.

のN a N O3から約333kgのHN O3が回
収でき、Na25O,が約400kg生成する。
Approximately 333 kg of HN O3 can be recovered from Na N O3, and approximately 400 kg of Na25O is produced.

プロセスii)の電解反応は、Na2SO2濃度が1m
o1/1以上で進行する。したがって、反応終点時のN
IL2SO,濃度を1moi’/1とし、使用液量を1
001とすると、固化対象となる廃液中のN at S
 O4は14.2kyとなる。この場合、N 112 
S O4がLowlo(重1%)のセメント固化体とす
ることができるので、固化体の比重を2とすると、体積
は約701となる。したがって、被処理体の重量は処理
前のNaNOs 500kgの1735であり、10倍
以上(約14倍)の減容率が得られる。
In the electrolytic reaction of process ii), the Na2SO2 concentration is 1 m
Proceed at o1/1 or higher. Therefore, N at the end of the reaction
IL2SO, the concentration is 1moi'/1, the amount of liquid used is 1
001, N at S in the waste liquid to be solidified
O4 is 14.2ky. In this case, N 112
Since it is possible to form a cement solidified body with low SO4 (1% by weight), if the specific gravity of the solidified body is 2, the volume will be approximately 701. Therefore, the weight of the object to be treated is 1,735 times the weight of 500 kg of NaNOs before treatment, and a volume reduction rate of 10 times or more (approximately 14 times) can be obtained.

〔発明の効果〕〔Effect of the invention〕

核燃料再処理施設から排出される、多量のN a N 
Osを含み、中・低レベルの放射能を有する廃液を本発
明の方法で処理することにより、再処理施設中で再び使
用され得るHNO,、H2SO,、NaOH等を回収す
ることができ、HNO,、NaOH溶液の閉サイクル化
が可能となり、廃棄物発生量の大巾な低減を図ることが
できる。この結果、従来に比べ中・低レベル廃液処理系
での固化体発生が大巾に減少する。
Large amounts of NaN emitted from nuclear fuel reprocessing facilities
By treating waste liquid containing Os and having medium to low levels of radioactivity using the method of the present invention, it is possible to recover HNO, H2SO, NaOH, etc., which can be used again in a reprocessing facility. , It becomes possible to create a closed cycle for the NaOH solution, and it is possible to significantly reduce the amount of waste generated. As a result, the generation of solidified substances in medium- and low-level waste liquid treatment systems is greatly reduced compared to conventional systems.

なお、以上は使用済み核燃料の再処理工程がら排出され
る廃液の処理を中心にして説明したが、本発明はこれら
の用途に限定されるものではなく、N a N Osを
多量に含有する他の廃液の処理にも有用であることは勿
論である。
Although the above description has focused on the treatment of waste liquid discharged from the reprocessing process of spent nuclear fuel, the present invention is not limited to these uses, and is applicable to waste liquids containing a large amount of NaNOs. Of course, it is also useful for treating waste liquid.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る廃液の処理法の流れの一例を示
す図である。 1・・・N aN Oz含有廃液貯蔵タンク、2・・・
反応槽、3・・・ヒーター、4・・・電解槽、5・・・
硫酸タンク、6・・・硝酸回収タンク、7・・・水酸化
ナトリウム回収タンク
FIG. 1 is a diagram showing an example of the flow of the waste liquid treatment method according to the present invention. 1...N aN Oz containing waste liquid storage tank, 2...
Reaction tank, 3... Heater, 4... Electrolytic tank, 5...
Sulfuric acid tank, 6... Nitric acid recovery tank, 7... Sodium hydroxide recovery tank

Claims (1)

【特許請求の範囲】[Claims] NaNO_3を含む廃液の処理法において、硫酸を使用
してHNO_3を回収し、その反応生成物であるNa_
2SO_4を電解処理し、NaOH、H_2SO_4を
それぞれ回収することを特徴とする、廃液の処理法。
In a method for treating waste liquid containing NaNO_3, sulfuric acid is used to recover HNO_3 and its reaction product Na_
A method for treating waste liquid, characterized by electrolytically treating 2SO_4 and recovering NaOH and H_2SO_4.
JP17417089A 1989-07-07 1989-07-07 Treatment of waste liquid containing nano3 Pending JPH0339698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17417089A JPH0339698A (en) 1989-07-07 1989-07-07 Treatment of waste liquid containing nano3

