JPH0334473A - Manufacture of avalanche photodiode - Google Patents

Manufacture of avalanche photodiode

Info

Publication number
JPH0334473A
JPH0334473A JP1167048A JP16704889A JPH0334473A JP H0334473 A JPH0334473 A JP H0334473A JP 1167048 A JP1167048 A JP 1167048A JP 16704889 A JP16704889 A JP 16704889A JP H0334473 A JPH0334473 A JP H0334473A
Authority
JP
Japan
Prior art keywords
layer
inp
high concentration
junction
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167048A
Other languages
Japanese (ja)
Other versions
JP3055030B2 (en
Inventor
Susumu Yamazaki
進 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1167048A priority Critical patent/JP3055030B2/en
Publication of JPH0334473A publication Critical patent/JPH0334473A/en
Application granted granted Critical
Publication of JP3055030B2 publication Critical patent/JP3055030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To prescribe the width of a multiplication region with high precision by a method wherein an InGaAs layer, a lightabsorbing layer formed of the InGaAs layer and an InP multiplier layer are laminated sequentially on an InP substrate by an organometal vapor growth method, an InP layer of high concentration is formed in an n-InP layer of low concentration at the time of the growth of said InP multiplier layer, and the position of p-n junction of a light-sensing element is formed inside or above the layer of high concentration, while the position of p-n junction of a girdling element is formed at the lower end of or below the layer of high concentration. CONSTITUTION:An n<+>-InP buffer layer 12, an n-InGaAs light-absorbing layer 13, an n-InGaAsP layer 14, an n-InP layer 15, an n<+>-InP spike dope layer 16 and an n-InP layer 17 are laminated sequentially on a substrate 11. In a light-sensing part A, a p-n junction is formed at a position L1 in the uppermost n-InP layer by Cd diffusion. In a girdling part, the p-n junction is formed at a position L2 wherefrom the n<+>-InP spike dope layer is removed, by ion implantation of Be. The spike dope layer of high concentration in the girdling part located outside the light-sensing part is removed. A p-side electrode 20 of AuZn and an n-side electrode 21 corresponding to (p) and (n) layers respectively and an SiO<2> surface protection film 22 are fitted.

Description

【発明の詳細な説明】 〔概 要〕 本発明は、アバランシェ・フォトダイオードの製造方法
に関し、 有機金属気相成長法を用いて、埋め込み成長を行なわず
に、増倍領域幅を高精度で規定することができるプレー
ナ型のアバランシェ・フォトダイオードの製造方法を提
供することを目的とし、InP基板上に、InPと格子
整合したInGaAs層およびInGaAsP層の少な
くとも一層から成る光吸収層と、この光吸収層上のIn
P増倍層とを有し、前記増倍層を含む受光部をガードリ
ング部が取り囲んだ構造を有するアバランシェ・フォト
ダイオードの製造方法において、有機金属気相成長法に
よりInP基板上にInGaAs層およびInGaAs
P層の少なくとも一層とInP層とを順次積層し、この
InP層成長時に濃度の低いn−InP層中に濃度の高
いInP層を形成し、受光部のpn接合位置は前記濃度
の高い層の内部または上方に形成し、ガードリング部の
pn接合位置は前記濃度の高い層の下端または下方に形
成するように構成する。
[Detailed Description of the Invention] [Summary] The present invention relates to a method of manufacturing an avalanche photodiode, which uses metal organic vapor phase epitaxy to define the multiplication region width with high precision without performing buried growth. The purpose of the present invention is to provide a method for manufacturing a planar type avalanche photodiode that can be used for manufacturing a planar type avalanche photodiode. In on the layer
In the method for manufacturing an avalanche photodiode having a structure in which a guard ring part surrounds a light-receiving part including the multiplication layer, an InGaAs layer and an InGaAs layer are formed on an InP substrate by metal organic vapor phase epitaxy. InGaAs
At least one P layer and an InP layer are sequentially laminated, and during the growth of this InP layer, a high concentration InP layer is formed in the low concentration n-InP layer, and the pn junction position of the light receiving part is located at the position of the high concentration layer. The pn junction position of the guard ring portion is formed at the lower end of or below the high concentration layer.

〔産業上の利用分野〕[Industrial application field]

本発明は、アバランシェ・フォトダイオード、特に、波
長11M帯を使用する光通信システムにおける受信器の
受光素子として好適なアバランシェ・フォトダイオード
の製造方法に関する。
The present invention relates to an avalanche photodiode, and more particularly, to a method of manufacturing an avalanche photodiode suitable as a light receiving element of a receiver in an optical communication system using the 11M wavelength band.

