JPH03354B2 - - Google Patents

Info

Publication number
JPH03354B2
JPH03354B2 JP60131493A JP13149385A JPH03354B2 JP H03354 B2 JPH03354 B2 JP H03354B2 JP 60131493 A JP60131493 A JP 60131493A JP 13149385 A JP13149385 A JP 13149385A JP H03354 B2 JPH03354 B2 JP H03354B2
Authority
JP
Japan
Prior art keywords
silicon carbide
methylchlorodisilane
reaction
carbide whiskers
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60131493A
Other languages
Japanese (ja)
Other versions
JPS61291498A (en
Inventor
Motoyuki Yamada
Minoru Takamizawa
Yasushi Kobayashi
Nobuaki Urasato
Hiromi Oosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP60131493A priority Critical patent/JPS61291498A/en
Publication of JPS61291498A publication Critical patent/JPS61291498A/en
Publication of JPH03354B2 publication Critical patent/JPH03354B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/005Growth of whiskers or needles
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は炭化けい素ウイスカーの製造方法、特
にはセラミツク、金属、ガラス、プラスチツクな
どの複合強化材として有用とされる炭化けい素ウ
イスカーを工業的に安価にかつ有利に製造する方
法に関するものである。 (従来の技術) 炭化けい素ウイスカーは強度、弾性率、化学的
安定性にすぐれたものであり、さらには各種金属
との濡れ性も良好であるということから、セラミ
ツク、金属、ガラス、プラスチツクなどの複合強
化材として注目を集めている。 この炭化けい素ウイスカーの製造については、
(1)二酸化けい素を炭素で固相還元する方法、(2)ガ
ス状の有機けい素化合物またはけい素化合物と炭
素化合物とを高温で反応させる方法、(3)含フツ素
けい酸塩との炭素との反応による気相成長法が知
られているが、この(1)の方法には微粉状炭化けい
素の副生が避けられないという不利があり、(3)の
方法には反応装置が複雑で、収率も低く、したが
つて工業的な製造方法としては適当でないという
欠点がある。これに対し、(2)の方法には原料の高
純度化との反応の制御が容易であり、アスペクト
比の大きいウイスカーが得られるという特徴があ
るためこれについては(a)メチルトリクロロシラ
ン、ジメチルジクロロシランを熱分解する方法、
(b)四塩化けい素と四塩化炭素とを反応させる方
法、(c)四塩化けい素とトルエンを反応させる方法
などが知られているが、この(a)には原料コストが
高く、反応条件によつては炭素やけい素の析出物
よつて反応ガスの流路が閉塞されるために長時間
の運転ができなくなるという不利があり、(b)、(c)
には原料ガスが2種以上とあるためそれらの分圧
や流量の制御が複雑になるという問題点があり、
これらはまたいずれの場合にもけい素1モルに対
し3モル以上の塩素が発生し、これが単独でまた
は化合物として反応炉から排出されるためにその
処理が容易でないという不利がある。 (発明の構成) 本発明はこのような不利を解決した炭化けい素
ウイスカーの製造方法に関するものであり、これ
は式(CH3aSi2Cl6-a(aは1〜5の整数)示され
るメチルクロロジシランを高温で熱分解させるこ
とを特徴とするものである。 すなわち、本発明者らは炭化けい素ウイスカー
を効率よく、安価に得る方法について種々検討し
た結果、この始発原料として上記した式(CH3a
Si2Cl6-aで示されるメチルクロロジシランを使用
してこれを高温で熱分解すれば容易に炭化けい素
ウイスカーが得られること、このメチルクロロジ
シランはメチルクロライドと金属けい素との反応
によるメチルクロロシランの直接合成法 CH3Cl+Si→(CH3C)bSiCl4-b(bは1
、2または3) における副生物として得られるが、これ自体はシ
リコーン工業原料としては使用できず従来は廃棄
されていたものであることから、入手が容易でし
かも安価であるし、このものはそのa値が1〜5
の範囲で変化したものが各種得られるので、これ
らを適宜に組合せれば原料中のけい素原子と炭素
原子との比を所望の割合に含むものを容易に得る
ことができ、したがつてどのような反応条件下で
もけい素、炭素の塊状析出物の発生を防止するこ
とができること、またこの反応の結果炉外に排出
される塩素量もこのメチルクロロジシランではけ
い素1モルに対する塩素量が3モル以下で最大
2.5モル、通常は1.5モル〜2.0モルとされるので、
この後工程における塩素処理費と大幅に低減させ
ることができるということを見出し、このメチル
クロロジシランの熱分解条件、炭化けい素ウイス
カーの効率的成長方法などについての研究を進め
て本発明を完成させた。 本発明の方法において始発材料とされるメチル
クロロジシラン類は式(CH3aSi2Cl6-aで示され、
aは1〜5の整数とされるものであるが、これは
単一化合物であつてもこれらの2種類あるいはそ
れ以上の混合物であつてもよい。このものは前記
したようにメチルクロロシランの直接合成法にお
ける副生物として得られるものとすればよいが、
ポリメチルシランの熱分解またはその塩素化で得
たものとしてもよい。メチルクロロシランの直接
合成法で得られるメチルクロロジシランは上記式
におけるaが3のトリメチルトリクロロジシラ
ン、aが2であるジメチルテトラクロロジシラン
を主成分とし、これに若干量のペンタメチルクロ
ロジシラン、テトラメチルジクロロジシランを含
有するものとされるが、これはヘキサメチルジシ
ランやトリメチルシリルジメチルクロルシリルメ
チレンなどのメチルクロロジシラン類似物を含む
ものであつてもよく、これらはそのまま本発明方
法の原料として使用することができるし、この原
料中における素原子と炭素原子とのモル比を反応
条件に応じて制御する場合にはこれらのメチルク
ロロジシランを適宜に組合せるようにすればよ
い。なお、このメチルクロロジシランについて
は、メチルトリクロロシラン、四塩化けい素、メ
タン、四塩化炭素などのような従来法で使用され
ているけい素化合物、炭素化合物などを混入する
ことは任意とされるし、本発明の特徴がこれによ
つて損なわれることはない。 他方、このメチルクロロジシランについてはそ
れが上記したメチルクロロシランの直接合成反応
の副生成物であるときには、このメチルクロロシ
ランの合成が銅を主体とする触媒の存在下で行な
われるためにこのメチルクロロジシランが金属触
媒を含むものとされ、この金属触媒が目的とする
炭化けい素ウイスカー中に無作為に固定されるお
それもあるので、これは熱分解処理に先立つて単
蒸留処理または蒸留精製法でこの金属触媒を除去
しておくことがよい。 このメチルクロロジランを始発材とする炭化け
い素ウイスカーの製法は公知の気相反応法によつ
てメチルクロロジシランを熱分解させればよい。
したがつてこのメチルクロロジシランはガス化さ
れて反応炉に導入されるが、これは水素ガス、不
活性ガスをキヤリヤガスとして反応炉に導入して
もよい。メチルクロロジシランのガス化はバブリ
ング法で行えばよいが、このメチルクロロジシラ
ンが単一組成でない場合にはバブリング時間の経
過に伴なつて気化されたガスの組成が変化するこ
