JPH0337120B2 - - Google Patents

Info

Publication number
JPH0337120B2
JPH0337120B2 JP57165214A JP16521482A JPH0337120B2 JP H0337120 B2 JPH0337120 B2 JP H0337120B2 JP 57165214 A JP57165214 A JP 57165214A JP 16521482 A JP16521482 A JP 16521482A JP H0337120 B2 JPH0337120 B2 JP H0337120B2
Authority
JP
Japan
Prior art keywords
heat exchanger
film
aluminum
water
silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57165214A
Other languages
Japanese (ja)
Other versions
JPS5956097A (en
Inventor
Hideaki Kaneko
Kazuhisa Naito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP16521482A priority Critical patent/JPS5956097A/en
Publication of JPS5956097A publication Critical patent/JPS5956097A/en
Publication of JPH0337120B2 publication Critical patent/JPH0337120B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明はアルミニウムもしくはアルミニウム合
金よりなる板材、特にプレコートアルミニウムコ
イル材で形成されるアルミニウム製熱交換器の表
面処理方法に関するものである。
The present invention relates to a surface treatment method for a plate material made of aluminum or an aluminum alloy, particularly an aluminum heat exchanger made of a precoated aluminum coil material.

【従来技術】[Prior art]

従来、アルミニウム製熱交換器の表面処理とし
ては、白錆防止を目的として、陽極酸化皮膜並び
に樹脂皮膜処理などが行われているが、これらの
皮膜処理は水濡れ性がほとんどなく、むしろ撥水
性である。又、クロメート化成皮膜は皮膜形成初
期には水濡れ性を有するが、経時によつて新水性
面から疎水性面に変化する性質を有する。 一般的に熱交換器の多くは、放熱あるいは冷却
効果を向上させるために、放熱部および冷却部の
面積をできる限り大きくとるように設計されてお
り、しかも小型化を図るため、フインの間隙が極
めて狭い。このため熱交換器に大気中の水分がフ
イン間隙に凝集する。水の凝集は、冷房運転時に
は室内器に、暖房運転時には屋外器に生ずる。 このように凝集した水は、フイン表面が疎水性
面である程水滴になり易く、且つフイン間隙で目
詰まりを起こし、通風抵抗が増加して、熱交換効
率の低下を来す。 又、フイン間隙に溜つた水滴は熱交換器の送風
機によつて飛散し易くなり、熱交換器下部に設置
した水滴受皿からはみ出し易く熱交換器の近傍を
水で汚染することになる。 従つて、水滴がフイン間隙に残り、水滴による
目詰まりを起こさせないようにするため、アルミ
ニウム製フインの表面に親水性を付与して、水濡
れ性を向上させる処理が行われているが、耐食性
能及び親水性の持続性能が充分でなかつた。親水
性面を付与する表面は一般に、水によつて腐食し
易く、且つ流去し易くなり、従つて、熱交換器の
使用経時によつて、親水性面が損なわれる場合が
多かつた。 耐食性を有し、且つ親水性面を付与する表面処
理法は、アルミニウムコイル材を裁断、打抜成
型、及び溶接加工後のアルミニウム製熱交換器の
組立完成品を表面処理する場合と、アルミニウム
コイル材を予め表面処理を施した所謂プレコート
アルミニウムコイル材を裁断、打抜成型加工する
場合とがある。 これらの場合における表面処理法には一長一短
があり、前者の場合の一部には、塗装法などが用
いられるが、フイン間隙が狭いため、塗料の溜り
部分が発生したり、下部に塗料溜りなどが発生し
外観を損なう欠点がある。従つて、前述のような
外観不良を生じ難いクロメート化成法、ベーマイ
ト法などが塗装の代わりに用いられている。しか
しながら、クロメート化成法はクロム酸処理に伴
う作業衛生環境並びに排水処理に問題を有する。
又、ベーマイト法は生産性などに難点がある。 後者の場合に属するものとして例えばクロメー
ト化成並びに樹脂コーテングを施したプレコート
フインがある。 さらに親水性面を形成する方法として、シリカ
微粒子、ケイ酸塩、炭酸カルシウムなどの無機物
質を含有する樹脂を塗布するか、もしくは、シリ
カ微粒子、ケイ酸塩などをクロメート皮膜、樹脂
皮膜もしくは陽極酸化皮膜上に塗布する方法が考
えられるが、シリカ微粒子、ケイ酸塩、炭酸カル
シウムなどの無機質皮膜を有するプレコートアル
ミニウム板は裁断もしくはプレス打抜成型加工に
際し、工具の摩滅が無処理のアルミニウム板に比
べて著しく大きく、工具寿命を短くする欠点を有
している。
Conventionally, the surface treatments for aluminum heat exchangers include anodic oxide coatings and resin coatings for the purpose of preventing white rust, but these coatings have almost no water wettability and are rather water repellent. It is. Further, the chromate conversion film has water wettability at the initial stage of film formation, but has the property of changing from a new water-based surface to a hydrophobic surface over time. In general, most heat exchangers are designed to have as large an area as possible for the heat dissipation section and cooling section in order to improve the heat dissipation or cooling effect, and in order to reduce the size, the gaps between the fins are Extremely narrow. Therefore, moisture in the atmosphere condenses in the fin gaps of the heat exchanger. Water condensation occurs in the indoor unit during cooling operation and in the outdoor unit during heating operation. The more hydrophobic the surface of the fins is, the more water that aggregates in this manner becomes more likely to form water droplets, and the fin gaps become clogged, increasing ventilation resistance and reducing heat exchange efficiency. Further, the water droplets accumulated in the fin gaps are easily scattered by the blower of the heat exchanger, and tend to overflow from the water droplet tray installed at the bottom of the heat exchanger, contaminating the vicinity of the heat exchanger with water. Therefore, in order to prevent water droplets from remaining in the gaps between the fins and causing clogging, aluminum fins are treated to have hydrophilic properties on their surfaces to improve water wettability. The sustainability of hydrophilicity and hydrophilicity was not sufficient. Surfaces that provide a hydrophilic surface are generally susceptible to corrosion and wash away by water, and therefore, the hydrophilic surface was often impaired over time during use of the heat exchanger. Surface treatment methods that provide corrosion resistance and a hydrophilic surface include cutting, punching, and welding aluminum coil material, and then surface treating the assembled finished product of an aluminum heat exchanger, and aluminum coil material. There are cases where a so-called pre-coated aluminum coil material, which has been surface-treated in advance, is cut and stamped. Surface treatment methods in these cases have advantages and disadvantages, and in some of the former cases, painting methods are used, but because the fin gaps are narrow, paint pools may occur, or paint may accumulate at the bottom. This has the disadvantage of causing damage to the appearance. Therefore, a chromate chemical conversion method, a boehmite method, etc., which are less likely to cause the above-mentioned appearance defects, are used instead of painting. However, the chromate chemical conversion method has problems in the working sanitary environment and wastewater treatment associated with chromic acid treatment.
In addition, the boehmite method has drawbacks such as productivity. In the latter case, for example, there are precoated fins that have been subjected to chromate conversion and resin coating. Furthermore, as a method of forming a hydrophilic surface, a resin containing inorganic substances such as silica particles, silicate, calcium carbonate, etc. can be applied, or silica particles, silicate, etc. can be coated with a chromate film, a resin film, or anodized. A method of coating on the coating is considered, but pre-coated aluminum plates with inorganic coatings such as silica particles, silicate, calcium carbonate, etc. are less prone to tool wear during cutting or press punching forming than untreated aluminum plates. It is extremely large and has the disadvantage of shortening tool life.

【発明の目的】[Purpose of the invention]

本発明はこれらの欠点を除去するためになされ
たものであつて、その目的はアルミニウム製熱交
換器におけるフイン表面の白錆防止と水濡れ性を
向上させると共に、裁断、プレス打抜加工時の工
具摩耗を低減したアルミニウム製熱交換器の表面
処理方法を提供しようとするものである。
The present invention was made to eliminate these drawbacks, and its purpose is to prevent white rust on the fin surface of aluminum heat exchangers and improve water wettability, as well as to improve the water wettability during cutting and press punching. The present invention aims to provide a surface treatment method for aluminum heat exchangers that reduces tool wear.