〔従来の技術〕[Conventional technology]

近年の光通信システムの大容量化にともない、システム
に用いられる光半導体素子の高性能化が要求されている
。アバランシェ・フォトダイオード(APD) は素子
内部で増幅機能を有し、高感度受信器を構成する素子と
して最適であり、大容量化に対応するため超高速APD
の検討がなされている。超高速化のためには素子を構成
する半導体結晶の濃度、厚さを非常に精密に制御する必
要がある。また信頼性の高い素子を作製するためには良
好なガードリング構造を有するプレーナ型のAPDとす
る必要がある。
2. Description of the Related Art As the capacity of optical communication systems has increased in recent years, there has been a demand for higher performance of optical semiconductor elements used in the systems. Avalanche photodiodes (APDs) have an amplification function inside the element and are ideal as elements for constructing high-sensitivity receivers.
are being considered. In order to achieve ultrahigh speed, it is necessary to control the concentration and thickness of the semiconductor crystals that make up the device very precisely. Further, in order to manufacture a highly reliable device, it is necessary to use a planar type APD having a good guard ring structure.

従来APDは液相エピタキシャル法(LPE法)で作製
され、LPE法の利点である埋め込み成長技術を生かし
た構造が実現されている。第3図に従来構造のAPDの
断面図を示した。同図において、n=−InP基板31
 (基板面は(111) A面)、n−InPバッファ
ー層32、n −1nGaAs光吸収層33、n−In
GaAsP層34、メルトバック時ニ残留させたn−I
nP増倍層35、n−−InP層36、p−InP層3
8、p=−InP層39 、AuZnのp側電極40 
、AuGeのn側電極41 、Sin、保護膜42、再
成長界面43、受光部Aおよびガードリング部Bを示し
た。この構造では受光部で均一な増倍を起こさせるため
、受光部のみに濃度の高い(n=2〜3 XIO”am
−”) n−InP層を埋め込み、ガードリング部は低
濃度(n=5×1015cI]]−3)としである。ま
た、接合を形成するp領域を受光部はCd拡散による階
段接合、ガードリング部をBeイオン打込みによる傾斜
型接合としてプレーナ型としている。LPE法では光吸
収層のInGaAs上に増倍層InPを成長させるため
基板として[nPの(111) A面を用い、かつIn
GaAsとInPの間に中間組成のInGaAsPが挿
入されている。
Conventionally, APDs have been fabricated by a liquid phase epitaxial method (LPE method), and a structure that takes advantage of buried growth technology, which is an advantage of the LPE method, has been realized. FIG. 3 shows a cross-sectional view of an APD with a conventional structure. In the same figure, n=-InP substrate 31
(Substrate surface is (111) A side), n-InP buffer layer 32, n-1nGaAs light absorption layer 33, n-InP
GaAsP layer 34, n-I remaining during meltback
nP multiplication layer 35, n--InP layer 36, p-InP layer 3
8, p=-InP layer 39, AuZn p-side electrode 40
, an n-side electrode 41 of AuGe, a protective film 42 of Sin, a regrowth interface 43, a light receiving part A, and a guard ring part B. In this structure, in order to cause uniform multiplication in the light receiving part, a high concentration is applied only to the light receiving part (n = 2 to 3 XIO"am
-'') An n-InP layer is embedded, and the guard ring part is a low concentration (n = 5 x 1015 cI] -3).In addition, the p region forming the junction is made of a step junction by Cd diffusion, and the guard ring part is a step junction by Cd diffusion. The ring part is made into a planar type as a sloped junction by Be ion implantation.In the LPE method, in order to grow the InP multiplication layer on the InGaAs light absorption layer, the (111) A plane of [nP is used as the substrate, and InGaAs is used as the substrate.
InGaAsP of intermediate composition is inserted between GaAs and InP.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高速化を実現するためには増倍領域の幅Wを0.2±0
.Ol−程度の精度で実現する必要がある。
In order to achieve high speed, the width W of the multiplication area should be set to 0.2±0.
.. It is necessary to realize this with an accuracy on the order of Ol-.