とがあるし、メチルクロロジシランは沸点が高
く、したがつてこれを高温に保持する必要がある
ので、これにはメチルクロロジシランを蒸発器に
送つて気化させてこれを反応炉に送入してもよ
い。 この反応炉はカーボン管、磁製管とすればよ
く、これは通常は外部抵抗加熱方式のものとされ
るが、析出基体を管内に設置してこれを誘導加
熱、赤外線加熱するようにしたものであつてもよ
い。メチルクロロジシランの熱分解による炭化け
い素ウイスカーの生成は1250℃から始まり、1300
℃の生長速度で速くなるが1600℃以上とすると反
応装置の耐熱性が問題となるので経済的な見地か
らこの熱分解温度は1300〜1600℃とすることがよ
い。またこのメチルクロロジシランは前記したよ
うにキヤリヤガスと共に反応炉に導入されるが、
メチルクロロジシランとキヤリヤガスとの比率は
任意の割合でよい。しかし、原料ガス中における
メチルクロロジシランの濃度が30%以上になると
析出するウイスカーがまつすぐでなく、屈曲した
形状となり、アスペクト比も悪化するのでウイス
カーの品費が問題となる場合には原料ガス濃度は
30%未満とすることがよい。なお、この原料ガス
の流速についてはそれが速すぎると原料の熱分解
反応が充分に進まずに収率が低下する傾向があ
り、しかも上記したように原料ガス濃度が増加す
るとウイスカーが屈曲するので、この原料ガスの
速度は線速で10cm/秒以下とすることがよい。 メチルクロロジシランの熱分解で発生した炭化
けい素ウイスカーは反応炉管壁に付着されるが、
これには反応炉内にアルミナ、ムライト、カーボ
ン、炭化けい素から作られた析出基体を設置し
て、この析出基体に炭化けい素ウイスカーを析出
さることがよい。この析出基体の形状は粉体でも
成形体でもよく、カーボンについては炭素質、黒
鉛質、非晶質のいずれであつてもよいが、この析
出基体についてはその形状、設置方法によつて析
出効率、析出速度が異なることもあるので、これ
らについては予じめ充分検討して定めることが望
ましい。 このメチルクロロジシランの熱分解反応による
炭化けい素ウイスカーの生成は特に触媒を添加し
なくてもけい素原子基準で80%以上の収率とする
ことができるが、本発明者らはこの炭化けい素ウ
イスカーの成長には鉄、ニツケル、コバルト、チ
タンまたはこれらの合金が触媒効果をもつもので
あり、これらを添加すればこの収率を90%以上と
することができるということを見出した。この
鉄、ニツケル、コバルト、チタンまたはこれらの
合金は粉末状として前記した析出担体に直接塗布
すればよいが、これは酸化鉄、塩化鉄、フエロセ
ン、塩化ニツケル、酸化コバルト、酸化チタンな
どの化合物粉を析出担体に塗布するか、この溶媒
溶液を析出担体に塗布、または含浸させてこの化
合物を反応のための高温下で金属に還元させるよ
うにしたものであつてもよい。 なお、本発明の方法でも炭化けい素ウイスカー
製造炉から原料の熱分解によつて生じる塩素また
は塩化水素ガスが排出されるため、この排ガスは
アルカリ性水溶液ないしは水と接触させて塩素ま
たは塩化水素を洗浄吸収させる必要があるが、本
発明の方法では前記したように従来法にくらべて
排出される塩素または塩化水素が少ないので、こ
の処理のために必要とされるアルカリ量、ないし
は洗浄用水のPHを調整するためのアルカリ量、さ
らにはこの洗浄水量を低減することができるとい
う有利性も与えられる。 本発明の方法は上記した方法でメチルクロロジ
ランを熱分解させることによつて行なわれるが、
これによれば径が0.1〜2.5μmで長さが10mm程度
とされる非常にアスペクト比の大きい炭化けい素
ウイスカーを容易に得ることができ、これは長さ
100mmに達するものも得るこのができる。 つぎに本発明の実施例をあげる。 実施例 1 メチルクロライドと金属けい素との反応による
メチルクロロシラン合成時の蒸留残液を単蒸留処
理して得たジメチルテトロクロロジシランとトリ
メチルトリクロロジシランの1:1の混合物を、
内径42mmφのHBムライトチユーブ(日本化学陶
業社製商品名)を反応管とし、有効加熱長が350
mmである炭化けい素ヒーターを加熱エレメントと
する電気炉内に水素ガスをキヤリヤーガスとして
導入した。 この場合、反応炉内温度は1450℃とし、原料ガ
ス濃度はけい素原子基準で3.0%、反応ガス線速
を10mm/秒としたところ、反応管の高温部領域全
面に淡縁色のβ型炭化けい素ウイスカーが線状に
析出したので、このウイスカーを回収、秤量した
ところ、ウイスカーの収率はけい素原子基準で80
%であつた。 なお、この反応管内には塊状またはコーテイン
グ状の析出物は全く観察されず、ここに得られた
ウイスカーを電子顕微鏡でしらべたところ、これ
は第1図に示したようにアスペクト比の高いもの
であつた。 実施例 2 実施例1と同じ原料、同じ反応装置を用いた
が、この炉内温度、原料ガス濃度、反応ガス線速
を第1表に示したように変えて反応させたとこ
ろ、第1表に併記したとおりの結果が得られた。
(Industrial Application Field) The present invention provides a method for manufacturing silicon carbide whiskers, and in particular, an industrially inexpensive and advantageous method for manufacturing silicon carbide whiskers, which are useful as composite reinforcing materials for ceramics, metals, glass, plastics, etc. It relates to a manufacturing method. (Prior art) Silicon carbide whiskers have excellent strength, elastic modulus, and chemical stability, and also have good wettability with various metals, so they can be used for ceramics, metals, glass, plastics, etc. It is attracting attention as a composite reinforcing material. Regarding the production of this silicon carbide whisker,
(1) A method of solid-phase reduction of silicon dioxide with carbon, (2) A method of reacting a gaseous organosilicon compound or a silicon compound with a carbon compound at high temperature, (3) A method of reacting a fluorine-containing silicate with A vapor phase growth method using a reaction with carbon is known, but method (1) has the disadvantage of unavoidable by-product of finely divided silicon carbide, and method (3) does not require a reaction. The disadvantages are that the equipment is complicated and the yield is low, so it is not suitable as an industrial production method. On the other hand, method (2) has the characteristics of high purification of raw materials, easy control of the reaction, and the ability to obtain whiskers with a large aspect ratio. How to thermally decompose dichlorosilane,
