JPH0335541B2 - - Google Patents

Info

Publication number
JPH0335541B2
JPH0335541B2 JP58094286A JP9428683A JPH0335541B2 JP H0335541 B2 JPH0335541 B2 JP H0335541B2 JP 58094286 A JP58094286 A JP 58094286A JP 9428683 A JP9428683 A JP 9428683A JP H0335541 B2 JPH0335541 B2 JP H0335541B2
Authority
JP
Japan
Prior art keywords
orifice
spring
control
pressure fluid
spool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58094286A
Other languages
Japanese (ja)
Other versions
JPS59220456A (en
Inventor
Ryutaro Abe
Tetsuji Kawamura
Masaji Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP58094286A priority Critical patent/JPS59220456A/en
Publication of JPS59220456A publication Critical patent/JPS59220456A/en
Publication of JPH0335541B2 publication Critical patent/JPH0335541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/06Power-assisted or power-driven steering fluid, i.e. using a pressurised fluid for most or all the force required for steering a vehicle

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Valves (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、動力舵取装置用流量制御装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Field of Application> The present invention relates to a flow control device for a power steering device.

<従来技術> 従来、上記機能を有する流量制御装置として、
ポンプ回転数の上昇による吐出流量の増加に基づ
いて制御絞り前後に圧力差を発生させ、この圧力
差によつて制御スプールをスプリングの撥力に抗
して変位させてオリフイスの開口面積を可変制御
し、第1図Aに示すようにポンプ回転数Nが一定
の回転数になると吐出流量Qを降下させるように
して自転車の高速走行時のハンドル操作に安定を
与えるようにしたものがある。
<Prior art> Conventionally, as a flow control device having the above functions,
A pressure difference is generated before and after the control throttle based on the increase in discharge flow rate due to an increase in pump rotation speed, and this pressure difference causes the control spool to be displaced against the repulsive force of the spring to variably control the opening area of the orifice. However, as shown in FIG. 1A, there is a device that lowers the discharge flow rate Q when the pump rotational speed N reaches a constant rotational speed, thereby stabilizing the steering wheel operation when the bicycle is running at high speed.

しかしながらかかる従来装置によると、低温時
では圧力流体の粘性が大きいので制御絞り前後の
差圧が大きくなり、その結果ポンプの回転数が十
分にあがらないうちに制御スプールが変位してオ
リフイスを絞つてしまい、第1図Bに示す流量特
性になる。このため圧力流体の低温時において
は、動力舵取装置へ供給させる圧力流体が不足す
る問題点があつた。
However, with such conventional devices, the viscosity of the pressure fluid is high at low temperatures, so the differential pressure across the control throttle becomes large, and as a result, the control spool displaces and throttles the orifice before the pump rotation speed increases sufficiently. As a result, the flow rate characteristic becomes as shown in FIG. 1B. Therefore, when the pressure fluid is at a low temperature, there is a problem that the pressure fluid supplied to the power steering device is insufficient.

<発明の目的> 本発明は従来のこのような問題を解決するため
になされたものであり、その目的とするところは
低温時における圧力流体の粘性変化にかかわら
ず、圧力流体の常温時における流量特性と同様の
流量特性が得られるようにし、動力舵取装置へ供
給される圧力流体が低温時でもダウンしないよう
にすることである。
<Objective of the Invention> The present invention has been made to solve the above-mentioned conventional problems, and its purpose is to improve the flow rate of pressurized fluid at room temperature, regardless of the viscosity change of pressure fluid at low temperature. The objective is to obtain flow rate characteristics similar to the characteristics and to prevent the pressure fluid supplied to the power steering device from dropping down even when the temperature is low.

<発明の構成> 本発明は上記目的を達成するためになされたも
ので、前記制御スプールに対して撥力を付与する
スプリング、圧力流体の低温時では前記スプリン
グにより自由長が短くなるように変形し、常温時
では前記スプリングによる前記制御スプールを作
用する撥力を減少すべく自由長が長くなる形状を
記憶した形状記憶合金製のコイルスプリングを備
えたことを特徴とする動力舵取装置用流量制御装
置に関する。
<Structure of the Invention> The present invention has been made to achieve the above object, and includes a spring that applies a repulsive force to the control spool, and a spring that deforms so that its free length becomes shorter when the pressure fluid is at a low temperature. A flow rate for a power steering device, characterized in that the coil spring is made of a shape memory alloy and has a shape in which the free length becomes longer in order to reduce the repulsive force exerted on the control spool by the spring at room temperature. Regarding a control device.