第3図の構造では幅Wは増倍層厚さdの中で濃度で規定
されるが、LPE法では濃度の精度は±20%程度であ
る上、厚さの制御性も±0.14程度であり、高速化に
必要な精度が得られない。この問題を解決するため、制
御性に優れた有機金属気相成長法(MOVPB法)を用
いることが有力な手段と考えられる。しかしながら、M
OVPB法では埋め込み成長時の再成長界面を良好にす
ることが困難であり(LPE法ではメルトバック法を用
いて埋め込み成長直前にわずかに再成長界面をけずりと
り清浄な表面としている)、第3図の構造をそのまま適
用して低暗電流で良好なプレーナ型APDを製造するこ
とはできない。
In the structure shown in Fig. 3, the width W is defined by the concentration within the multiplication layer thickness d, but in the LPE method, the accuracy of the concentration is about ±20%, and the controllability of the thickness is also ±0.14%. The accuracy required for speeding up cannot be obtained. In order to solve this problem, the use of metal organic vapor phase epitaxy (MOVPB method), which has excellent controllability, is considered to be an effective means. However, M
In the OVPB method, it is difficult to make the regrowth interface good during buried growth (in the LPE method, the melt-back method is used to slightly scrape off the regrowth interface just before buried growth to create a clean surface). It is not possible to manufacture a good planar APD with low dark current by applying the structure shown in the figure as is.

本発明は、有機金属気相成長法を用いて、埋め込み成長
を行なわずに、増倍領域幅を高精度で規定することがで
きるプレーナ型のアバランシェ・フォトダイオードの製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing a planar type avalanche photodiode in which the width of the multiplication region can be defined with high precision using a metal organic vapor phase epitaxy method without performing buried growth. shall be.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的は、本発明によれば、InP基板上に、In
Pと格子整合したInGaAs層またはInGaAsP
層から成る光吸収層と、この光吸収層上のInP増倍層
とを有し、前記増倍層を含む受光部をガードリング部が
取り囲んだ構造を有するアバランシェ・フォトダイオー
ドの製造方法において、有機金属気相成長法により前記
InP基板上に前記InGaAs層およびInGaAs
P層から成る光吸収層と前記InP増倍層とを1@次積
層し、このlnP増倍層成長時に濃度の低いn−InP
層中に濃度の高いInP層を形成し、受光部のpn接合
位置は前記濃度の高い層の内部または上方に形威し、ガ
ードリング部のpn接合位置は前記濃度の高い層の下端
または下方に形成することを特徴とするアバランシェ・
フォトダイオードの製造方法によって遠戚される。
According to the present invention, the above object is achieved by forming an InP substrate on an InP substrate.
InGaAs layer or InGaAsP lattice matched to P
In a method for manufacturing an avalanche photodiode, the avalanche photodiode has a structure in which a light-absorbing layer consisting of a layer, an InP multiplication layer on the light-absorption layer, and a guard ring part surrounds a light-receiving part including the multiplication layer, The InGaAs layer and the InGaAs layer are formed on the InP substrate by metal organic vapor phase epitaxy.
A light absorption layer consisting of a P layer and the InP multiplication layer are laminated in the first order, and during the growth of this InP multiplication layer, n-InP with a low concentration is added.
A high concentration InP layer is formed in the layer, the pn junction position of the light receiving part is formed inside or above the high concentration layer, and the pn junction position of the guard ring part is at the bottom end or below the high concentration layer. an avalanche characterized by the formation of
It is distantly related to the method of manufacturing photodiodes.

本発明の方法は、1回の成長でブレーナ型APDを実現
できるという利点をも有する。
The method of the present invention also has the advantage that a Brehner-type APD can be realized in one growth.

増倍領域幅はアバランシェ・ブレイクダウンを起す電界
値を有する領域幅として定義される。従って増倍領域幅
を明確に規定するためには低濃度領域に非常に薄い高濃
度層を形成しそこで大きな電界降下を実現し、そことp
n接合端との距離で決定すればよい。第4図にその概念
図を示す。これらの分布はMOVPE法により十分作製
可能である。
The multiplication region width is defined as the region width having an electric field value that causes avalanche breakdown. Therefore, in order to clearly define the width of the multiplication region, a very thin high concentration layer is formed in the low concentration region, a large electric field drop is achieved there, and p
It may be determined based on the distance to the n-junction end. Figure 4 shows its conceptual diagram. These distributions can be sufficiently produced by the MOVPE method.

この構造を作製後ガードリング部ではスパイクドープ層
までp領域としてプレーナ構造を作製する。
After this structure is fabricated, a planar structure is fabricated with the guard ring portion as a p region up to the spike doped layer.

以下に、実施例により本発明を更に詳しく説明する。The present invention will be explained in more detail below with reference to Examples.

〔実施例〕〔Example〕

本発明にしたがって、第1図に示したブレーナ型のAP
Dを製造する手順を説明する。
In accordance with the present invention, an AP of the Brehner type shown in FIG.
The procedure for manufacturing D will be explained.

