JPH03351A - Transmission mechanism - Google Patents

Transmission mechanism

Info

Publication number
JPH03351A
JPH03351A JP7472489A JP7472489A JPH03351A JP H03351 A JPH03351 A JP H03351A JP 7472489 A JP7472489 A JP 7472489A JP 7472489 A JP7472489 A JP 7472489A JP H03351 A JPH03351 A JP H03351A
Authority
JP
Japan
Prior art keywords
linear
magnetic
transmission mechanism
magnetic body
poles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7472489A
Other languages
Japanese (ja)
Inventor
Masayuki Nashiki
政行 梨木
Shinji Shibata
伸二 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Machinery Works Ltd filed Critical Okuma Machinery Works Ltd
Priority to JP7472489A priority Critical patent/JPH03351A/en
Publication of JPH03351A publication Critical patent/JPH03351A/en
Pending legal-status Critical Current

Links

Landscapes

  • Transmission Devices (AREA)

Abstract

PURPOSE:To enhance miniaturization, extension of life, and improvement in transmission efficiency by disposing both magnetic bodies of a linear moving body having a linear magnetic body having a determined inclination to the direction of linear movement and a rotating body having a magnetic body on the outer circumference with a determined gap. CONSTITUTION:Linear S- and N-poles 211 having a determined longitudinal inclination are alternately provided on the surface of a linear moving plate 21, S- and N-poles 221 are alternately provided in parallel to the magnetic poles 211 of the linear moving plate 21 on the circumference of a rotary disk 22, and the magnetic poles 211 and 221 are disposed with a determined gap. Thus, miniaturization of the whole mechanism, improvement in transmission efficiency by non-contact rotation, elimination of noise, and extension of life can be enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、直線運動又は回転運動を回転運動又は直線運
動に変換する伝達機構に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a transmission mechanism that converts linear motion or rotational motion into rotational motion or linear motion.

(従来の技術) 従来の直線運動又は回転運動を回転運動又は直線運動に
変換する伝達機構には、第3図(A) 、 (11)に
示すような円筒歯車のピッチ円筒の半径が無限大となっ
たラックlと、このラックにかみ合う平歯車(ビニオン
)2とが用いられている。また、伝達速度を変速させる
には、ビニオン2の歯数を増やしたり、別の平歯車3.
4により歯車列を構成することにより行なっている。し
かしながら、ラック1の歯とビニオン2の歯あるいは平
歯車3の歯と平歯車4の歯の接触部の摩擦による音の発
生や伝達効率の低下が問題となっていた。
(Prior Art) Conventional transmission mechanisms that convert linear motion or rotational motion into rotational motion or linear motion include a cylindrical gear whose pitch cylinder has an infinite radius, as shown in Figure 3 (A), (11). A rack l having a shape of 1 and a spur gear (binion) 2 meshing with this rack are used. In addition, in order to change the transmission speed, the number of teeth of the pinion 2 may be increased or another spur gear 3.
4 to form a gear train. However, there have been problems such as generation of noise and reduction in transmission efficiency due to friction between the teeth of the rack 1 and the teeth of the pinion 2 or the teeth of the spur gear 3 and the teeth of the spur gear 4.