(b) A method of reacting silicon tetrachloride with carbon tetrachloride, and (c) A method of reacting silicon tetrachloride with toluene are known, but this method (a) requires high raw material costs and Depending on the conditions, the reaction gas flow path may be blocked by carbon or silicon precipitates, making it impossible to operate for a long time, which is a disadvantage (b), (c)
Since there are two or more types of raw material gases, there is a problem that controlling their partial pressures and flow rates is complicated.
In any case, three or more moles of chlorine are generated per mole of silicon, and this is discharged from the reactor either alone or as a compound, which is disadvantageous in that it is difficult to dispose of it. (Structure of the Invention) The present invention relates to a method for producing silicon carbide whiskers that solves such disadvantages, and is based on the formula (CH 3 ) a Si 2 Cl 6-a (a is an integer from 1 to 5). This method is characterized by thermally decomposing the indicated methylchlorodisilane at a high temperature. That is, as a result of various studies on how to obtain silicon carbide whiskers efficiently and inexpensively, the present inventors found that the above-mentioned formula (CH 3 ) a was used as the starting material.
Silicon carbide whiskers can be easily obtained by using methylchlorodisilane represented by Si 2 Cl 6-a and thermally decomposing it at high temperature, and this methylchlorodisilane is produced by the reaction between methyl chloride and metal silicon. Direct synthesis method of methylchlorosilane CH 3 Cl + Si → (CH 3 C) b SiCl 4-b (b is 1
, 2 or 3), but it itself cannot be used as a silicone industrial raw material and has traditionally been discarded, so it is easy to obtain and inexpensive; a value is 1-5
Since various products can be obtained with changes within the range of It is possible to prevent the generation of bulk precipitates of silicon and carbon even under such reaction conditions, and the amount of chlorine discharged outside the furnace as a result of this reaction is 1 mole of silicon. Maximum at 3 moles or less
2.5 mol, usually 1.5 mol to 2.0 mol, so
They discovered that the cost of chlorine treatment in the post-process could be significantly reduced, and conducted research on the thermal decomposition conditions for methylchlorodisilane and the efficient growth method of silicon carbide whiskers, and completed the present invention. Ta. The methylchlorodisilanes used as starting materials in the method of the present invention are represented by the formula (CH 3 ) a Si 2 Cl 6-a ,
Although a is an integer of 1 to 5, it may be a single compound or a mixture of two or more of these compounds. As mentioned above, this product can be obtained as a by-product in the direct synthesis method of methylchlorosilane, but
It may be obtained by thermal decomposition of polymethylsilane or its chlorination. Methylchlorodisilane obtained by the direct synthesis method of methylchlorosilane is mainly composed of trimethyltrichlorodisilane where a is 3 in the above formula and dimethyltetrachlorodisilane where a is 2, and a small amount of pentamethylchlorodisilane and tetramethyl. Although it is said to contain dichlorodisilane, it may also contain methylchlorodisilane analogues such as hexamethyldisilane and trimethylsilyldimethylchlorosilylmethylene, and these can be used as raw materials in the method of the present invention