MOVPE法を用いて(100) n”−InP基板1
1上にn”−InPバッファー層12、n −InGa
As光吸収層13、n −1nGaAsP層14、n−
InP層15、n層−InPスパイクド一プ層16、お
よびn −InP層■7を順次積層する。その後受光部
AにはCd拡散により最上層n−InP層中の位置Ll
にpn接合を形成する。ガードリング部はBeをイオン
注入により打ち込みn”−InPスパイクドープ層を除
去する位置L2にpn接合を形成する。こうすることに
よって、受光部の外にあるガードリング部分の高濃度の
スパイクドープ層を除去することが可能である。その後
p・n層に各々対するAuZnのp側電極20 、Au
Geのn側電極21、およびSiO□表面保護膜22を
つけて完成する。
(100) n”-InP substrate 1 using MOVPE method
1, an n”-InP buffer layer 12, an n-InGa
As light absorption layer 13, n −1nGaAsP layer 14, n−
An InP layer 15, an n-InP spiked layer 16, and an n-InP layer 7 are sequentially laminated. After that, the light receiving part A is exposed to the position Ll in the uppermost n-InP layer due to Cd diffusion.
A pn junction is formed. In the guard ring part, Be is implanted by ion implantation to form a pn junction at position L2 where the n''-InP spike doped layer is removed.By doing this, the highly concentrated spike doped layer in the guard ring part outside the light receiving part is removed. Thereafter, p-side electrodes 20 of AuZn and Au
A Ge n-side electrode 21 and a SiO□ surface protective film 22 are attached to complete the process.

本発明では、MOVPE法を用いているので、増倍領域
17の幅を±0.0014程度の精度で規定することが
可能であり、低濃度層17、高濃度層16の濃度を±5
%程度の精度で制御できる。
In the present invention, since the MOVPE method is used, it is possible to define the width of the multiplication region 17 with an accuracy of approximately ±0.0014, and the concentration of the low concentration layer 17 and high concentration layer 16 can be defined with an accuracy of approximately ±5.
It can be controlled with an accuracy of about %.

すなわち、本発明の方法によれば、受光部では増倍領域
幅を狭い領域に限定可能となり、かつガードリング部B
ではスパイクドープ層16がないためpn接合近傍の電
界値は第2図に示したまうに上がらず良好なプレーナ構
造が形成できる。同図中、実線が受光部の電界値、破線
がガードリング部の電界値を示す。すなわち受光部が実
線のようにブレークダウン電界に達したとき、ガードリ
ング部の電界分布は破線のように低電界となる。
That is, according to the method of the present invention, the width of the multiplication region can be limited to a narrow region in the light receiving section, and the width of the multiplication region can be limited to a narrow region.
In this case, since there is no spike doped layer 16, the electric field value near the pn junction does not rise as much as shown in FIG. 2, and a good planar structure can be formed. In the figure, the solid line shows the electric field value of the light receiving part, and the broken line shows the electric field value of the guard ring part. That is, when the light receiving part reaches a breakdown electric field as shown by the solid line, the electric field distribution in the guard ring part becomes a low electric field as shown by the broken line.

本発明の方法では、このプレーナ構造を1回の成長で実
現できる。
With the method of the present invention, this planar structure can be achieved in one growth.

〔発明の効果〕 本発明によればMOVPE法による1回の成長で良好な
プレーナ構造が実現できるため、高性能APDが再限性
良く作製可能となる。
[Effects of the Invention] According to the present invention, a good planar structure can be realized by one-time growth using the MOVPE method, so that high-performance APDs can be manufactured with good reproducibility.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の方法により製造したAP
Dの構造の一例を示す断面図、第2図は、本発明の方法
により製造したAPDの受光部(実線〉とガードリング
部(破線〉の電界分布を模式的に示すグラフ、 第3図は、従来の方法により製造した典型的なAPDの
構造を示す断面図、および 第4図(a)および(b)は、それぞれ増倍領域を限定
するために用いる濃度分布、およびその場合の電界分布
を模式的に示すグラフである。 11.3l−InP基板、 13.33=−InGaA
s光吸収層、16・・・n” inPスパイクドープ層
、17.35・−n−4nP増倍層、 A・・・受光部、    B・・・ガードリング部。
FIG. 1 shows an AP manufactured by the method of one embodiment of the present invention.
FIG. 2 is a cross-sectional view showing an example of the structure of D, and FIG. 3 is a graph schematically showing the electric field distribution in the light receiving part (solid line) and guard ring part (broken line) of the APD manufactured by the method of the present invention. , a cross-sectional view showing the structure of a typical APD manufactured by a conventional method, and FIGS. 4(a) and 4(b) respectively show the concentration distribution used to limit the multiplication region and the electric field distribution in that case. It is a graph schematically showing 11.3l-InP substrate, 13.33=-InGaA
s light absorption layer, 16...n'' inP spike doped layer, 17.35...-n-4nP multiplication layer, A... light receiving section, B... guard ring section.