そこで、そのような問題を解消する伝達機構として、第
4図(A) 、 、(B)に示すようにラックlの歯部
11を磁性体で構成すると共に、ビニオン2の歯部!2
をS極、N極の一対の磁極で構成し、ラック1の歯部1
1とビニオン2の歯部12とを所定のギャップをあけて
配置したものが考えられる。このような伝達機構によれ
ば、lin性体と磁極との間で発生する磁力による吸引
力で運動か非接触で伝達される。また、平歯車3の南部
13をrIFi性体で構成すると共に、平歯車4の歯部
をS極、N極の一対の磁極で構成し、平歯部3の歯部1
3と平歯車4の歯部14とを所定のギャップをあけて配
置すれば伝達速度を変速させる場合でも同様の効果か得
られる。
Therefore, as a transmission mechanism to solve such problems, as shown in FIGS. 4(A), 4(B), the teeth 11 of the rack l are made of a magnetic material, and the teeth of the pinion 2 are made of a magnetic material. 2
consists of a pair of magnetic poles, an S pole and an N pole, and the tooth part 1 of the rack 1
1 and the tooth portion 12 of the pinion 2 may be arranged with a predetermined gap therebetween. According to such a transmission mechanism, motion is transmitted without contact by the attractive force caused by the magnetic force generated between the lint body and the magnetic pole. Further, the lower part 13 of the spur gear 3 is made of an rIFi material, and the teeth of the spur gear 4 are made of a pair of magnetic poles, an S pole and an N pole.
3 and the tooth portion 14 of the spur gear 4 with a predetermined gap between them, the same effect can be obtained even when changing the transmission speed.

(発明が解決しようとする課題) 上述した従来の各伝達機構の伝達速度の変速比を大きく
するには、ビニオン2の歯数や磁極数を増加するか、あ
るいは平歯車を付加しなければならず、伝達機構の容積
が増加するという欠点があっ−た。
(Problem to be Solved by the Invention) In order to increase the transmission speed ratio of each of the conventional transmission mechanisms described above, it is necessary to increase the number of teeth and magnetic poles of the binion 2, or add a spur gear. First, there was a drawback that the volume of the transmission mechanism increased.

本発明は上述した事情から成されたものであり、摩擦音
が無く、伝達効率が高く、かつ変速比を犬ぎくしても小
型な伝達機JRを提供することにある。
The present invention has been made in view of the above-mentioned circumstances, and it is an object of the present invention to provide a transmission machine JR that is free from friction noise, has high transmission efficiency, and is compact even when the gear ratio is made too tight.

(課題を解決するための手段) 木発明は、01線運動と回転運動との間の運動伝達を行
なう伝達機構に関するものであり、木発明の上記目的は
、耐記直線運動の方向に対し゛C所定の傾ぎ角を持つ直
線状の磁性体をajIえた直線移動体と、外周上に磁性
体を備えた回転体とでなり、前記直線移動体の磁性体と
前記回転体の磁性体とを所定のギャップをあけて配置す
ることによって達成される。
(Means for Solving the Problems) The invention relates to a transmission mechanism for transmitting motion between linear motion and rotational motion, and the above object of the invention is to C It consists of a linearly moving body with a linear magnetic body having a predetermined inclination angle, and a rotating body with a magnetic body on the outer periphery, and the magnetic body of the linearly moving body and the magnetic body of the rotating body This is accomplished by arranging them with a predetermined gap between them.

(作用) 木発明の伝達機構は、磁性体の傾ぎ角を変えるだけで1
:1〜1:100程度の減速比か初段で可能となるため
、従来の伝達機構に比べて小型になる。
(Function) The transmission mechanism invented by Wood can achieve 1 by simply changing the inclination angle of the magnetic material.
Since a reduction ratio of about 1:1 to 1:100 is possible in the first stage, it is smaller than conventional transmission mechanisms.

また、非接触なため伝達トルクが小さ(てすみ、急加減
速時や高速運転時においても磁力による吸引力9反発力
のみで運動の伝達を行なうことができる。
In addition, since it is non-contact, the transmitted torque is small, and even during sudden acceleration/deceleration or high-speed operation, motion can be transmitted using only the attractive force and repulsive force due to magnetic force.

(実施例) 第1図(^)は本発明の伝達機構の一例を示す平面図、
同図(B)はそのX−X線断面図である。直線移動板2
1の表面には、その長手方向に対して所定の傾き角を持
つ直線状のSiとN極とが交互に着磁されている。また
、回転円板22の円周上にも直線移動板21の磁極21
1 と平行に、S極とN極とが交互に着磁されている。
(Example) Figure 1 (^) is a plan view showing an example of the transmission mechanism of the present invention.
The figure (B) is a sectional view taken along the line X--X. Linear moving plate 2
1, straight Si and N poles having a predetermined inclination angle with respect to the longitudinal direction are alternately magnetized. Moreover, the magnetic pole 21 of the linearly moving plate 21 is also located on the circumference of the rotating disk 22.
1, S and N poles are alternately magnetized.