as they are. In order to control the molar ratio of elementary atoms to carbon atoms in this raw material depending on the reaction conditions, these methylchlorodisilanes may be appropriately combined. In addition, with regard to this methylchlorodisilane, it is optional to mix silicon compounds, carbon compounds, etc. used in conventional methods such as methyltrichlorosilane, silicon tetrachloride, methane, carbon tetrachloride, etc. However, the features of the present invention are not impaired thereby. On the other hand, when this methylchlorodisilane is a by-product of the above-mentioned direct synthesis reaction of methylchlorosilane, the methylchlorodisilane is synthesized in the presence of a copper-based catalyst. contains a metal catalyst, and there is a risk that this metal catalyst will be randomly fixed in the target silicon carbide whisker. It is better to remove the metal catalyst. Silicon carbide whiskers can be produced using methylchlorodisilane as a starting material by thermally decomposing methylchlorodisilane using a known gas phase reaction method.
Therefore, this methylchlorodisilane is gasified and introduced into the reactor, but this may be introduced into the reactor using hydrogen gas or an inert gas as a carrier gas. Methylchlorodisilane can be gasified by bubbling, but if this methylchlorodisilane does not have a single composition, the composition of the vaporized gas may change as the bubbling time passes; Since chlorodisilane has a high boiling point and therefore needs to be maintained at a high temperature, methylchlorodisilane may be sent to an evaporator to vaporize it and then fed into the reactor. This reactor may be a carbon tube or a porcelain tube, which is usually of the external resistance heating type, but it is also possible to place the deposition substrate inside the tube and heat it by induction or infrared rays. It may be. Formation of silicon carbide whiskers by thermal decomposition of methylchlorodisilane begins at 1250℃ and continues at 1300℃.
The growth rate becomes faster at 1600°C or higher, but if the temperature is higher than 1600°C, the heat resistance of the reactor becomes a problem, so from an economical point of view, the thermal decomposition temperature is preferably 1300 to 1600°C. Also, as mentioned above, this methylchlorodisilane is introduced into the reactor together with the carrier gas.
The ratio of methylchlorodisilane to carrier gas may be arbitrary. However, if the concentration of methylchlorodisilane in the raw material gas exceeds 30%, the precipitated whiskers will not be straight but will have a bent shape, and the aspect ratio will deteriorate. The concentration is
It is better to keep it below 30%. Regarding the flow rate of this raw material gas, if it is too fast, the thermal decomposition reaction of the raw material will not proceed sufficiently and the yield will tend to decrease, and as mentioned above, as the raw material gas concentration increases, the whiskers will bend. The velocity of this raw material gas is preferably 10 cm/sec or less in linear velocity. Silicon carbide whiskers generated during the thermal decomposition of methylchlorodisilane are deposited on the reactor tube wall, but
