JPH0339280B2 - - Google Patents

Info

Publication number
JPH0339280B2
JPH0339280B2 JP7524382A JP7524382A JPH0339280B2 JP H0339280 B2 JPH0339280 B2 JP H0339280B2 JP 7524382 A JP7524382 A JP 7524382A JP 7524382 A JP7524382 A JP 7524382A JP H0339280 B2 JPH0339280 B2 JP H0339280B2
Authority
JP
Japan
Prior art keywords
magnetic field
spin
electron
arbitrary
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7524382A
Other languages
Japanese (ja)
Other versions
JPS58193500A (en
Inventor
Kazuyuki Koike
Kazunobu Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7524382A priority Critical patent/JPS58193500A/en
Publication of JPS58193500A publication Critical patent/JPS58193500A/en
Publication of JPH0339280B2 publication Critical patent/JPH0339280B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Measurement Of Radiation (AREA)

Description

【発明の詳細な説明】 本発明は、磁性体表面にあつて、その磁気的性
質を決定する電子スピンの方向検出器に係り、特
にスピン偏極1次電子線のスピン回転に好適な荷
電粒子スピン回転装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electron spin direction detector on the surface of a magnetic material that determines its magnetic properties, and in particular to a charged particle detector suitable for spin rotation of a spin-polarized primary electron beam. This invention relates to a spin rotation device.

荷電粒子の走行軌道を変えずにスピンのみを回
転する装置としては、ウイーンフイルター(以下
W.F.と略す:P.E.Cavanagh他SER.Vol8,NO2,
P1105,1957,E.Kisber,他Phys.Rev,BVol18,
NO5,P22561978等参照)があるが、これらは特
定の軸の周りの回転しか与えることができない。
A device that rotates only the spin of charged particles without changing their trajectory is the Vienna filter (hereinafter referred to as
Abbreviated as WF: PECavanagh et al. SER.Vol8, NO2,
P1105, 1957, E.Kisber, et al.Phys.Rev, BVol18,
NO5, P22561978, etc.), but these can only give rotation around a specific axis.

以下この点について第1図により詳細に説明す
る。上記W.F.は磁場を印加する1対のコイル1,
2と、それに垂直な方向に電場を印加する1対の
電極3,4から構成され、このW.F.に、上記電
場及び磁場の双方に垂直な方向から入射する電子
5を、以下の原理によつてその軌道を変えずにス
ピン方向6のみを、磁場方向の軸の周りに回転す
る。
This point will be explained in detail below with reference to FIG. The above WF is a pair of coils 1 that apply a magnetic field,
2 and a pair of electrodes 3 and 4 that apply an electric field in a direction perpendicular to the WF, and electrons 5 incident on this WF from a direction perpendicular to both the electric field and the magnetic field are applied according to the following principle. Only the spin direction 6 is rotated around the axis of the magnetic field direction without changing its orbit.

今第2図に示すように、W.F.内において紙面
に垂直で紙面に入る方向に磁場Bが印加されてい
るとすると、この磁場内に入射した電子のスピン
は磁場方向を軸として回転し、その回転角θは、
電子が上記磁場に入射してからの時間をt、電子
の電荷、質量をそれぞれe,mとすると(1)式で表
わされる。
As shown in Figure 2, if a magnetic field B is applied in the WF in a direction perpendicular to the plane of the paper and entering the plane of the paper, the spins of the electrons that enter this magnetic field rotate around the direction of the magnetic field; The rotation angle θ is
If the time elapsed after the electron enters the magnetic field is t, and the charge and mass of the electron are e and m, respectively, it is expressed by equation (1).

θ=e|B|/mt …(1) ところが入射電子は磁場から、(2)式で示される
ローレンツカFBを受けその軌道を変えてしまう。
θ=e|B|/mt (1) However, the incident electron receives the Lorentz force F B shown by equation (2) from the magnetic field and changes its orbit.

FB=ev×B …(2) ここでvは電子の速度である。そこでこのFB
を打ち消すために E=−v×B …(3) なる電場Eを印加すれば、このEから電子が受け
る力FEは FE=−ev×B …(4) となり、全体として電子が受ける力はFB+FE
0となつて電子は軌道を変えない。電子のスピン
は電場からの影響を受けないから、結局W.F.を
通過する電子はその軌道を変えずに、スピンのみ
を、磁場方向の軸の周りに回転することになる。
このW.F.の場合、磁場強度|B|と電場強度|
E|を(3)式を満たすように変えることにより、(1)
式で示されるように回転角θを変えることできる
が、磁場方向が固定されているため回転方向が固
定され、3次元空間内の任意の方向にスピンを回
転することができない。
F B =ev×B...(2) Here, v is the velocity of the electron. So this F B
If we apply an electric field E of E=-v×B...(3) to cancel it, the force F E that the electron receives from this E becomes F E =-ev×B...(4), and the total force that the electron receives is The force is F B +F E =
0 and the electron does not change its orbit. Since the electron spin is not affected by the electric field, the electrons passing through the WF end up rotating around the axis in the direction of the magnetic field without changing their orbits.
In the case of this WF, the magnetic field strength |B| and the electric field strength |
By changing E| to satisfy equation (3), (1)
Although the rotation angle θ can be changed as shown in the equation, since the magnetic field direction is fixed, the rotation direction is fixed, and the spin cannot be rotated in any direction in three-dimensional space.

本発明の目的は、スピン偏極電子線のスピンを
任意の軸の周りに任意の角度だけ回転させ得る装
置を提供することにある。
An object of the present invention is to provide an apparatus that can rotate the spin of a spin-polarized electron beam by an arbitrary angle around an arbitrary axis.

ウイーンフイルタを用いた従来の電子スピン回
転装置は、特定方向に印加された磁場と平行な軸
の周りにしかスピンを回軸することができなかつ
た。そこで本発明では電子軌道と垂直な任意の方
向に任意強度の磁場を印加できるようにするとと
もに、電子軌道、磁場の双方に垂直な電場を印加
し、そのスピンを任意軸の周りに任意角度だけ回
転できるようにした。
Conventional electron spin rotation devices using Wien filters could only rotate spins around an axis parallel to a magnetic field applied in a specific direction. Therefore, in the present invention, a magnetic field of arbitrary strength can be applied in an arbitrary direction perpendicular to the electron orbit, and an electric field perpendicular to both the electron orbit and the magnetic field can be applied, and the spin can be changed by an arbitrary angle around an arbitrary axis. Made it possible to rotate.

以下、本発明の一実施例を第3図により説明す
る。本発明による装置はそれぞれx及びy方向の
磁場を印加する2対のコイル7,8,9,10
と、x及びy方向の電場を印加する2対の平行電
極11,12,13,14から構成され、両者と
も、2対のそれぞれの強度を適当に組み合せるこ
とにより、x−y平面内の任意の方向に、任意の
強度の磁場及び電場を発生することができる。従
つて任意の方向の回転軸の周りに任意の角度だけ
スピンを回転するためには、(1)式を満たす強度の
磁場を回転軸の方向に印加し、同時に(3)式を満す
電場を印加すればよい。
An embodiment of the present invention will be described below with reference to FIG. The device according to the invention consists of two pairs of coils 7, 8, 9, 10 each applying a magnetic field in the x and y direction.
and two pairs of parallel electrodes 11, 12, 13, and 14 that apply electric fields in the x and y directions. Magnetic and electric fields can be generated in any direction and with any strength. Therefore, in order to rotate the spin by an arbitrary angle around a rotation axis in an arbitrary direction, a magnetic field with a strength that satisfies equation (1) is applied in the direction of the rotation axis, and at the same time an electric field that satisfies equation (3) is applied. Just apply.

以下具体例を示す。コイル9,10(それぞれ
50ターンで、正極性電流を流したときの発生磁場
方向がコイル9からコイル10へ向う方向となる
ように巻かれている)に0.94Aの電流を流し、電
極11,12,13,14(対向電極間距離15
mm、Z軸方向電極長30mm)にそれぞれ+790V,−
790V,0V,0Vの電位を与えると、+Z方向から
1KeVのエネルギーをもつて入射した電子のスピ
ン方向を+Z方向から90゜y軸の周りに回転させx
方向に変えることができた。
A specific example is shown below. Coils 9 and 10 (respectively
A current of 0.94 A is passed through the electrodes 11, 12, 13, 14 (which are wound with 50 turns so that the direction of the generated magnetic field when a positive current is passed is from the coil 9 to the coil 10). Distance between opposing electrodes 15
mm, Z-axis direction electrode length 30mm) +790V, - respectively
When applying potentials of 790V, 0V, 0V, from the +Z direction
Rotate the spin direction of an incident electron with an energy of 1 KeV around the y-axis by 90 degrees from the +Z direction x
I was able to change direction.

またコイル7,8(それぞれ50ターンで正極性
電流を流したときの発生磁場方向がコイル7から
コイル8へ向う方向となるように巻かれている)
に0.66A、コイル9,10に0.66Aの電流を流し、
電極11,14,12,13にそれぞれ+550V,
+550V,−550V,−550Vの電位を与えると、+Z
方向から1KeVのエネルギーもをつて入射した電
子のスピン方向を+Z方向から90゜y′軸の周りに
回転させ、x′方向に変えることができた。
Coils 7 and 8 (each wound in such a way that the direction of the generated magnetic field when a positive current is passed for 50 turns is from coil 7 to coil 8)
A current of 0.66A is passed through coils 9 and 10,
+550V for each electrode 11, 14, 12, 13,
When applying potentials of +550V, -550V, -550V, +Z
We were able to rotate the spin direction of the incident electron by 90 degrees around the y' axis from the +Z direction and change it to the x' direction with an energy of 1 KeV from the direction.

本発明によれば電子線のスピンを3次元空間内
の任意の方向に向けることができるので、これを
1次電子線として磁性体表面に照射し、散乱強度
を調べることにより、磁性体表面の磁気的性質を
決定する電子スピンの状態を調べることができ、
表面磁性の研究に威力を発揮する。
According to the present invention, the spin of the electron beam can be directed in any direction in three-dimensional space, so by irradiating this as a primary electron beam onto the surface of a magnetic material and examining the scattering intensity, it is possible to The state of electron spin, which determines magnetic properties, can be investigated.
Demonstrates its power in researching surface magnetism.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のウイーンフイルタの見取り図、
第2図は第1図の正面図、第3図は本発明による
荷電粒子スピン回転装置の見取り図である。 1,2……コイル、3,4……電極、5……電
子、6……スピンの方向、7,8,9,10……
コイル、11,12,13,14……電極。
Figure 1 is a schematic diagram of a conventional Vienna filter.
FIG. 2 is a front view of FIG. 1, and FIG. 3 is a sketch of the charged particle spin rotation device according to the present invention. 1, 2... Coil, 3, 4... Electrode, 5... Electron, 6... Spin direction, 7, 8, 9, 10...
Coil, 11, 12, 13, 14... electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 荷電粒子の走行軌道に対して、該軌道と垂直
な平面上の任意の方向から任意の強度を有する磁
場を印加する手段と、上記軌道と上記磁場の方向
との双方に垂直で、上記磁場強度と一定の関係に
ある強度を有する電場を印加する手段とを有する
ことを特徴とする荷電粒子スピン回転装置。
1. A means for applying a magnetic field having an arbitrary intensity to a traveling trajectory of a charged particle from an arbitrary direction on a plane perpendicular to the trajectory, and a means for applying a magnetic field having an arbitrary intensity to a traveling trajectory of a charged particle from an arbitrary direction on a plane perpendicular to the trajectory; 1. A charged particle spin rotation device comprising means for applying an electric field having an intensity having a constant relationship with the intensity.
JP7524382A 1982-05-07 1982-05-07 Charged particle spin rotator Granted JPS58193500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7524382A JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7524382A JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Publications (2)

Publication Number Publication Date
JPS58193500A JPS58193500A (en) 1983-11-11
JPH0339280B2 true JPH0339280B2 (en) 1991-06-13

Family

ID=13570584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7524382A Granted JPS58193500A (en) 1982-05-07 1982-05-07 Charged particle spin rotator

Country Status (1)

Country Link
JP (1) JPS58193500A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4977629B2 (en) * 2007-03-05 2012-07-18 株式会社日立製作所 Charged particle spin detector, microscope, and photoelectron spectrometer
JP5826529B2 (en) * 2011-06-17 2015-12-02 サンユー電子株式会社 Spin rotation device

Also Published As

Publication number Publication date
JPS58193500A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
JP3528583B2 (en) Charged particle beam irradiation device and magnetic field generator
JP3797672B2 (en) High-speed magnetic scanning of heavy ion beams
JPH01503422A (en) Improved Wien filter design
JP5826529B2 (en) Spin rotation device
JPS59837A (en) Wien filter
JPH0339280B2 (en)
US5444243A (en) Wien filter apparatus with hyperbolic surfaces
Allen The case for a ring electron
Coggeshall The paths of ions and electrons in non-uniform crossed electric and magnetic fields
Thompson et al. The motion of small numbers of ions in a Penning trap
Kumar et al. Properties of a cylindrical Penning trap with conical endcap openings
JP2856518B2 (en) Ex-B type energy filter
JP3040245B2 (en) Vienna filter
RU175484U1 (en) Pyroelectric quadrupole lens
Schmidt A Quadrupole Energy Filter
US6403954B1 (en) Linear filter
Ip On the drift motions of magnetospheric charged particles in the vicinity of a planetary satellite with dipole field
JPH0554853A (en) Wiener filter
JP3205429B2 (en) Charged particle separation method
Ogilvie et al. Neutral oxygen near Jupiter.
Krori et al. Escape of photons from magnetized cylinders
JP2862330B2 (en) Retarding Wien filter
WO2024068600A1 (en) Quantum computing arrangement and quantum computer
JPH04286848A (en) Mass spectrometer
Prangé Study of the behaviour of mirror electrostatic analyzers in the case of energetic particles