そして、直線移動板21の磁極211 と回転円板22
のliR極221とが所定のギャップをあけ、かつ直線
移動板21の長手方向と回転円板22の回転軸222と
が平行となるように配置されている。従って、例えば直
線移動板21がその長手方向に移動すれば回転円板22
は磁気力による回転することになる。
Then, the magnetic pole 211 of the linearly moving plate 21 and the rotating disk 22
liR poles 221 are arranged with a predetermined gap therebetween, and the longitudinal direction of the linearly movable plate 21 and the rotation axis 222 of the rotating disk 22 are parallel to each other. Therefore, for example, if the linear moving plate 21 moves in its longitudinal direction, the rotating disk 22
is rotated by magnetic force.

第2図(A)は本発明の伝達機構の別の一例を示す平面
、同図(B)はそのX−X線断面図である。直線移動板
31の表面には、その長平方向に対して所定の傾き角を
持つ直線状で、かつ長手方向と直交する方向に回転円板
32の円周形状に合わせて湾曲した磁性体でなる凸部3
11が形成されている。また、回転円板32の円周上に
は直線移動板31の凸部Ill と平行に、一対のS極
、N極でなる1ifi柘321とこの(rTl 44 
:+ 21より突出し、かつその突出長さが直線移動板
3Iの凸部311の長さより短い非磁性体(例えばプラ
スチック)でなるガイド323とか交互に固定されてい
る。そして、直線移動板31の凸部311 と回転円板
32の磁極321とが所定のキ)・ツブなあけ、かつ直
線移動板31の長手方向と回転円板32の回転IIqh
 322 とが平行となるように配置されている。従っ
て、例えば直線移動板31がその長手方向に移動すれば
回転円板32はb31気力により回転することになる。
FIG. 2(A) is a plan view showing another example of the transmission mechanism of the present invention, and FIG. 2(B) is a cross-sectional view taken along the line X--X. The surface of the linearly moving plate 31 is made of a magnetic material that is linear with a predetermined inclination angle with respect to its longitudinal direction and curved in a direction perpendicular to the longitudinal direction to match the circumferential shape of the rotating disk 32. Convex part 3
11 is formed. Further, on the circumference of the rotating disk 32, parallel to the convex portion Ill of the linearly moving plate 31, there is a pair of S and N poles, 1ifi 321, and this (rTl 44).
Guides 323 made of a non-magnetic material (for example, plastic) that protrude from the + 21 and whose protruding length is shorter than the length of the convex portion 311 of the linearly movable plate 3I are alternately fixed. Then, the convex portion 311 of the linearly moving plate 31 and the magnetic pole 321 of the rotating disk 32 have a predetermined gap, and the longitudinal direction of the linearly moving plate 31 and the rotation IIqh of the rotating disk 32
322 are arranged parallel to each other. Therefore, for example, if the linearly moving plate 31 moves in its longitudinal direction, the rotating disk 32 will rotate due to the force b31.

そして、直線わ動板31の急加ジ速時の慣性力や直線移
動板31に一時的に加わる過負荷トルクが、直線移動板
31の凸部311 と回転円板32の磁極321 との
吸引力よりも大きくなって脱調しそうになったとぎ、回
転円板32のガイド323と直線移動板31の凸部31
1とが接触して回転円板32の回転を1程以上ずらさな
いようにし、脱調を防止することができる。
Then, the inertia force of the linear moving plate 31 during sudden acceleration and the overload torque temporarily applied to the linear moving plate 31 cause the attraction between the convex portion 311 of the linear moving plate 31 and the magnetic pole 321 of the rotating disk 32. When the force becomes larger than the force and is about to step out, the guide 323 of the rotating disk 32 and the convex portion 31 of the linearly moving plate 31
It is possible to prevent the rotation of the rotary disk 32 from shifting by more than 1 due to contact with 1, thereby preventing step-out.