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17417089A JPH0339698A (en) 1989-07-07 1989-07-07 Treatment of waste liquid containing nano3

Publications (1)

Publication Number Publication Date
JPH0339698A true JPH0339698A (en) 1991-02-20

Family

ID=15973929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17417089A Pending JPH0339698A (en) 1989-07-07 1989-07-07 Treatment of waste liquid containing nano3

Country Status (1)

Country Link
JP (1) JPH0339698A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283700A (en) * 1991-03-12 1992-10-08 Toshiba Corp Reducing method of volume of low-level concentrated liquid waste
EP0772205A3 (en) * 1995-11-01 1997-12-17 Douryokuro Kakunenryo Kaihatsu Jigyoudan Process for treatment of radioactive waste
EP2192595A1 (en) * 2007-12-05 2010-06-02 JGC Corporation Method for treating radioactive waste solution and treatment apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04283700A (en) * 1991-03-12 1992-10-08 Toshiba Corp Reducing method of volume of low-level concentrated liquid waste
EP0772205A3 (en) * 1995-11-01 1997-12-17 Douryokuro Kakunenryo Kaihatsu Jigyoudan Process for treatment of radioactive waste
US5744020A (en) * 1995-11-01 1998-04-28 Douryokuro Kakunenryo Kaihatsu Jigyoudan Process for treatment of radioactive waste
EP2192595A1 (en) * 2007-12-05 2010-06-02 JGC Corporation Method for treating radioactive waste solution and treatment apparatus
EP2192595A4 (en) * 2007-12-05 2012-10-03 Jgc Corp Method for treating radioactive waste solution and treatment apparatus
US8476481B2 (en) 2007-12-05 2013-07-02 Jgc Corporation Method for treating radioactive liquid waste and apparatus for the same

Similar Documents

Publication Publication Date Title
CN105886767B (en) A kind of recovery method of copper indium gallium selenide waste material
CN107010655A (en) A kind of method of germanium in recovery germanium-containing material
WO2007083588A1 (en) Sodium salt recycling system for use in wet reprocessing of used nuclear fuel
WO2016027479A1 (en) Method for treating tritium-water-containing raw water
JP6972042B2 (en) Recycling method of liquid nuclear waste by controlling boron concentration
CA1069854A (en) Method for purifying actinides which are in low oxidation states
JPH0339698A (en) Treatment of waste liquid containing nano3
US5135728A (en) Method for dissolving delta-phase plutonium
CN111087114A (en) Treatment method of tantalum-niobium production wastewater
JP2002255558A (en) Method for converting fluoride into oxide
JP2731299B2 (en) Volume reduction method for low-level concentrated waste liquid
JPH06242294A (en) Circulation processing method of radioactive waste liquid containing sodium nitrate
KR880004500A (en) Treatment method of contaminated phosphate solution
KR20130131821A (en) METHOD FOR SEPARATION OF GROUP II NUCLIDES AND RECOVERY OF PURE LICL BY USING Li2O
US2865705A (en) Improvement upon the carrier precipitation of plutonium ions from nitric acid solutions
JP2938869B1 (en) Treatment of radioactive liquid waste
JPS61161500A (en) Electrolytic decontamination waste liquor treating method
HU185105B (en) Method for producing waste solution concentrates of atomic power station having high salt concantration
RU2303306C2 (en) Method for evaporating raffinate produced in recovery of nuclear power station irradiated fuel
JP2002303694A (en) Decontamination method for uranium waste using supercritical carbon dioxide containing nitric acid tributyl phosphate(tbp) complex as medium
JPS6037866B2 (en) How to recover thallium
JP2504311B2 (en) Method for reducing the amount of radioactive waste generated from nuclear fuel reprocessing processes
Gray Removal of sulfamic acid from plutonium sulfamate--sulfamic acid solution
JPH03189599A (en) Desalting system of nuclear power plant
JP2000162380A (en) Reprocessing method of spent nuclear fuel