For this purpose, it is preferable to install a deposition substrate made of alumina, mullite, carbon, and silicon carbide in a reactor, and deposit silicon carbide whiskers on this deposition substrate. The shape of this deposition substrate may be a powder or a molded body, and the carbon may be carbonaceous, graphitic, or amorphous, but the precipitation efficiency depends on its shape and installation method. , the precipitation rate may differ, so it is desirable to carefully consider and determine these in advance. The production of silicon carbide whiskers through this thermal decomposition reaction of methylchlorodisilane can achieve a yield of 80% or more based on silicon atoms without the addition of any particular catalyst. It was discovered that iron, nickel, cobalt, titanium, or an alloy thereof has a catalytic effect on the growth of bare whiskers, and that by adding these materials, the yield can be increased to over 90%. This iron, nickel, cobalt, titanium, or an alloy thereof may be applied directly to the above-mentioned precipitation carrier in powder form, but this may be a compound powder such as iron oxide, iron chloride, ferrocene, nickel chloride, cobalt oxide, titanium oxide, etc. may be applied to the precipitation carrier, or this solvent solution may be applied or impregnated onto the precipitation carrier so that the compound is reduced to the metal at a high temperature for reaction. In addition, even in the method of the present invention, since chlorine or hydrogen chloride gas generated by thermal decomposition of raw materials is discharged from the silicon carbide whisker production furnace, this exhaust gas is brought into contact with an alkaline aqueous solution or water to wash away the chlorine or hydrogen chloride. However, as mentioned above, the method of the present invention releases less chlorine or hydrogen chloride than the conventional method, so it is possible to reduce the amount of alkali required for this treatment or the pH of the cleaning water. The advantage is also that the amount of alkali to be adjusted and also the amount of water for this washing can be reduced. The method of the present invention is carried out by thermally decomposing methylchlorodyrane in the manner described above.
According to this method, it is possible to easily obtain silicon carbide whiskers with a very large aspect ratio of 0.1 to 2.5 μm in diameter and about 10 mm in length;
This can be achieved even up to 100mm. Next, examples of the present invention will be given. Example 1 A 1:1 mixture of dimethyltetrochlorodisilane and trimethyltrichlorodisilane obtained by simple distillation of the distillation residual liquid from the synthesis of methylchlorosilane by the reaction of methyl chloride and metal silicon,
The reaction tube is an HB mullite tube (trade name manufactured by Nihon Kagaku Togyo Co., Ltd.) with an inner diameter of 42 mmφ, and the effective heating length is 350 mm.
Hydrogen gas was introduced as a carrier gas into an electric furnace using a silicon carbide heater of mm as a heating element. In this case, the reactor temperature was 1450°C, the raw material gas concentration was 3.0% based on silicon atoms, and the reactant gas linear velocity was 10 mm/sec. Silicon carbide whiskers precipitated in a linear shape, so when these whiskers were collected and weighed, the whisker yield was 80% based on silicon atoms.
It was %. Note that no lump-like or coating-like precipitates were observed in this reaction tube, and when the resulting whiskers were examined using an electron microscope, they had a high aspect ratio as shown in Figure 1. It was hot. Example 2 The same raw materials and the same reaction apparatus as in Example 1 were used, but the reaction was carried out by changing the furnace temperature, raw material gas concentration, and reactant gas linear velocity as shown in Table 1. The results were obtained as described in .

【表】 実施例 3 実施例1と同じ原料、同じ反応装置を用いた
が、この反応管内に3mmφ×高さ5mmの形状に整
形した活性炭をその高温帯域に活性炭が2層にな
るように配置し、実施例1と同じ反応条件でメチ
ルクロロジシランの熱分解反応を行なわせたとこ
ろ、炭化けい素ウイスカーがこの活性炭上に成長
し、このときの収率は87%となつた。 実施例 4 メチルクロライドと金属けい素との反応による
メチルクロロシラン合成時の蒸留残渣を単蒸留処
理して得た、メチルペンタクロロジシラン、ジメ
チルテトラクロロジシランおよびトリメチルペン
タクロロジシランの1:2:1の混合物を原料と
し、このものを実施例1と同じ装置で反応温度
1450℃、原料ガス濃度30%、ガス線速10mm/秒の
条件で反応させたところ、収率78%の炭化けい素
ウイスカーが得られ、この反応管には実施例1と
同様に塊状またはコーテイング状の析出物は観察
されなかつた。 実施例 5 平均粒径が10μmの酸化鉄20gを300mlの水に
入れ充分に撹拌して懸濁液を作り、これを実施例
3で使用した活性炭の表面に塗布し、この活性炭
を用いて実施例3と同じ方法でメチルクロロジシ
ランの熱分解反応を行なつたところ、濃淡色の炭
化けい素ウイスカーがこの活性炭上に析出し、こ
のときの収率は90%であつた。 比較例 実施例1と同じ反応装置を使用し、原料ガスと
してメチルトリクロロシランを使用して、これを
水素ガスをキヤリヤーガスとして、反応温度1450
℃、原料ガス濃度3.0%、反応ガス線速10mm/秒
でその熱分解反応を行なつたところ、炭化けい素
ウイスカーが反応管壁に析出し、この収率は78%
であつたが、この場合には反応ガスの入口側の反
応管壁に炭化けい素と炭素との混合体がコーテイ
ング状に析出していた。
[Table] Example 3 The same raw materials and the same reaction apparatus as in Example 1 were used, but activated carbon shaped into a shape of 3 mmφ x 5 mm in height was arranged in the high temperature zone so that there were two layers of activated carbon. However, when methylchlorodisilane was thermally decomposed under the same reaction conditions as in Example 1, silicon carbide whiskers grew on the activated carbon, and the yield was 87%. Example 4 A 1:2:1 mixture of methylpentachlorodisilane, dimethyltetrachlorodisilane and trimethylpentachlorodisilane was obtained by simple distillation of the distillation residue from the synthesis of methylchlorosilane through the reaction of methyl chloride and silicon metal. The mixture was used as a raw material, and the reaction temperature was adjusted using the same equipment as in Example 1.
When the reaction was carried out at 1450°C, raw material gas concentration 30%, and gas linear velocity 10 mm/sec, silicon carbide whiskers with a yield of 78% were obtained. No type of precipitate was observed. Example 5 20 g of iron oxide with an average particle size of 10 μm was added to 300 ml of water and thoroughly stirred to make a suspension. This was applied to the surface of the activated carbon used in Example 3, and this activated carbon was used in the experiment. When pyrolysis reaction of methylchlorodisilane was carried out in the same manner as in Example 3, dark and light colored silicon carbide whiskers were deposited on the activated carbon, and the yield was 90%. Comparative Example Using the same reactor as in Example 1, using methyltrichlorosilane as a raw material gas and using hydrogen gas as a carrier gas, the reaction temperature was 1450.
When the thermal decomposition reaction was carried out at ℃, raw gas concentration 3.0%, and reaction gas linear velocity 10 mm/sec, silicon carbide whiskers were deposited on the reaction tube wall, and the yield was 78%.
However, in this case, a mixture of silicon carbide and carbon was deposited in the form of a coating on the reaction tube wall on the inlet side of the reaction gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で得られた炭化けい素ウイス
カーの電子顕微鏡写真を示したものである。
FIG. 1 shows an electron micrograph of silicon carbide whiskers obtained in Example 1.

Claims (1)

【特許請求の範囲】 1 式(CH3aSi2Cl6-a(aは1〜5の整数)で示
されるメチルクロロジシランを高温で熱分解させ
ること特徴とする炭化けい素ウイスカーの製造方
法。 2 熱分解温度が1250〜1600℃とされる特許請求
の範囲第1項記載の炭化けい素ウイスカーの製造
方法。 3 炭化けい素ウイスカーがアルミナ、ムライ
ト、カーボン、炭化けい素から選択される物質上
に析出される特許請求の範囲第1項記載の炭化け
い素ウイスカーの製造方法。 4 メチルクロロジシランをウイスカー成長触媒
としての鉄、ニツケル、コバルト、チタンまたこ
れらの合金から選択される金属粉の存在下で熱分
解させる特許請求の範囲第1項記載の炭化けい素
ウイスカーの製造方法。
[Claims] 1. Production of silicon carbide whiskers characterized by thermally decomposing methylchlorodisilane represented by the formula (CH 3 ) a Si 2 Cl 6-a (a is an integer from 1 to 5) at high temperature Method. 2. The method for producing silicon carbide whiskers according to claim 1, wherein the thermal decomposition temperature is 1250 to 1600°C. 3. The method for producing silicon carbide whiskers according to claim 1, wherein the silicon carbide whiskers are deposited on a material selected from alumina, mullite, carbon, and silicon carbide. 4. The method for producing silicon carbide whiskers according to claim 1, which comprises thermally decomposing methylchlorodisilane in the presence of a metal powder selected from iron, nickel, cobalt, titanium, or an alloy thereof as a whisker growth catalyst. .
JP60131493A 1985-06-17 1985-06-17 Production of silicon carbide whiskers Granted JPS61291498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131493A JPS61291498A (en) 1985-06-17 1985-06-17 Production of silicon carbide whiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131493A JPS61291498A (en) 1985-06-17 1985-06-17 Production of silicon carbide whiskers