上述した各実施例において、直線移動板21.:11の
移動速度をvX 4磁8i211,221.:121及
び凸部3】1の傾き角をθ2回転円板22.32の円周
の周速なり。
In each of the embodiments described above, the linearly moving plate 21. :11 movement speed vX 4 magnetic 8i211,221. :121 and convex portion 3] The inclination angle of 1 is θ2 and the circumferential speed of the circumference of the rotating disk 22.32.

とすると、この伝達機構の変速比には次式(1)で表わ
される。
Then, the gear ratio of this transmission mechanism is expressed by the following equation (1).

w に−−−t a n  θ        ・・・・・
・(1)vX 上式(1)から明らかなように、θが45°未満で減速
となり、θを小さくするほど大きな減速が得られる。
w---tan θ・・・・・・
- (1) vX As is clear from the above equation (1), deceleration occurs when θ is less than 45°, and the smaller θ is, the greater deceleration is obtained.

なお、上述した各実施例における磁極211,2213
2!には永久磁石、電磁石が用いられ、直線移動体31
の凸部311には軟磁性体が用いられる。
In addition, the magnetic poles 211, 2213 in each of the above-mentioned embodiments
2! Permanent magnets and electromagnets are used for the linear moving body 31.
A soft magnetic material is used for the convex portion 311 .

(発明の効果) 以上のように本発明の伝達機構によれば、大きな変速比
としても機構全体を小型化することができるので、用途
の拡大や低価格化を図ることができると共に、非接触な
回転伝達を実現することができるので、伝達効率を向上
させ、摩擦音を無くし、摩擦による摩耳箇所を無くして
長寿命化を図ることかでとる。
(Effects of the Invention) As described above, according to the transmission mechanism of the present invention, the entire mechanism can be miniaturized even when the gear ratio is large, so it is possible to expand the range of applications and reduce the cost, and it also allows for non-contact transmission. This can be achieved by improving transmission efficiency, eliminating frictional noise, and eliminating worn parts due to friction to extend life.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(八)は本発明の伝達機構の一例を示す平面図、
同図(B)はそのX−X線断面図、第2図(八)は本発
明の伝達機構の別の一例を示す平面図、同図(8)はそ
(7)X−X線断面図、第3図(A) 、  ([1)
及び第4図(A) 、  ([1)はそれぞれ従来の伝
達機構の一例を示す平面図及び側面図である。 21.31・・・直線移動板、22.32・・・回転円
板、21.1゜22+、:121・・・磁極、222,
322・・・回転’pHl、311・・・凸部、323
・・・ガイド。
FIG. 1 (8) is a plan view showing an example of the transmission mechanism of the present invention;
The figure (B) is a sectional view taken along the line X-X, FIG. Figure, Figure 3 (A), ([1)
and FIGS. 4(A) and 4([1) are a plan view and a side view, respectively, showing an example of a conventional transmission mechanism. 21.31...Linear moving plate, 22.32...Rotating disk, 21.1°22+, :121...Magnetic pole, 222,
322...Rotation'pHl, 311...Protrusion, 323
···guide.

Claims (1)

【特許請求の範囲】 1、直線運動と回転運動との間の運動伝達を行なう伝達
機構において、前記直線運動の方向に対して所定の傾き
角を持つ直線状の磁性体を備えた直線移動体と、外周上
に磁性体を備えた回転体とでなり、前記直線移動体の磁
性体と前記回転体の磁性体とを所定のギャップをあけて
配置するようにしたことを特徴とする伝達機構。 2、前記回転体の磁性体に沿って機械的ガイドが設けら
れている請求項1に記載の伝達機構。 3、前記直線移動体の磁性体が軟磁性体、永久磁石又は
電磁石であり、前記回転体の磁性体が永久磁石又は電磁
石である請求項1又は2に記載の伝達機構。
[Claims] 1. In a transmission mechanism that transmits motion between a linear motion and a rotational motion, a linear moving body comprising a linear magnetic body having a predetermined inclination angle with respect to the direction of the linear motion. and a rotating body having a magnetic body on its outer periphery, the magnetic body of the linearly moving body and the magnetic body of the rotating body being arranged with a predetermined gap therebetween. . 2. The transmission mechanism according to claim 1, wherein a mechanical guide is provided along the magnetic body of the rotating body. 3. The transmission mechanism according to claim 1 or 2, wherein the magnetic body of the linear moving body is a soft magnetic body, a permanent magnet, or an electromagnet, and the magnetic body of the rotating body is a permanent magnet or an electromagnet.
JP7472489A 1989-03-27 1989-03-27 Transmission mechanism Pending JPH03351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7472489A JPH03351A (en) 1989-03-27 1989-03-27 Transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7472489A JPH03351A (en) 1989-03-27 1989-03-27 Transmission mechanism

Publications (1)

Publication Number Publication Date
JPH03351A true JPH03351A (en) 1991-01-07

Family

ID=13555458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7472489A Pending JPH03351A (en) 1989-03-27 1989-03-27 Transmission mechanism

Country Status (1)

Country Link
JP (1) JPH03351A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110113908A1 (en) * 2009-11-16 2011-05-19 Corradini Martin Rpm multiplier and/or torque increaser for turbines
CN102257292A (en) * 2008-12-19 2011-11-23 株式会社川渊机械技术研究所 Linearly moving extendable mechanism and robot arm equipped with linearly moving extendable mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130638A (en) * 1985-12-04 1987-06-12 ダイワ精工株式会社 Feed apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130638A (en) * 1985-12-04 1987-06-12 ダイワ精工株式会社 Feed apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102257292A (en) * 2008-12-19 2011-11-23 株式会社川渊机械技术研究所 Linearly moving extendable mechanism and robot arm equipped with linearly moving extendable mechanism
US8925405B2 (en) 2008-12-19 2015-01-06 Kawabuchi Mechanical Engineering Laboratory, Inc. Linear-motion telescopic mechanism and robot arm having linear-motion telescopic mechanism
US20110113908A1 (en) * 2009-11-16 2011-05-19 Corradini Martin Rpm multiplier and/or torque increaser for turbines

Similar Documents

Publication Publication Date Title
JPH03351A (en) Transmission mechanism
KR100986127B1 (en) Ball-wedge type speed reducer
JPH0511788U (en) Magnetic rotation device
US5747902A (en) Rotary apparatus
JPH02250657A (en) Transfer mechanism
KR102103200B1 (en) Magnetic gear having air barrier
US3400287A (en) Frictionless drive
JPH03285556A (en) Magnetic gear unit
JP2673004B2 (en) Wave gear device
RU2082042C1 (en) Magnetic reduction gear
JPS59153459A (en) Noncontact type electromagnetic reduction gear
JPH02190646A (en) Surge generator for surge gear
JPH02223375A (en) Magnetic gear unit
JP2005233326A (en) Transmission mechanism
JPH0614524A (en) Non-contact gear device
JPS60167672A (en) Motor
US3160025A (en) Control mechanism for controlling gear train backlash
JPS6434172A (en) Torque transmission device
JP2557957B2 (en) Torque transmission device
JPS58193968A (en) Rotation transmitting mechanism
JP3142644B2 (en) Cam device
SU945521A1 (en) Wave transmission
JP2601125Y2 (en) Flat cam mechanism
JPS58170964A (en) Magnetic gear
JPH065349U (en) Electric motor