【目的を達成するための手段】[Means to achieve the purpose]

前記目的を達成するための具体的手段として本
発明の処理方法は、表面に体質顔料を含有しない
樹脂皮膜を施した熱交換器用アルミニウムフイン
板材を裁断及びプレス打抜成型加工してフイン材
を形成し、該フイン材を組み立てて熱交換器を形
成し、該熱交換器を脱脂洗浄した後、シリカ微粒
子及び低分子ケイ酸塩を含む水溶液で処理し、そ
の表面に0.01〜5g/m2のシリカ微粒子皮膜を形
成することを特徴とするアルミニウム製熱交換器
の表面処理方法、並びに表面にタンニン酸を含有
するウレタン樹脂溶液で皮膜に形成させた熱交換
器用アルミニウムフイン板材を裁断及びプレス打
抜成型加工してフイン材を形成し、該フイン材を
組み立てて熱交換器を形成し、該熱交換器を脱脂
洗浄した後、シリカ微粒子及び低分子ケイ酸塩を
含む水溶液で処理し、その表面に0.01〜5g/m2
のシリカ微粒子皮膜を形成することを特徴とする
アルミニウム製熱交換器の表面処理方法である。 そして、シリカ微粒子に対する低分子ケイ酸塩
の配合比が5〜50%であり、又シリカ微粒子及び
低分子ケイ酸塩の塗布量が0.01〜5g/m2である
ことを特定したアルミニウム熱交換器の表面処理
方法である。
As a specific means for achieving the above object, the processing method of the present invention involves cutting and press punching processing an aluminum fin plate material for a heat exchanger whose surface is coated with a resin film containing no extender pigment to form a fin material. Then, the fin materials are assembled to form a heat exchanger, and after degreasing and cleaning the heat exchanger, it is treated with an aqueous solution containing fine silica particles and low-molecular silicate, and the surface is coated with 0.01 to 5 g/ m2 . A surface treatment method for an aluminum heat exchanger characterized by forming a silica fine particle film, and cutting and press punching of an aluminum fin plate material for a heat exchanger on which a film is formed with a urethane resin solution containing tannic acid on the surface. A fin material is formed by molding, the fin material is assembled to form a heat exchanger, the heat exchanger is degreased and cleaned, and then treated with an aqueous solution containing fine silica particles and low molecular weight silicate. 0.01~5g/ m2
This is a method for surface treatment of an aluminum heat exchanger, which is characterized by forming a silica fine particle film. An aluminum heat exchanger in which the blending ratio of low-molecular-weight silicate to silica fine particles is 5 to 50%, and the coating amount of silica fine particles and low-molecular-weight silicate is 0.01 to 5 g/ m2 . This is a surface treatment method.

【工程の説明】[Process description]

本発明をアルミニウム製熱交換器の製造工程か
ら説明すると、樹脂コーテングを施したプレコー
ト材を裁断、プレス打抜成型加工した後、銅パイ
プなどを溶接した熱交換器の組立品をトリクレン
洗浄し、次いで水に浸漬して濡れテストを行う工
程において、水の代わりにシリカ微粒子を含有す
る水溶液を用い、その後の水切り乾燥工程で乾燥
することによつて、皮膜を形成させることが出来
る。
To explain the present invention from the manufacturing process of an aluminum heat exchanger, a pre-coated material coated with resin is cut, press stamped and formed, and then the heat exchanger assembly, which is made by welding copper pipes etc., is cleaned with triclean. Next, in the step of performing a wetness test by immersing in water, an aqueous solution containing fine silica particles is used instead of water, and by drying in the subsequent draining and drying step, a film can be formed.

【組成の説明】 本発明の処理方法に用いるシリカ微粒子、ケイ
酸塩及び炭酸カルシウムなどの無機顔料を含有し
ない樹脂コーテング剤に用いる樹脂皮膜として
は、現在工業化市販されている有機高分子樹脂の
ほとんどが使用可能であり、酢酸ビニル、塩化ビ
ニル、塩化ビニリデンなどのビニル系及びその共
重合体、アクリル酸、メタクリル酸、アクリル酸
エステル、メタクリル酸エステル、ヒドロキシア
クリル酸、ヒドロキシメタクリル酸などのアクリ
ル系及びその共重合体、アルキツド系、エポキシ
系、フツ素系、ウレタン系、ポリエステル系、ス
チレン系、オレフイン系、及びそれらの共重合
体、ブタジエンなどの合成ゴム系、及び天然高分
子系が用いられる。 有機高分子樹脂の分子量は1000以上が好まし
く、1000以下の場合には、皮膜形成時に酸化重合
或は架橋反応によつて水に不溶化の皮膜を形成す
るものを選択する必要がある。又、アルミニウム
製熱交換器の製造工程において、トリクレン洗浄
工程がある場合には、トリクレンに溶解し難い樹
脂を選ぶ必要がある。 又、本発明では、熱交換器に用いるためアルミ
ニウム及びその合金表面に対して、薄膜で耐食性
の良い樹脂皮膜を形成するものから選択する必要
がある。熱交換器に用いる皮膜厚はできる限り薄
い方が望ましく、通常は10ミクロン以下であり、
最適には2ミクロン以下が望ましい。 これらの要求に最も適した樹脂皮膜は、ウレタ
ン樹脂並びにエポキシ系樹脂であり、更にプレコ
ート処理の作業面から、水系ウレタン樹脂に反応
促進剤としてタンニン酸を添加した樹脂皮膜組成
液を使用することによつて、比較的低温で且つ短
時間で良好な皮膜を得ることが出来る。更に、シ
リカ微粒子及び低分子ケイ酸塩を含む水溶液を塗
布する場合においても、タンニン酸のため濡れ性
が良く、均一な皮膜を形成させることが出来る。 樹脂皮膜を着色する目的に際しては、カーボン
ブラツク、フタロシアニン系顔料など、アルミニ
ウム材の裁断、プレス加工時の工具摩耗に影響を
及ぼさない範囲で用いることが出来る。 又、裁断、プレス成型加工後に用いるシリカ微
粒子としては、水に溶解しない高分子量の無水ケ
イ酸粒子で、1〜100ミリミクロン程度の粒子径
を有するものが良好である。 シリカ微粒子及び低分子ケイ酸塩を含む水溶液
を塗布する方法は、粉末の状態で塗布する方法、
トリクレン浴槽に分散させ、トリクレン脱脂洗浄
と同時に付着させる方法、並びに樹脂などの貼着
効果を有するバインダーに分散させた溶液をスプ
レーなどで塗布する方法などがあるが、最適には
アルミニウム製熱交換器の水浸漬による漏水試験
槽の水の代わりに、水に分散させたシリカ微粒子
及び低分子ケイ酸塩を含む水溶液に、成型した熱
交換器を浸漬し、濡れテストと同時に、シリカ微
粒子及び低分子ケイ酸塩を含む水溶液を付着さ
せ、その後の水切り乾燥工程において乾燥させ強
固な親水性面を形成させる方法である。 シリカ微粒子及び低分子ケイ酸塩は、その表面
にシラノール基(−SiOH)を持つており、水中
では解離し、負荷電を持ち、安定状態に懸濁して
分散している。この懸濁水溶液を耐食性を有する
皮膜上に塗布し乾燥することによつてケイ酸粒子
が皮膜表面で固着したりケイ酸粒子が相互に会合
し、凝集して皮膜を形成する。一度固着もしくは
凝集したケイ酸粒子は再分散し難く、皮膜表面か
ら脱落しなくなり、従つて経時変化に対し、持続
性を有する皮膜が形成される。 シリカ微粒子と共に水溶液へ分散させる低分子
ケイ酸塩としては、例えばケイ酸ソーダ、ケイ酸
カリ、ケイ酸リチウムなどであつて、シリカ微粒
子に対して5〜50%を用いることによつてより良
好は皮膜を形成することが出来る。 本発明によるシリカ微粒子及び低分子ケイ酸塩
の塗布量は、親水性の要求度合いによつて異なる
が、0.01〜5g/m2程度が良好である。シリカ微
粒子及び低分子ケイ酸塩の付着量が0.01g/m2
下であると充分な親水性面が得られ難く、5g/
m2以上では経済的に不利である。
[Composition Description] Most of the organic polymer resins that are currently commercially available are used as the resin film used in the resin coating agent that does not contain inorganic pigments such as silica particles, silicate, and calcium carbonate used in the treatment method of the present invention. vinyl acetate, vinyl chloride, vinylidene chloride and their copolymers; acrylic acid, methacrylic acid, acrylic esters, methacrylic esters, hydroxyacrylic acid, hydroxymethacrylic acid and other acrylic and Copolymers thereof, alkyd systems, epoxy systems, fluorine systems, urethane systems, polyester systems, styrene systems, olefin systems, and copolymers thereof, synthetic rubber systems such as butadiene, and natural polymer systems are used. The molecular weight of the organic polymer resin is preferably 1,000 or more, and if it is less than 1,000, it is necessary to select one that forms a film that is insoluble in water through oxidative polymerization or crosslinking reaction during film formation. Further, in the manufacturing process of an aluminum heat exchanger, if there is a trichlene cleaning step, it is necessary to select a resin that is difficult to dissolve in trichlene. Further, in the present invention, since it is used in a heat exchanger, it is necessary to select a material that forms a thin resin film with good corrosion resistance on the surface of aluminum and its alloy. It is desirable that the film used for heat exchangers be as thin as possible, usually less than 10 microns.
Optimally, the thickness is preferably 2 microns or less. The most suitable resin coatings to meet these requirements are urethane resins and epoxy resins.Furthermore, from the standpoint of pre-coat processing, it has been decided to use a resin coating composition solution made by adding tannic acid as a reaction accelerator to a water-based urethane resin. Therefore, a good film can be obtained at a relatively low temperature and in a short time. Furthermore, even when applying an aqueous solution containing fine silica particles and a low-molecular-weight silicate, tannic acid has good wettability and a uniform film can be formed. For the purpose of coloring the resin film, carbon black, phthalocyanine pigments, etc. can be used as long as they do not affect tool wear during cutting and press working of aluminum materials. The silica fine particles used after cutting and press molding are preferably high molecular weight silicic acid anhydride particles that do not dissolve in water and have a particle size of about 1 to 100 millimicrons. The method of applying an aqueous solution containing fine silica particles and low molecular weight silicate is a method of applying it in a powder state;
There are methods such as dispersing it in a Triclean bath and attaching it at the same time as Triclean degreasing and cleaning, and spraying a solution dispersed in a binder that has an adhesion effect such as resin, but the most suitable method is to apply the solution to an aluminum heat exchanger. Water leakage test by immersion in water Instead of the water in the tank, the molded heat exchanger was immersed in an aqueous solution containing fine silica particles and low molecular weight silicate dispersed in water, and at the same time as the wetness test, fine silica particles and low molecular weight silicate were immersed in the water solution. This is a method in which an aqueous solution containing silicate is deposited and then dried in a subsequent draining and drying process to form a strong hydrophilic surface. Silica fine particles and low-molecular silicates have silanol groups (-SiOH) on their surfaces, dissociate in water, have a negative charge, and are suspended and dispersed in a stable state. By applying this aqueous suspension solution onto a corrosion-resistant film and drying it, the silicic acid particles stick to the surface of the film, or the silicic acid particles associate with each other and aggregate to form a film. Once fixed or aggregated, silicic acid particles are difficult to redisperse and do not fall off the surface of the film, thus forming a film that is durable against changes over time. The low-molecular-weight silicate to be dispersed in the aqueous solution together with the silica particles is, for example, sodium silicate, potassium silicate, lithium silicate, etc., and it is better to use 5 to 50% of the silica particles. A film can be formed. The coating amount of the silica fine particles and low molecular weight silicate according to the present invention varies depending on the degree of hydrophilicity required, but is preferably about 0.01 to 5 g/m 2 . If the amount of silica fine particles and low-molecular-weight silicate deposited is less than 0.01 g/ m2 , it will be difficult to obtain a sufficiently hydrophilic surface;
m 2 or more is economically disadvantageous.

【実施例】【Example】

実施例 1 脱脂、清浄したアルミニウム材(A1100、0.14
mm厚)に熱硬化性ウレタン樹脂(登録商標エラス
トロンE−37、第一工業製薬)100重量部、硬化
触媒(登録商法エラストロンキヤタリスト32、第
一工業製薬)3重量部、フタロシアニン系顔料
(登録商標EMブルー2G、東洋インキ製造)1重
量部を897重量部の脱イオン水で希釈調整した液
を約15g/m2塗布した後、温風循環式オーブンで
160℃3分焼き付けし、約0.3〜0.4g/m2の皮膜
厚のプレコートアルミニウム板を作成した。この
皮膜の耐アセトン払拭テストでは1〜3回で剥離
した。 このようにして形成したプレコートアルミニウ
ム板をプレス加工油を塗布し成型加工を行い、銅
パイプを組み込みアルミニウム製熱交換器を組み
立てた完成品をトリクレンにて脱脂清浄した後シ
リカ微粒子水溶液(登録商標スノーテツクスC、
日産化学)200重量部、並びにケイ酸カリ10重量
部を790重量部の水道水に希釈した浴槽に浸漬し、
アルミニウム製熱交換器の銅パイプ溶接部などの
漏れテストと同時に浸漬塗布し、熱風循環式オー
プンで130℃20分乾燥を行い、ケイ酸カリを含有
するシリカ皮膜約0.3〜0.4g/m2を形成させた。
シリカ皮膜を形成させたアルミニウムフイン表面
は、先のプレス油とは全く無関係であるため、水
濡れ性に富み、水の接触角は10度以下であつた。
又、塩水噴霧試験に供した結果約240時間白錆の
発生が認められなかつた。 更に、使用1ケ月後に再度水の接触角を測定し
た結果、10度以下であり使用初期の水濡れ性を示
した。 実施例 2 前記実施例1の硬化触媒3重量部の代わりに、
タンニン酸を16重量部を用いた実施例1と同一の
素材、薬剤調整液並びに方法で作成した約0.3〜
0.4g/m2の樹脂皮膜の耐アセトン払拭テストで、
皮膜が剥離するまで約30回を要し、実施例1で得
られる皮膜に比べて優れていた。 比較例 1 前記実施例1と同様の素材、薬品並びに方法で
0.3〜0.4g/m2のウレタン樹脂皮膜を形成させた
後、更にシリカ微粒子水溶液(登録商標スノーテ
ツクスC、日産化学)200重量部、ケイ酸カリ20
重量部を780重量部の水道水で希釈した処理液を
ロールコート法で塗布した後、熱風循環式オーブ
ンで130℃3分乾燥し、シリカ皮膜を約0.3〜0.4
g/m2を形成させた後、プレス加工油を塗布しプ
レス成型加工を行つた結果、ダイス並びにポンチ
の工具摩耗が激しく、実施例1に比べ工具寿命が
約1/3〜1/4であつた。
Example 1 Degreased and cleaned aluminum material (A1100, 0.14
mm thickness), 100 parts by weight of thermosetting urethane resin (registered trademark Elastron E-37, Daiichi Kogyo Seiyaku), 3 parts by weight of curing catalyst (registered trade name Elastron Catalyst 32, Daiichi Kogyo Seiyaku), phthalocyanine pigment ( After applying a solution prepared by diluting 1 part by weight (registered trademark EM Blue 2G, manufactured by Toyo Ink) with 897 parts by weight of deionized water at a density of about 15 g/m 2 , it was heated in a hot air circulation oven.
Baking was performed at 160°C for 3 minutes to produce a precoated aluminum plate with a coating thickness of approximately 0.3 to 0.4 g/m 2 . In the acetone wiping resistance test of this film, it peeled off after 1 to 3 times. The pre-coated aluminum plate formed in this way is applied with press processing oil and molded, and the finished product, in which copper pipes are incorporated and an aluminum heat exchanger is assembled, is degreased and cleaned with Triclean, and then a silica fine particle aqueous solution (registered trademark Snowtex) C,
Nissan Chemical) 200 parts by weight and 10 parts by weight of potassium silicate were diluted in 790 parts by weight of tap water.
At the same time as leak testing of copper pipe welds of aluminum heat exchangers, etc., dip coating was applied, and drying was performed at 130℃ for 20 minutes in a hot air circulation open system to form a silica film containing approximately 0.3 to 0.4 g/m 2 of potassium silicate. formed.
The surface of the aluminum fin on which the silica film was formed was completely unrelated to the previous press oil, so it was highly wettable with water, and the contact angle of water was 10 degrees or less.
Furthermore, as a result of subjecting the product to a salt spray test, no white rust was observed for approximately 240 hours. Furthermore, the contact angle of water was measured again after one month of use, and the result was 10 degrees or less, indicating water wettability at the initial stage of use. Example 2 Instead of 3 parts by weight of the curing catalyst in Example 1,
Approx.
In the acetone wiping resistance test of 0.4g/ m2 resin film,
It took about 30 times for the film to peel off, which was superior to the film obtained in Example 1. Comparative Example 1 Using the same materials, chemicals, and methods as in Example 1
After forming a urethane resin film of 0.3 to 0.4 g/m 2 , 200 parts by weight of a silica fine particle aqueous solution (registered trademark Snowtex C, Nissan Chemical) and 20 parts by weight of potassium silicate were added.
After applying a treatment solution diluted with 780 parts by weight of tap water using a roll coating method, it was dried in a hot air circulation oven at 130°C for 3 minutes to form a silica film of about 0.3 to 0.4 parts by weight.
After forming the g/m 2 , press processing oil was applied and press forming was performed. As a result, the tool wear of the die and punch was severe, and the tool life was about 1/3 to 1/4 compared to Example 1. It was hot.

【発明の効果】【Effect of the invention】

以上説明したように、本発明に係るアルミニウ
ム製熱交換器の表面処理方法は、二層の皮膜を形
成するものであるが、まず表面に体質顔料を含有
しない樹脂皮膜を施した熱交換器用アルミニウム
フイン板材を裁断及びプレス打抜成型加工するこ
とで、加工性が容易になるばかりでなく、そのプ
レス打抜成型加工時には、無機の高分子シリカを
含有しないため、加工用工具の摩耗が著しく軽減
され、それら工具を長期に亘つて使用できると言
う優れた効果を奏する。 又、加工後にシリカ微粒子及び低分子ケイ酸塩
皮膜が形成され、その皮膜は樹脂とシリカとの混
合皮膜に比べて遥かに親水性に富むものであり、
実際の使用におけるフインの水濡れ性が著しく向
上すると言う優れた効果を奏する。 更に、表面に形成されるシリカ微粒子及び低分
子ケイ酸塩の皮膜は、低分子ケイ酸塩がシリカ微
粒子間の接着剤の役割を果たし、剥離し難い皮膜
を形成すると共に、シリカ微粒子を単独で使用す
るよりも水濡れ性に優れると言う効果も奏する。
As explained above, the method for surface treatment of an aluminum heat exchanger according to the present invention forms a two-layer film. Cutting and press punching the fin board material not only makes it easier to work with, but the press punching does not contain inorganic polymer silica, which significantly reduces wear on processing tools. This has the excellent effect of allowing these tools to be used for a long period of time. In addition, fine silica particles and a low-molecular-weight silicate film are formed after processing, and this film is far more hydrophilic than a mixed film of resin and silica.
This has the excellent effect of significantly improving the water wettability of the fins in actual use. Furthermore, in the film of silica fine particles and low-molecular silicate formed on the surface, the low-molecular silicate acts as an adhesive between the silica fine particles, forming a film that is difficult to peel off. It also has the effect of being better in water wettability than when it is used.

Claims (1)

【特許請求の範囲】 1 表面に体質顔料を含有しない樹脂皮膜を施し
た熱交換器用アルミニウムフイン板材を裁断及び
プレス打抜成型加工してフイン材を形成し、該フ
イン材を組み立てて熱交換器を形成し、該熱交換
器を脱脂洗浄した後、シリカ微粒子及び低分子ケ
イ酸塩を含む水溶液で処理し、その表面に0.01〜
5g/m2のシリカ微粒子皮膜を形成することを特
徴とするアルミニウム製熱交換器の表面処理方
法。 2 表面にタンニン酸を含有するウレタン樹脂溶
液で皮膜を形成させた熱交換器用アルミニウムフ
イン板材を裁断及びプレス打抜成型加工してフイ
ン材を形成し、該フイン材を組み立てて熱交換器
を形成し、該熱交換器を脱脂洗浄した後、シリカ
微粒子及び低分子ケイ酸塩を含む水溶液で処理
し、その表面に0.01〜5g/m2のシリカ微粒子皮
膜を形成することを特徴とするアルミニウム製熱
交換器の表面処理方法。 3 シリカ微粒子に対する低分子ケイ酸塩の配合
比が5〜50%である前記1及び2項記載のアルミ
ニウム製熱交換器の表面処理方法。
[Claims] 1. A fin material is formed by cutting and press punching an aluminum fin plate material for a heat exchanger whose surface is coated with a resin film containing no extender pigment, and the fin material is assembled to form a heat exchanger. After degreasing and cleaning the heat exchanger, it is treated with an aqueous solution containing silica fine particles and low molecular weight silicate, and the surface is coated with 0.01~
A method for surface treatment of an aluminum heat exchanger, characterized by forming a 5 g/m 2 silica fine particle film. 2 Aluminum fin plate material for a heat exchanger with a film formed on its surface with a urethane resin solution containing tannic acid is cut and press punched to form a fin material, and the fin material is assembled to form a heat exchanger. After the heat exchanger is degreased and cleaned, it is treated with an aqueous solution containing silica particles and a low molecular weight silicate to form a silica particle film of 0.01 to 5 g/m 2 on its surface. Heat exchanger surface treatment method. 3. The method for surface treatment of an aluminum heat exchanger according to items 1 and 2 above, wherein the blending ratio of the low molecular weight silicate to the silica particles is 5 to 50%.
JP16521482A 1982-09-22 1982-09-22 Surface treatment for heat exchanger made of aluminum Granted JPS5956097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16521482A JPS5956097A (en) 1982-09-22 1982-09-22 Surface treatment for heat exchanger made of aluminum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16521482A JPS5956097A (en) 1982-09-22 1982-09-22 Surface treatment for heat exchanger made of aluminum

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP3115187A Division JPS62272098A (en) 1987-02-13 1987-02-13 Surface treatment of heat exchanger made of aluminum

Publications (2)

Publication Number Publication Date
JPS5956097A JPS5956097A (en) 1984-03-31
JPH0337120B2 true JPH0337120B2 (en) 1991-06-04

Family

ID=15808011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16521482A Granted JPS5956097A (en) 1982-09-22 1982-09-22 Surface treatment for heat exchanger made of aluminum

Country Status (1)

Country Link
JP (1) JPS5956097A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59196782A (en) * 1983-04-22 1984-11-08 Nippon Seihaku Kk Manufacture of aluminum material for heat exchanger
JP2019020006A (en) * 2017-07-13 2019-02-07 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner using the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142650A (en) * 1978-04-28 1979-11-07 Nippon Packaging Kk Surface treatment method of heat exchanger in aluminium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560097U (en) * 1978-10-19 1980-04-23

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54142650A (en) * 1978-04-28 1979-11-07 Nippon Packaging Kk Surface treatment method of heat exchanger in aluminium

Also Published As

Publication number Publication date
JPS5956097A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
US4421789A (en) Process for treating the surfaces of aluminum heat exchangers
US4783224A (en) Method for hydrophilic treatment of aluminum using an amphoteric polymer
US4330446A (en) Aqueous dispersion for metal coating from colloidal silica, alkoxy silane, and polymer
CN100455699C (en) Precoat metal plate excellent in press workability and method for production thereof
CN1386805A (en) Metal surface treating agent
JPS6140305B2 (en)
US10023750B2 (en) Aqueous hydrophilizing surface treatment agent, hydrophilic coating film and hydrophilizing surface treatment method
JP5135167B2 (en) Aluminum painted plate
JPH0337120B2 (en)
JPS6157349B2 (en)
JPS62129366A (en) Paint for aluminum fin
JPH0515176B2 (en)
JP3225793B2 (en) Highly hydrophilic paint
JP2001158872A (en) Composition for hydrophilization treatment
JP3403906B2 (en) Manufacturing method of highly hydrophilic paint
CA1216695A (en) Hydrophilic-film-forming preparation
JPS62272098A (en) Surface treatment of heat exchanger made of aluminum
JPS63262238A (en) Heat-exchanger fin material
JP2000516996A (en) Compositions and methods for treating metal surfaces
JP4818003B2 (en) Pre-coated aluminum fin material for heat exchanger
JPS63262239A (en) Heat-exchanger fin material
JP2564478B2 (en) Method for making hydrophilic metal material containing aluminum
JP2006348238A (en) Undercoating resin composition for hydrophilic coating and aluminum alloy coated plate
JP3141703B2 (en) Highly hydrophilic paint
JP2002161377A (en) Fin material for heat exchanger with non-chromate coating type primary coating layer, and heat exchanger having the same