Publications (2)

Publication Number Publication Date
JPS61291498A JPS61291498A (en) 1986-12-22
JPH03354B2 true JPH03354B2 (en) 1991-01-07

Family

ID=15059284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131493A Granted JPS61291498A (en) 1985-06-17 1985-06-17 Production of silicon carbide whiskers

Country Status (1)

Country Link
JP (1) JPS61291498A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1275088A (en) * 1985-12-30 1990-10-09 Peter D. Shalek Prealloyed catalyst for growing silicon carbide whiskers
JPS63270400A (en) * 1987-04-28 1988-11-08 Nippon Sheet Glass Co Ltd Production of silicon carbide whisker
US5405654A (en) * 1989-07-21 1995-04-11 Minnesota Mining And Manufacturing Company Self-cleaning chemical vapor deposition apparatus and method
US5322711A (en) * 1989-07-21 1994-06-21 Minnesota Mining And Manufacturing Company Continuous method of covering inorganic fibrous material with particulates
US5364660A (en) * 1989-07-21 1994-11-15 Minnesota Mining And Manufacturing Company Continuous atmospheric pressure CVD coating of fibers

Also Published As

Publication number Publication date
JPS61291498A (en) 1986-12-22

Similar Documents

Publication Publication Date Title
CN101193820B (en) Method for production of silicon from silyl halides
US4849196A (en) Process for producing silicon carbide whiskers
JPS6228083B2 (en)
WO2003040036A1 (en) Method for producing silicon
US4318942A (en) Process for producing polycrystalline silicon
JP2912106B2 (en) Method for producing bissilylalkane
CN1986909A (en) Technology for preparing tetrapod-like zinc oxide whisker by normal pressure zinc vapour oxidation method
JPH0649569B2 (en) Method and apparatus for producing trichlorosilane
JPH053406B2 (en)
JPH03354B2 (en)
US4861574A (en) Process for preparing chloropolysilanes
JPS5939708A (en) Manufacture of fine silicon carbide powder
JP2508798B2 (en) Method for producing hexachlorodisilane and octachlorotrisilane
JPS6122000A (en) Preparation of silicon carbide whisker
JP2598227B2 (en) Method for producing powder for ceramics made of metal and / or nonmetal nitride and / or carbide by flash pyrolysis and said powder
JP4339538B2 (en) Method and apparatus for forming carbon-silicon bonds in silane
JPH08507575A (en) Process for producing silicon carbide layer and article thereof
JPS63277599A (en) Production of silicon carbide whisker
JPH0352408B2 (en)
JPS6250466A (en) Production of article having silicon nitride film
JP2604753B2 (en) Method for producing silicon carbide whiskers
JPH0234599A (en) Preparation of coil-sharped silicon nitride whisker
JP4317292B2 (en) Method for producing silicon nitride whiskers
JPS61295299A (en) Preparation of silicon carbide whisker
JPS63159299A (en) Production of silicon carbide whisker