<実施例> 以下本発明の実施例を図面に基づいて説明す
る。第2図において10はポンプハウジングで、
このポンプハウジング10には、収納孔11が貫
通して設けられていて、この収納孔11の一端に
ユニオン21が液密的に螺着されており、また収
納孔11の他端に止め栓25が液密的に嵌着され
ている。
<Examples> Examples of the present invention will be described below based on the drawings. In Fig. 2, 10 is a pump housing;
This pump housing 10 is provided with a storage hole 11 passing through it, a union 21 is screwed into one end of the storage hole 11 in a fluid-tight manner, and a stopper 25 is attached to the other end of the storage hole 11. are fitted in a liquid-tight manner.

収納孔11内にスプール弁22が摺動可能に嵌
挿され、収納孔11内に第1弁室32と第2弁室
33を形成している。また、スプール弁22は第
2弁室33内に介装したスプリング26により付
勢され、スプール弁22の進退は供給通路12と
ポンプハウジング10に設けたバイパス通路13
を連通あるいは遮断させるようになつている。な
お、供給通路12は流体ポンプの吐出室に連通さ
れ、バイパス通路13は流体ポンプの吸入室に連
通されている。
A spool valve 22 is slidably inserted into the storage hole 11, and a first valve chamber 32 and a second valve chamber 33 are formed in the storage hole 11. Further, the spool valve 22 is biased by a spring 26 interposed in the second valve chamber 33, and the spool valve 22 moves forward and backward through the supply passage 12 and the bypass passage 10 provided in the pump housing 10.
It is designed to allow communication or interruption. Note that the supply passage 12 communicates with a discharge chamber of the fluid pump, and the bypass passage 13 communicates with a suction chamber of the fluid pump.

前記ユニオン21の内孔内には制御スプール2
3がユニオン21の内孔の外端側に嵌着したオリ
フイス形成部材24と、ユニオン21の内孔の内
端側段部21bとの間において摺動可能に嵌挿さ
れている。この制御スプール23には、第1弁室
32と連通する流通孔23aが形成されており、
この流通孔23aは前記オリフイス形成部材24
に形成された各オリフイス24a,24bを通し
て、ユニオン21の送出口21aに連通してい
る。なお、ユニオン21の送出口21aは動力舵
取装置に接続されている。
A control spool 2 is disposed within the inner hole of the union 21.
3 is slidably fitted between the orifice forming member 24 fitted into the outer end of the inner hole of the union 21 and the inner step 21b of the inner hole of the union 21. This control spool 23 is formed with a communication hole 23a that communicates with the first valve chamber 32.
This communication hole 23a is connected to the orifice forming member 24.
It communicates with the outlet 21a of the union 21 through orifices 24a, 24b formed in the union 21. Note that the outlet 21a of the union 21 is connected to a power steering device.

前記オリフイス形成部材24には、制御ノズル
24cを備えており、この制御ノズル24cは各
オリフイス24a,24bの後流側を、ユニオン
21およびポンプハウジング10に設けた連通孔
21d,14を通して第2弁室33に連通させて
いる。これにより、各オリフイス24a,24b
の後流側流体の一部が第2弁室33内に導かれ、
スプール弁22の両端に各オリフイス24a,2
4bの前後の圧力が作用し、各オリフイス24
a,24bの前後の差圧に応じてスプール弁22
が軸方向へ移動して、上記差圧を一定に保持すべ
くバイパス通路13の開度を調整する。
The orifice forming member 24 is equipped with a control nozzle 24c, which connects the downstream side of each orifice 24a, 24b to the second valve through communication holes 21d, 14 provided in the union 21 and the pump housing 10. It communicates with room 33. As a result, each orifice 24a, 24b
A part of the downstream fluid is guided into the second valve chamber 33,
Each orifice 24a, 2 at both ends of the spool valve 22
4b is applied before and after each orifice 24.
spool valve 22 according to the differential pressure before and after a and 24b.
moves in the axial direction to adjust the opening degree of the bypass passage 13 in order to keep the differential pressure constant.

またユニオン21に供給通路12とユニオン2
1の内端側段部21bとを連通する圧力導入孔2
1cが開口している。制御スプール23とオリフ
イス形成部材24間にはオリフイス形成部材24
に撥力を付与する鉄系材質からなるスプリング2
7が介装され、ユニオン21と制御スプール23
間にはNi−Tiからなる形状記憶合金製のコイル
スプリング28が介装されている。このコイルス
プリング28は、圧力流体が常温時(0℃以上)
にはその自由長が長くなる形状を記憶しており、
スプリング27と反対方向の撥力を制御スプール
23に付与し、かつ圧力流体の低温時には撥力が
なくなり、スプリング27によつて自由長が短く
なるように変形する。この結果、圧力流体の低温
時においては、制御スプール23にスプリング2
7による撥力が作用し、圧力流体の常温時におい
ては、制御スプール23にスプリング27の撥力
からコイルスプリング28の撥力を差し引いた押
圧力が作用する。
In addition, the supply passage 12 and the union 2 are connected to the union 21.
Pressure introduction hole 2 communicating with the inner end side step portion 21b of 1
1c is open. An orifice forming member 24 is provided between the control spool 23 and the orifice forming member 24.
Spring 2 made of iron-based material that provides repellency to
7 is interposed, the union 21 and the control spool 23
A coil spring 28 made of a shape memory alloy made of Ni-Ti is interposed between the two. This coil spring 28 operates when the pressure fluid is at room temperature (0°C or higher).
remembers the shape that increases its free length,
A repulsive force is applied to the control spool 23 in the opposite direction to that of the spring 27, and when the pressure fluid is at a low temperature, the repelling force disappears and the spring 27 deforms so that its free length becomes shorter. As a result, when the pressure fluid is at a low temperature, the spring 2 is attached to the control spool 23.
When the pressure fluid is at room temperature, a pressing force obtained by subtracting the repulsive force of the coil spring 28 from the repulsive force of the spring 27 acts on the control spool 23.

前記ユニオン21の内端外周と前記収納孔11
の内周面に制御絞り31が形成されており、この
制御絞り31を介して供給通路12と第1弁室3
2とを連通するようになつている。この制御絞り
31は、供給通路12に供給される圧力流体の吐
出流量が多くなると、その流路抵抗により供給通
路12と第1弁室32間に圧力差が生じ、この圧
力差に応じて前記制御スプール23がスプリング
27に逆らつて軸方向に変位するようになつてい
る。供給通路12と第1弁室32間の圧力差が大
きいオリフイス形成部材24の第1オリフイス2
4aは制御スプール23によつて閉じられ、第2
オリフイス24bのみの流通経路に絞りこまれ
る。
The outer circumference of the inner end of the union 21 and the storage hole 11
A control throttle 31 is formed on the inner peripheral surface of the control throttle 31, and the supply passage 12 and the first valve chamber 3 are connected to each other via the control throttle 31.
It is designed to communicate with 2. When the discharge flow rate of the pressure fluid supplied to the supply passage 12 increases, a pressure difference is generated between the supply passage 12 and the first valve chamber 32 due to the flow passage resistance, and the control throttle 31 controls the Control spool 23 is adapted for axial displacement against spring 27. The first orifice 2 of the orifice forming member 24 has a large pressure difference between the supply passage 12 and the first valve chamber 32
4a is closed by the control spool 23 and the second
The distribution route is narrowed down to only the orifice 24b.

このように構成した流量制御装置においては、
車両エンジンにより流体ポンプが駆動されると、
圧力流体が流体ポンプの吐出室から供給通路12
に供給され、流体ポンプの回転速度が低い場合に
は圧力流体の吐出流量が少ないため、スプール弁
22はバイパス通路13を閉じて圧力流体の全量
を各オリフイス24a,24bを経て動力舵取装
置へ給送させるが、流体ポンプの回転数の上昇に
応じて圧力流体の吐出流量が増大すると、スプー
ル弁22はオリフイス24a,24b前後の差圧
を一定にすべく摺動してバイパス通路13を開
き、圧力流体の余剰流をバイパス通路13を通し
て流体ポンプの吸入室へ還流させる。この結果、
動力舵取装置へ給送される圧力流体は、各オリフ
イス24a,24bにより決定される。
In the flow control device configured in this way,
When the fluid pump is driven by the vehicle engine,
Pressurized fluid is supplied from the discharge chamber of the fluid pump to the supply passage 12
When the rotational speed of the fluid pump is low, the discharge flow rate of pressure fluid is small, so the spool valve 22 closes the bypass passage 13 and directs the entire amount of pressure fluid to the power steering device via each orifice 24a, 24b. However, when the discharge flow rate of pressurized fluid increases as the rotational speed of the fluid pump increases, the spool valve 22 slides to keep the differential pressure across the orifices 24a, 24b constant and opens the bypass passage 13. , the excess flow of pressure fluid is returned through the bypass passage 13 to the suction chamber of the fluid pump. As a result,
The pressure fluid delivered to the power steering system is determined by each orifice 24a, 24b.

また、車両の高速走行への移行に伴い流体ポン
プの回転数がさらに上昇して、供給通路12へ供
給される圧力流体の吐出流量が増大すると、制御
絞り31における流路抵抗により供給通路12内
の流体圧力が上昇し、供給通路12と第1弁室3
2間に差圧が生じるとともに、供給通路12の圧
力は圧力導入孔21cを通して制御スプール23
をスプリング27に抗して摺動させる押圧力とし
て作用する。このため、圧力流体の吐出流量の増
大に応じて供給通路12の圧力がスプリング27
の付勢力に打勝つまで高まると、制御スプール2
3はスプリング27に抗して漸次摺動し、最後に
第1オリフイス24aが完全に閉じられるため、
動力舵取装置へ給送される圧力流体の供給流量
は、第2オリフイス24bで決定される。ところ
で、圧力流体が低温の場合は、流体の粘性が大き
いため制御スプール23に流体の常温に比べて供
給通路12と第1弁室32間に大きな差圧が作用
するが、この常温時と低温時の差圧分だけ大きめ
のスプリング27に用いたことにより、ポンプの
回転数が十分に上がつてから、第1オリフイス2
4aを制御スプール23によつて閉じるようにな
る。流体の常温の場合は、コイルスプリング28
に撥力を持たせ、コイルスプリング28によりス
プリング27の撥力を減少させるようにすること
により低温の場合と同数のポンプの回転数により
第1オリフイス24aが制御スプール23により
閉じるようになる。
Furthermore, when the rotational speed of the fluid pump further increases as the vehicle moves to high-speed running, and the discharge flow rate of the pressure fluid supplied to the supply passage 12 increases, the flow resistance in the control throttle 31 causes the inside of the supply passage 12 to increase. The fluid pressure of the supply passage 12 and the first valve chamber 3 increases.
A differential pressure is generated between the two, and the pressure in the supply passage 12 is transferred to the control spool 23 through the pressure introduction hole 21c.
acts as a pressing force that causes the spring 27 to slide against the spring 27. Therefore, the pressure in the supply passage 12 is increased by the spring 27 in response to an increase in the discharge flow rate of the pressure fluid.
When the force increases until it overcomes the biasing force of , the control spool 2
3 gradually slides against the spring 27, and finally the first orifice 24a is completely closed.
The supply flow rate of the pressure fluid fed to the power steering device is determined by the second orifice 24b. By the way, when the pressure fluid is at a low temperature, the viscosity of the fluid is high, so a large pressure difference acts on the control spool 23 between the supply passage 12 and the first valve chamber 32 compared to when the fluid is at room temperature. By using a spring 27 that is larger by the differential pressure at the time, the first orifice 2
4a is now closed by the control spool 23. If the fluid is at room temperature, the coil spring 28
By making the coil spring 28 have a repulsive force and reducing the repulsive force of the spring 27, the first orifice 24a can be closed by the control spool 23 at the same number of revolutions of the pump as in the case of low temperature.

<発明の効果> 以上述べたように本発明においては、オリフイ
ス側に設けられ制御スプールに対して撥力を付与
するスプリング、制御スプールに対してオリフイ
スと反対側に設けられ前記スプリングにより圧力
流体の低温時では自由長が短くなるように変形
し、常温時では前記スプリングによる前記制御ス
プールに作用する撥力を打ち消すべく自由長が長
くなる形状を記憶した形状記憶合金製のコイルス
プリングを備えたため低温時における圧力流体の
粘性変化にかかわらず、圧力流体の常温時におけ
る流量特性と同様の流量特性が得られ、動力舵取
装置へ供給される圧力流体が低温時でも所定の流
量が得られる利点がある。
<Effects of the Invention> As described above, in the present invention, a spring is provided on the orifice side to apply a repelling force to the control spool, and a spring is provided on the opposite side of the control spool from the orifice to apply repellent force to the control spool. It is equipped with a coil spring made of a shape memory alloy that memorizes a shape that deforms so that its free length becomes short at low temperatures and becomes long at room temperature to cancel out the repulsive force exerted on the control spool by the spring. Regardless of changes in the viscosity of the pressure fluid over time, flow characteristics similar to those of the pressure fluid at room temperature can be obtained, and the advantage is that a predetermined flow rate can be obtained even when the pressure fluid supplied to the power steering device is at low temperature. be.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は
ポンプ回転数に対する流量特性を示すグラフ、第
2図は本発明の流量制御装置を示す断面図であ
る。 12……供給通路、13……バイパス通路、2
2……スプール弁、23……制御スプール、24
a,24b……オリフイス、27……スプリン
グ、28……コイルスプリング、31……制御絞
り。
The drawings show an embodiment of the present invention, and FIG. 1 is a graph showing flow rate characteristics with respect to pump rotation speed, and FIG. 2 is a sectional view showing a flow rate control device of the present invention. 12... Supply passage, 13... Bypass passage, 2
2... Spool valve, 23... Control spool, 24
a, 24b...orifice, 27...spring, 28...coil spring, 31...control aperture.

Claims (1)

【特許請求の範囲】[Claims] 1 ポンプに通じる供給通路よりオリフイスを介
して動力舵取装置に送出される圧力流体ならびに
その圧力流体の一部を余剰流としてポンプの吸入
側に還流すべくバイパス通路の開度を調整する流
量調整用スプール弁、前記供給通路内に設けられ
た制御絞り前後の圧力差に応じてオリフイス側に
設けられたスプリングを弾性変形させながら前記
オリフイスを絞り方向に変位して前記オリフイス
の開度を制御する制御スプール、制御スプールに
対し前記オリフイスと反対側に設けられ圧力流体
の低温時では前記スプリングにより自由長が短く
なるように変形し、常温時は前記制御スプールを
前記スプリングに抗してオリフイスを絞り方向に
変位させるべく自由長が長くなる形状を記憶した
形状記憶合金製のコイルスプリングを備えたこと
を特徴とする動力舵取装置用流量制御装置。
1 Pressure fluid sent to the power steering device from the supply passage leading to the pump via the orifice, and flow rate adjustment that adjusts the opening degree of the bypass passage so that a portion of the pressure fluid flows back to the suction side of the pump as surplus flow. A spool valve for controlling the opening of the orifice is controlled by displacing the orifice in the throttle direction while elastically deforming a spring provided on the orifice side according to the pressure difference before and after the control throttle provided in the supply passage. A control spool is provided on the opposite side of the control spool from the orifice, and when the pressure fluid is at a low temperature, the spring deforms the free length to shorten it, and when the temperature is normal, the control spool is compressed by the orifice against the spring. 1. A flow control device for a power steering device, comprising a coil spring made of a shape memory alloy whose free length memorizes a shape in which the free length becomes longer in order to cause displacement in a direction.
JP58094286A 1983-05-27 1983-05-27 Flow volume control device for motor steering device Granted JPS59220456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58094286A JPS59220456A (en) 1983-05-27 1983-05-27 Flow volume control device for motor steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58094286A JPS59220456A (en) 1983-05-27 1983-05-27 Flow volume control device for motor steering device

Publications (2)

Publication Number Publication Date
JPS59220456A JPS59220456A (en) 1984-12-11
JPH0335541B2 true JPH0335541B2 (en) 1991-05-28

Family

ID=14106011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58094286A Granted JPS59220456A (en) 1983-05-27 1983-05-27 Flow volume control device for motor steering device

Country Status (1)

Country Link
JP (1) JPS59220456A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103776U (en) * 1985-12-21 1987-07-02
JPH0191179U (en) * 1987-12-09 1989-06-15
CA3148837A1 (en) * 2019-09-20 2021-03-25 Parker-Hannifin Corporation Pump system with over-temperature prevention

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5824692Y2 (en) * 1979-10-11 1983-05-27 エヌオーケー株式会社 thermo valve
JPS56150680U (en) * 1980-04-11 1981-11-12
JPS56168474U (en) * 1980-05-16 1981-12-12
JPS6332783Y2 (en) * 1980-11-19 1988-09-01

Also Published As

Publication number Publication date
JPS59220456A (en) 1984-12-11

Similar Documents

Publication Publication Date Title
JPH0335541B2 (en)
JPH0127308B2 (en)
JPS6337749B2 (en)
JPH0335540B2 (en)
JPS59220457A (en) Flow volume control device for motor steering device
JPS6345342B2 (en)
JPH0213276Y2 (en)
JPH0335539B2 (en)
JPS6365544B2 (en)
JPH03602Y2 (en)
JPH0321332Y2 (en)
JPH0114542Y2 (en)
JPH0339642Y2 (en)
JP2600569Y2 (en) Flow control device for power steering device
JPS6218794Y2 (en)
JPH0327422B2 (en)
JPS59213567A (en) Flow controller for power steering system
JP3767222B2 (en) Oil supply device
JP3543570B2 (en) Flow control device in power steering device
JPS6060073A (en) Flow controller for power steering operating fluid
JPS647106Y2 (en)
JPS61291270A (en) Hydraulic pressure reaction controlling device for power steering device
JPS60107460A (en) Controller of flow rate of working fluid for power steering
JPH0121109Y2 (en)
JP2600568Y2 (en) Flow control device for power steering device