Claims (1)

【特許請求の範囲】[Claims] 1、InP基板上に、InPと格子整合したInGaA
s層またはInGaAsP層から成る光吸収層と、この
光吸収層上のInP増倍層とを有し、前記増倍層を含む
受光部をガードリング部が取り囲んだ構造を有するアバ
ランシェ・フォトダイオードの製造方法において、有機
金属気相成長法により前記InP基板上に前記InGa
As層またはInGaAsP層から成る光吸収層と前記
InP増倍層とを順次積層し、このInP増倍層成長時
に濃度の低いn−InP層中に濃度の高いInP層を形
成し、受光部のpn接合位置は前記濃度の高い層の内部
または上方に形成し、ガードリング部のpn接合位置は
前記濃度の高い層の下端または下方に形成することを特
徴とするアバランシェ・フォトダイオードの製造方法。
1. InGaA lattice matched to InP on InP substrate
An avalanche photodiode comprising a light absorption layer made of an S layer or an InGaAsP layer, and an InP multiplication layer on the light absorption layer, and a guard ring part surrounds a light receiving part including the multiplication layer. In the manufacturing method, the InGa is deposited on the InP substrate by metal organic vapor phase epitaxy.
A light absorption layer consisting of an As layer or an InGaAsP layer and the above-mentioned InP multiplication layer are sequentially laminated, and when the InP multiplication layer is grown, a high concentration InP layer is formed in the low concentration n-InP layer, and the light receiving part is A method for manufacturing an avalanche photodiode, characterized in that a pn junction position is formed inside or above the high concentration layer, and a pn junction position of the guard ring portion is formed at a lower end or below the high concentration layer.
JP1167048A 1989-06-30 1989-06-30 Manufacturing method of avalanche photodiode Expired - Fee Related JP3055030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167048A JP3055030B2 (en) 1989-06-30 1989-06-30 Manufacturing method of avalanche photodiode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167048A JP3055030B2 (en) 1989-06-30 1989-06-30 Manufacturing method of avalanche photodiode

Publications (2)

Publication Number Publication Date
JPH0334473A true JPH0334473A (en) 1991-02-14
JP3055030B2 JP3055030B2 (en) 2000-06-19

Family

ID=15842428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167048A Expired - Fee Related JP3055030B2 (en) 1989-06-30 1989-06-30 Manufacturing method of avalanche photodiode

Country Status (1)

Country Link
JP (1) JP3055030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179431A (en) * 1989-11-20 1993-01-12 Fujitsu Limited Semiconductor photodetection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179431A (en) * 1989-11-20 1993-01-12 Fujitsu Limited Semiconductor photodetection device

Also Published As

Publication number Publication date
JP3055030B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
JP4220688B2 (en) Avalanche photodiode
EP0156156A1 (en) Avalanche photodiodes
EP0163295B1 (en) A semiconductor photodetector and fabrication process for the same
US5132747A (en) Avalanche photo diode
JPH022691A (en) Semiconductor light receiving device
US20100148216A1 (en) Semiconductor light receiving element and method for manufacturing semiconductor light receiving element
CN108091720A (en) Uniline carrier photodetector and preparation method thereof
JP4861388B2 (en) Avalanche photodiode
JPH038117B2 (en)
JPS6244709B2 (en)
JPH08274366A (en) Semiconductor light receiving device
JPH0334473A (en) Manufacture of avalanche photodiode
JPH05206497A (en) Semiconductor light receiving device
JPH05102517A (en) Avalanche photodiode and its manufacturing method
JPS60198786A (en) Semiconductor photo receiving element
JPS6138872B2 (en)
JP2720886B2 (en) Manufacturing method of avalanche photodiode
JP2638445B2 (en) Semiconductor light receiving element
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH0382085A (en) Semiconductor photodetector and manufacture thereof
KR970006614B1 (en) Method of avalanche photodiode
JP2995751B2 (en) Semiconductor light receiving element
JPS6222471B2 (en)
JPS6112087A (en) Avalanche photodiode
JPS6259905B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees