JPH0333862A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0333862A
JPH0333862A JP16859889A JP16859889A JPH0333862A JP H0333862 A JPH0333862 A JP H0333862A JP 16859889 A JP16859889 A JP 16859889A JP 16859889 A JP16859889 A JP 16859889A JP H0333862 A JPH0333862 A JP H0333862A
Authority
JP
Japan
Prior art keywords
photosensitive layer
titanyl phthalocyanine
layer
photoreceptor
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16859889A
Other languages
Japanese (ja)
Inventor
Yasuhiro Oda
康弘 織田
Hiroshi Yoshioka
吉岡 寛
Hajime Tadokoro
肇 田所
Yoshihide Fujimaki
藤巻 義英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP16859889A priority Critical patent/JPH0333862A/en
Publication of JPH0333862A publication Critical patent/JPH0333862A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity characteristics and a charge holding property and to reduce image defects, especially black spots occurring at the time of reversal development by incorporating a specified titanyl phthalocyanine pigment and as a binder at least one of acrylic resins and the like in a photosensitive layer. CONSTITUTION:A photosensitive layer 2 comprises the titanyl phthalocyanine pigment having Bragg angle 2theta main peaks in at least 9.6 deg. + or - 0.2 deg. and 27.2 deg. + or -0.2 deg. with respect to the Cu-Kalpha characteristic X-ray (wavelength 1.54 Angstrom ) and the peak intensity in 9.6 deg. + or - 0.2 deg. being as high as >= 40% of that in 27.2 deg. + or -0.2 deg., and the photosensitive layer 2 contains as the binder at least one of the acrylic, polyester, and polystyrene resins, and ethylene-vinylacetate and vinyl chloride-vinyl acetate copolymers, thus permitting occurrences of black spots and the like to be reduced at the time of reversal development, and images high in sensitivity image quality to be stably obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真感光体に関し、特に光導電性材料とし
て特定のチタニルフタロシアニン顔料を用い、プリンタ
、複写機等に有効であって、露光手段として半導体レー
ザー光及びLED光等を用いて像形成を行うときにも好
適な電子写真感光体に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, in particular, it uses a specific titanyl phthalocyanine pigment as a photoconductive material, and is effective for printers, copying machines, etc. The present invention relates to an electrophotographic photoreceptor which is also suitable for image formation using semiconductor laser light, LED light, or the like.

[従来の技術] 近年、電子写真感光体に用いられる光導電性林料として
、無機光導電性材料に代えて有機光導電性材料が多く用
いられるようになった。その理由は、有機光導電性材料
においては、合成物質及び合成条件の組合せにより多種
多様の材料を得ることができ、材料の選択の自由度が大
きく、目的に応じて所望の感光体を容易に作製できるか
らである。
[Prior Art] In recent years, organic photoconductive materials have been increasingly used instead of inorganic photoconductive materials as photoconductive materials used in electrophotographic photoreceptors. The reason for this is that a wide variety of organic photoconductive materials can be obtained by combining synthetic substances and synthesis conditions, and there is a large degree of freedom in selecting materials, making it easy to create the desired photoreceptor depending on the purpose. This is because it can be manufactured.

更にまた、前記有機光導電性林料を用いた感光体におい
ては、キャリア発生機能とキレリア輸送機能とを異なる
材料に分担させた機能分離型とすることにより、林料の
選択の自由度が一層拡大され、帯電能、感度及び耐久性
等の電子写真特性の改善が期待されるようになった。
Furthermore, in the photoreceptor using the organic photoconductive forest material, the degree of freedom in selecting the forest material is further increased by making the photoreceptor a functionally separated type in which the carrier generation function and the chirelia transport function are shared by different materials. As a result, improvements in electrophotographic properties such as chargeability, sensitivity, and durability are expected.

他方、複写業界において、−mの画質の改善及びmeの
&I集機能が要請され、これに対応したデジタル方式の
複写機又はプリンター等の記録装置の開発が進められて
おり、そのための記録媒体としての感光体の改善かの望
されている。前記デジタル方式の記録装置においては、
一般に、画像信号により変調されたレーザー光を用いて
ドツト状に露光して感光体上にドツト潜像を形成し、こ
れを反転現像方式により現像して像形成を行うようにし
ている。この場合、前記レーザー光としては、露光袋d
の単純化、小型化及び低価格化が可能な半導体レー1F
−装置が好ましく用いられ、その発振波長はysonm
以上の赤外ft1ItJ、とされている。従って、用い
られる感光体としては、少なくとも150〜850rv
の波長領域に高感度を有することが要求される。
On the other hand, in the copying industry, improvements in the image quality of the -m and the &I collection function of the me are required, and the development of digital copying machines, printers, and other recording devices to meet these demands is progressing, and as a recording medium for this purpose, Improvements in photoreceptors are desired. In the digital recording device,
Generally, a latent dot image is formed on a photoreceptor by exposing it in dots using a laser beam modulated by an image signal, and this is developed by a reversal development method to form an image. In this case, as the laser beam, the exposure bag d
Semiconductor Ray 1F that can be simplified, downsized, and lowered in price
- device is preferably used, the oscillation wavelength of which is ysonm
The above infrared ft1ItJ. Therefore, the photoreceptor used should have at least 150 to 850 rv.
It is required to have high sensitivity in the wavelength range of .

ところで、前記機能弁lI!i型の感光体に用いられる
主119フ発生物質として、種々の有機染料又は有機顔
料が提案されており、例えば、ジブロムアンスアンスロ
ンに代表される多環キノン顔料、ビリリウム染料、及び
該ビリリウム染料とポリカーボネートとの共晶錯体、ス
クェアリウム顔料、フタロシアニン顔料、アゾ顔料等が
実用化されている。これらのうち、特開昭(31−23
9248号公報、同61−217050号公報、同62
−67094号公報及び同63−218768号公報等
には、750n11以上の長波長領域に主感度を有する
チタニル系フタロシアニン顔料が記載されている。こう
したチタニル系フタロシアニン顔料はいずれも、特定の
凝集構造もしくは結晶構造をもだしることによって、主
吸収を長波長化させ、高感度化を図ったものであるが、
前記したinの製造条件の設定が難しく、このため、帯
電能、感度、繰り返し特性等の特性全般を満足するもの
が得られず、また、感度の点では一層の高感度化が望ま
れる。
By the way, the function valve lI! Various organic dyes or organic pigments have been proposed as the main 119-fluorescent material used in I-type photoreceptors, such as polycyclic quinone pigments represented by dibromoanthurone, biryllium dyes, and biryllium dyes. Eutectic complexes of polycarbonate and polycarbonate, squareium pigments, phthalocyanine pigments, azo pigments, etc. have been put into practical use. Among these, Tokukai Sho (31-23
No. 9248, No. 61-217050, No. 62
JP-67094, JP-63-218768, and the like describe titanyl-based phthalocyanine pigments having main sensitivity in a long wavelength region of 750n11 or more. All of these titanyl-based phthalocyanine pigments have a specific agglomerated or crystalline structure, which increases the wavelength of the main absorption and increases sensitivity.
It is difficult to set the manufacturing conditions for the above-mentioned in, and for this reason, it is not possible to obtain a product that satisfies all the characteristics such as charging ability, sensitivity, and repeatability.In addition, in terms of sensitivity, even higher sensitivity is desired.

本出願人は先に、前記高感度化の要望に対応するものと
して、特開昭64−17068@明11151及び特願
昭63−286537号明III(昭和63年11月1
1日出WI)により高感度チタニル系フタロシアニン感
光体を提案した。この感光体は、キャリア発生物質とし
てCo−Ka特性X線(波長1.54 A > ニ対1
t6ブラツグ角度2θの主要ピークが少なくとも27.
2゜±0.2°及び9.6゜±0.2°にあるチタニル
フタロシアニン顔料を用いた点に特徴がある。
The present applicant previously proposed Japanese Patent Application Laid-Open No. 17068/1988@Mei 11151 and Japanese Patent Application No. 286537/1986 Mei III (November 1, 1988) as a response to the above-mentioned demand for higher sensitivity.
1) proposed a highly sensitive titanyl-based phthalocyanine photoreceptor. This photoreceptor uses Co-Ka characteristic X-rays (wavelength: 1.54 A > 2:1) as a carrier-generating substance.
The main peak of t6 bragg angle 2θ is at least 27.
It is characterized by the use of titanyl phthalocyanine pigments at angles of 2°±0.2° and 9.6°±0.2°.

即ち、この顔料は、従来公知のチタニル系フタロシアニ
ン顔料とは全く異なった前記xm回折スペクトルを有し
ていて、可視及び近赤外の吸収スペクトルが780n−
〜8B0nlに最大吸収を示す凝集状態を有し、前記レ
ーザー光に対して極めて高感度な特性を発揮しうるちの
である。
That is, this pigment has the above-mentioned xm diffraction spectrum that is completely different from that of conventionally known titanyl-based phthalocyanine pigments, and has a visible and near-infrared absorption spectrum of 780n-
It has an agglomerated state showing maximum absorption at ~8B0nl, and exhibits extremely high sensitivity to the laser beam.

〔発明が解決しようとする課M] 本出願人が先に提案した上記チタニルフタロシアニン顔
料は前記のように優れた感度特性を有し、また、感光体
上への像形成に際し゛〔、画像信号により変調されたレ
ーザー光によりドツト露光して前記感光体上にドツト潜
像を形成し、該lf&のドツト露光部を反転現像してド
ツト状のトナー画像を良好に得ることができる。ところ
が、このようなチタニルフタロシアニン顔料を用いた感
光体の感度特性や電荷保持性は、その分散方法によって
左右されることがあり、分散方法の確立によって安定し
た特性を得ることが望まれている。
[Problem M to be Solved by the Invention] The titanyl phthalocyanine pigment previously proposed by the present applicant has excellent sensitivity characteristics as described above, and also has excellent sensitivity characteristics when forming an image on a photoreceptor. A dot latent image is formed on the photoconductor by dot exposure with a laser beam modulated by a signal, and the dot-exposed area of lf& is reversely developed to obtain a good dot-shaped toner image. However, the sensitivity characteristics and charge retention properties of photoreceptors using such titanyl phthalocyanine pigments may be affected by the dispersion method, and it is desired to obtain stable characteristics by establishing a dispersion method.

他方、通常の電子写真感光体においては、接地されたI
JIWI!mと感光層との間のN魚釣接触は微視的には
均一ではなく、例えば411層側からのキャリア注入が
場所によって異なるために、感光体表面に保持される電
荷分布に、局所的な差異が生じる。これは、現像の後に
、画像欠陥として顕在化し、ポジ型現像方式においては
黒地に白色斑点、ネガ型の反転現像方式においては白地
に黒色斑点となる。特に反転現像方式における黒色斑点
は、地かぶりと同様に、画像品質を著しく損なうもので
ある。この問題は、前記の高感度化された感光体におい
ては特に鋭敏に生じ、前記反転現像方式における黒色斑
点の発生が顕著となる。
On the other hand, in a normal electrophotographic photoreceptor, the grounded I
JIWI! The contact between the photoreceptor and the photoreceptor layer is not microscopically uniform; for example, carrier injection from the 411 layer side differs depending on the location. There will be significant differences. This becomes apparent as an image defect after development, and becomes a white spot on a black background in a positive type development system, and a black spot on a white background in a negative type reversal development system. In particular, black spots in the reversal development system significantly impair image quality, similar to background fog. This problem occurs particularly acutely in the above-mentioned highly sensitive photoreceptor, and the occurrence of black spots in the above-mentioned reversal development method becomes conspicuous.

本発明は上記従来の課題に鑑みなされたもので、その口
開は、特に半導体レーザー等の長波長光に対して高感度
特性を右し、電荷保持性が良好で、さらに、画像欠陥、
特に反転現像時における黒色斑点の少ない電子写真感光
体を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and the aperture has high sensitivity characteristics, especially to long wavelength light such as semiconductor lasers, good charge retention, and furthermore, has the advantage of preventing image defects.
The object of the present invention is to provide an electrophotographic photoreceptor with fewer black spots especially during reversal development.

[N題を解決するための手段] 上記目的を達成するために、本発明は、導電性支持体上
に感光層を有する電子写真感光体において、前記感光層
がCu−にα特性X線(波長1.54A>に対するブラ
ッグ角2θの主要ピークが少なくとも9.6゜±0.2
°及び21.2゜±02゜にあり且つ9.6′″±0.
2°のピーク強度が27.2’″±0,2°のピーク強
度の40%以上であるチタニルフタロシアニン顔料を含
有し、前記感光層はさらにバインダーとしてアクリル樹
脂、ポリエステル樹脂、ポリスチレン樹脂、エチレン−
酢酸ビニル共重合体及び塩化ビニル−酢酸ビニル共瓜合
体から選ばれる少なくとも1種を含有することを特徴と
する。
[Means for Solving Problem N] In order to achieve the above object, the present invention provides an electrophotographic photoreceptor having a photosensitive layer on a conductive support, in which the photosensitive layer is exposed to α characteristic X-rays ( The main peak of the Bragg angle 2θ for a wavelength of 1.54 A> is at least 9.6° ± 0.2
° and 21.2°±02° and 9.6′″±0.
The photosensitive layer contains a titanyl phthalocyanine pigment whose peak intensity at 2° is 40% or more of the peak intensity at 27.2'''±0.2°, and the photosensitive layer further contains acrylic resin, polyester resin, polystyrene resin, ethylene resin, etc. as a binder.
It is characterized by containing at least one member selected from a vinyl acetate copolymer and a vinyl chloride-vinyl acetate copolymer.

本発明に係る前記チタニルフタロシアニン顔料は、前記
した各公報で知られたチタニル系フタロシアニン顔料と
は顔料結晶の凝集状態が異なり、後記の実施例の第3図
〜第5図に示されるような独特のX線回折スペクトルを
右していて、可視及び近赤外の吸収スベク1−ルが78
0nm〜860nmに最大吸収を示す凝集状態を有し、
半導体レーザー光等に対して極めて高感IJ!な特性を
発揮しうるものである。本発明に係る前記チタニルフタ
ロシアニン顔料の基本構造は次の一般式で表される。
The titanyl phthalocyanine pigment according to the present invention is different from the titanyl phthalocyanine pigments known in the above-mentioned publications in the agglomeration state of pigment crystals, and has unique characteristics as shown in FIGS. 3 to 5 of Examples described later. The X-ray diffraction spectrum of the visible and near-infrared absorption spectrum is 78
It has an agglomerated state that exhibits maximum absorption between 0 nm and 860 nm,
Extremely sensitive IJ to semiconductor laser light, etc.! It can exhibit unique characteristics. The basic structure of the titanyl phthalocyanine pigment according to the present invention is represented by the following general formula.

式中、XI 、X2 、X3及び×4はそれぞれ水素原
子、ハロゲン原子、アルキル基又はアルコキシ基を表し
、n、m、l及びkはそれぞれO〜4の整数を表す。
In the formula, XI, X2, X3 and x4 each represent a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group, and n, m, l and k each represent an integer of O to 4.

また、上記のX線回折スペクトルは次の条件で測定した
もの(以下同様)である。
Moreover, the above X-ray diffraction spectrum was measured under the following conditions (the same applies hereinafter).

X線管球    Cu 電圧      40.0  KV 雷電流    100.0  mA スタート角@    6.00  deg。X-ray tube Cu Voltage 40.0 KV Lightning current 100.0 mA Starting angle @ 6.00 deg.

ストップ角度  35.00  deg。Stop angle 35.00 deg.

ステップ角度  0.020 dcg。Step angle: 0.020 dcg.

測定時l1aI0.50  sec。During measurement l1aI0.50 sec.

また、上記のX線回折スペクトルは「320型自記記録
分光光度計」 (日立製作新製)を用いて測定され、反
射壁の回折スペクトルとされる。
Moreover, the above-mentioned X-ray diffraction spectrum is measured using a "320 type self-recording spectrophotometer" (manufactured by Hitachi Seisakusho), and is taken as the diffraction spectrum of the reflecting wall.

本発明に係るチタニルフタロシアニン顔料は前記ブラッ
グ角2θの主要ピークが9,6゜±0.2゜及び27.
2゜±0.2°にあるが、これらの特徴的なピークの他
に、11.7’″± 0.2°、15.0”± 0.2
′″23.5”±0.2°及び24.1゜±0.2°に
もピークを有している。
The titanyl phthalocyanine pigment according to the present invention has the main peaks of the Bragg angle 2θ of 9.6°±0.2° and 27.0°.
2° ± 0.2°, but in addition to these characteristic peaks, 11.7'" ± 0.2°, 15.0" ± 0.2
It also has peaks at '23.5'±0.2° and 24.1°±0.2°.

さらに本発明に係るチタニルフタロシアニン顔料は、前
記ブラッグ角2θの9,6゛±0.2°のピーク強度が
27.2゜±0.2°のピーク強度の40%以上のもの
であり、感度、帯電性等の点から特に好ましい。
Furthermore, the titanyl phthalocyanine pigment according to the present invention has a peak intensity at 9.6° ± 0.2° of the Bragg angle 2θ that is 40% or more of the peak intensity at 27.2° ± 0.2°, and has sensitivity. , is particularly preferable from the viewpoint of charging properties and the like.

本発明に係る前記チタニルフタロシアニンの製造方法を
次に説明する。例えば、1,3−ジイミノイソインドリ
ンとスルホランを混合し、これにチタニウムテトラプロ
ポキシドを加え、窒素雰囲気下に反応させる。反応温度
は80℃〜300℃で、特に100℃〜260℃が好ま
しい。反応終了後、放冷した後析出物を濾取し、チタニ
ルフタロシアニンを得ることができる。次にこれを溶媒
処理することによって、第3図〜第5図に示す目的の結
晶型のチタニルフタロシアニンを得ることができるが、
処理に用いられる装置としては一般的な攪拌装置の他に
、ホモミキサ、ディスパーサ、アジター、或いはボール
ミル、サンドミル、アトライタ等を用いることができる
The method for producing the titanyl phthalocyanine according to the present invention will be explained next. For example, 1,3-diiminoisoindoline and sulfolane are mixed, titanium tetrapropoxide is added thereto, and the mixture is reacted under a nitrogen atmosphere. The reaction temperature is 80°C to 300°C, particularly preferably 100°C to 260°C. After the reaction is completed, the precipitate is collected by filtration after being left to cool to obtain titanyl phthalocyanine. Next, by treating this with a solvent, the desired crystalline titanyl phthalocyanine shown in FIGS. 3 to 5 can be obtained.
As the apparatus used for the treatment, in addition to a general stirring apparatus, a homomixer, a disperser, an agitator, a ball mill, a sand mill, an attritor, etc. can be used.

本発明では、キャリア発生物質として上記のチタニルフ
タロシアニンの他に、本発明の効果を損わない範囲で他
の主19フ発生物質をOf用してもよい。そのようなり
1用可能なキャリア発生物質としては、本発明のチタニ
ルフタロシアニンとは結晶型において異なる、例えばα
型、β型、α、β混台型台型モルファス型等のチタニル
フタロシアニンをはじめ、他のフタロシアニン顔料、ア
ゾ顔料、アントラキノン顔料、ペリレン顔料、多環牛ノ
ン顔料、スクェアリウム顔料等が挙げられる。
In the present invention, in addition to the above-mentioned titanyl phthalocyanine, other carrier-generating substances may be used as carrier-generating substances to the extent that the effects of the present invention are not impaired. Examples of carrier generating substances that can be used in this way include those that differ in crystal form from the titanyl phthalocyanine of the present invention, such as α
In addition to titanyl phthalocyanine of type, β type, α, β mixed table type, trapezoid type, and amorphous type, other phthalocyanine pigments, azo pigments, anthraquinone pigments, perylene pigments, polycyclic bovine pigments, squareium pigments, etc.

本発明の感光体を作製するには、例えば、溶媒にバイン
ダー樹脂を溶解した溶液中に本発明に係る前記チタニル
フタロシアニン顔料を混合分散し、かつこれに後述する
キャリア輸送物質を溶解してなる塗布液を、必要に応じ
て予め下引層を設けた導電性支持体上に例えばデイツプ
コーティング、スプレーコーティング、スパイラルコー
ティング等の方法により塗布加工して、第1図の単層構
成の感光体を得る。なお、図中の1は導電性支持体、2
は単層構成の感光層、3は下引層である。
To produce the photoreceptor of the present invention, for example, the titanyl phthalocyanine pigment of the present invention is mixed and dispersed in a solution of a binder resin dissolved in a solvent, and a carrier transporting substance described below is dissolved therein. The liquid is coated onto a conductive support on which a subbing layer has been provided in advance, if necessary, by a method such as dip coating, spray coating, or spiral coating to form a photoreceptor having a single layer structure as shown in FIG. obtain. In addition, 1 in the figure is a conductive support, 2
3 is a photosensitive layer having a single layer structure, and 3 is an undercoat layer.

しかしながら、高感度特性及び高耐久性の感光体を得る
上から、機能分離型の第2図の2層構成の感光体とする
のが好ましい。この場合、バインダー樹脂を溶解した溶
液中に前記顔料を混合分散してなる塗布液を、必要に応
じて前記下引層をイj゛する支持体1上に塗布してキャ
リア発生1iW5を形成した後、該キャリア発生層上に
キャリア輸送物質を含む塗布液を塗ず11加工してキャ
リア輸送層6を積層し、2層構成の感光層4を形成する
。以下、2層構成の感光体を中心として説明する。
However, from the viewpoint of obtaining a photoreceptor with high sensitivity and high durability, it is preferable to use a functionally separated photoreceptor having a two-layer structure as shown in FIG. 2. In this case, a coating solution prepared by mixing and dispersing the pigment in a solution containing a binder resin was coated on the support 1 on which the undercoat layer was applied, if necessary, to form carrier generation 1iW5. Thereafter, a coating solution containing a carrier transporting substance is coated on the carrier generating layer and processed 11 to form a carrier transporting layer 6, thereby forming a photosensitive layer 4 having a two-layer structure. The following description focuses on a photoreceptor having a two-layer structure.

前記の2層構成の感光層4のキ1アリア発生FrJ5を
形成するには、適当な溶剤又は分散媒中にバインダー樹
脂を混合溶解し、得られた溶液中に前記チタニルフタロ
シアニン顔料を混合し、ホモミキサー、ボールミル又は
超合波分子li器等により分散して、前記顔料の微細粒
子を含む塗I5液を作成し、前記導電性支持体1の表面
に設置ノた下引層3上に塗布加工される。
In order to form the photosensitive layer 4 having a two-layer structure, the chia-aryl-generating FrJ5 is prepared by mixing and dissolving a binder resin in a suitable solvent or dispersion medium, and mixing the titanyl phthalocyanine pigment into the resulting solution. A coating liquid I5 containing fine particles of the pigment is prepared by dispersing it using a homo mixer, a ball mill, a super-combined molecular lithium-ionizer, etc., and is coated on the subbing layer 3 placed on the surface of the conductive support 1. Processed.

前記2層構成の感光体におけるキャリア発生層を形成す
るに際して、分散含イiされる前記チタニルフタロシア
ニン顔料の分数液中での、及び層形成後の結晶性及び凝
集性の安定化にとって、シクロヘキサノンに可溶な樹脂
がバインダー樹脂として有利であることが判明した。
When forming the carrier generation layer in the two-layered photoreceptor, cyclohexanone is used to stabilize the crystallinity and cohesion of the titanyl phthalocyanine pigment in the fractional solution and after layer formation. It has been found that soluble resins are advantageous as binder resins.

本発明ではシクロヘキサノンに可溶な樹脂として、具体
的には、アクリル樹脂、ポリエステル樹脂、ポリスチレ
ン樹脂、エチレン−酢酸ビニル共重合体及び塩化ビニル
−酢酸ビニル共重合体から選ばれる少なくとも1種が用
いられる。これらの樹脂は市販品として容易に入手する
ことができる。
In the present invention, as the cyclohexanone-soluble resin, specifically, at least one selected from acrylic resin, polyester resin, polystyrene resin, ethylene-vinyl acetate copolymer, and vinyl chloride-vinyl acetate copolymer is used. . These resins are easily available as commercial products.

前記キャリア発生層5に用いられるバインダー樹脂は、
単独或いは2F1以上の混合物として用いることができ
る。またバインダー樹脂に対するキャリア発生物質の割
合は好ましくは10〜600重厘%、更に好ましくは5
0〜4oon m%とされる。
The binder resin used for the carrier generation layer 5 is:
It can be used alone or as a mixture of 2F1 or more. The ratio of the carrier generating substance to the binder resin is preferably 10 to 600% by weight, more preferably 5% by weight.
It is assumed to be 0-4oon m%.

また、キャリア発生層の形成に使用される溶剤或は分散
媒としてはシクロヘキサノンを用いるのが最も好ましい
が必要に応じて他のm IRe Ur用してもよい。併
用可能な溶媒としては、n−ブチルアミン、エチレンジ
アミン、N、N−ジメチルボルムアミド、アセトン、メ
チルエチルヶ]・ン、テトラヒドロフラン、ジオ:tU
ン、酢酸エチル、酢酸ブチル、メチルセルソルブ、エチ
ルセルソルブ、エチレングリコールジメチルエーテル、
トルエン、キシレン、アセ]−フェノン、クロロホルム
、ジクロロメタン、ジクロロエタン、トリクロロエタン
、メタノール、エタノール、プロパノール、ブタノール
等が挙げられる。
Further, as the solvent or dispersion medium used for forming the carrier generation layer, it is most preferable to use cyclohexanone, but other m IRe Ur may be used as necessary. Solvents that can be used in combination include n-butylamine, ethylenediamine, N,N-dimethylbormamide, acetone, methylethyl, tetrahydrofuran, and tU.
ethyl acetate, butyl acetate, methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether,
Examples include toluene, xylene, ace]-phenone, chloroform, dichloromethane, dichloroethane, trichloroethane, methanol, ethanol, propanol, butanol, and the like.

このようにして形成されるキャリア発生層5の厚さは0
.01〜20μmであることが好ましいが、更に好まし
くは0.05〜5μit”ある。
The thickness of the carrier generation layer 5 formed in this way is 0.
.. It is preferably 0.01 to 20 μm, more preferably 0.05 to 5 μm.

上記キャリア発生物質を分散せしめてキャリア発生層5
を形成する場合においては、当該キャリア発生物質は2
μm以下、好ましくは1μm以下の平均粒径の粉粒体と
されるのが好ましい。即ち、粒径が余り大きいと、層中
への分散が悪くなるとともに、粒子が表面に一部突出し
て表面の平滑性が悪くなり、場合によっては粒子の突出
部分で放電が生じたり、あるいはそこにトナー粒子が付
着してトナーフィルミング現象が生じ易い。
The carrier generating layer 5 is made by dispersing the carrier generating substance.
, the carrier-generating substance is 2
It is preferable that the particles have an average particle diameter of 1 μm or less, preferably 1 μm or less. In other words, if the particle size is too large, dispersion in the layer will be poor, and some of the particles will protrude from the surface, resulting in poor surface smoothness. Toner particles tend to adhere to the toner, causing a toner filming phenomenon.

次に、前記キャリア発生層5上にキャリア輸送116を
設けて感光体が作製されるが、前記キャリア輸送層6を
形成するための塗布液に用いられる溶剤としては、後述
するバインダー樹脂及びキヤリア輸送層6等を溶解する
が下層のキャリア発生層5を溶解又は浸食しないものが
選択される。
Next, a photoreceptor is manufactured by providing a carrier transport layer 116 on the carrier generation layer 5. As for the solvent used in the coating liquid for forming the carrier transport layer 6, the binder resin and the carrier transport layer described below are used as solvents. A material is selected that dissolves the layer 6 etc. but does not dissolve or erode the carrier generation layer 5 below.

前記キャリア輸送物質としては、種々のものが使用でき
るが、代表的なものとしては例えば、Aキサゾール、オ
キサジアゾール、チタゾール、チアジアゾール、イミダ
ゾール等に代表される含窒素複素環核及びその縮合環核
を有する化合物、ボリアリールアルカン系の化合物、ピ
ラゾリン系化合物、ヒドラゾン系化合物、トリアリール
アミン系化合物、スチリル系化合物、スチリルトリフェ
ニルアミン系化合物、β−フェニルススチリルトリフエ
ニルアミン系化合物ブタジェン系化合物、ヘキサトリエ
ン系化合物、カルバゾール系化合物、縮合多環系化合物
等が挙げられる。
Various carrier transport substances can be used, but typical examples include nitrogen-containing heterocyclic nuclei and their fused ring nuclei represented by A-xazole, oxadiazole, titazole, thiadiazole, imidazole, etc. , polyarylalkane compounds, pyrazoline compounds, hydrazone compounds, triarylamine compounds, styryl compounds, styryltriphenylamine compounds, β-phenylstyryltriphenylamine compounds, butadiene compounds, Examples include hexatriene compounds, carbazole compounds, and fused polycyclic compounds.

これらのキャリア輸送物質の具体例としては、例えば特
開昭 61− + 0735 G 5′−iに記載のキャリア
輸送物質を挙げることができるが、 特に代表的なしの −1 −2 −3 −4 −7 T−9 T−14 −15 −17 −18 −19 前記キャリア輸送物質と共にキトリアfa5ysMを形
成するためのバインダー樹脂としては、任意のものを選
ぶことができるが、疎水性でかつフィルム形成能を有す
るものとされ、以下のものを挙げることができる。
Specific examples of these carrier transport substances include carrier transport substances described in JP-A-61-+0735 G 5'-i, but particularly representative examples include No-1-2-3-4. -7 T-9 T-14 -15 -17 -18 -19 Any binder resin can be selected for forming chitria fa5ysM together with the carrier transporting substance, but it must be hydrophobic and have a film-forming ability. The following can be mentioned.

ポリカーボネート ポリカーボネート2樹脂アクリル樹
脂   メタクリル樹脂 ポリ塩化ごニル  ポリ塩化ごニリデンポリスチレン 
スチレン−ブタジェン共重合体ポリ酢酸ビニル  ポリ
ビニルカルバゾールスチレン−アルキッド樹脂 シリコ
ーン樹脂シリコーン−アルキッド樹脂 ポリエステルフ
ェノール樹脂  ポリウレタン エポキシ樹脂 塩化ビニリデン−アクリロニトリル共重合体塩化ビニル
−酢酸ビニル共項合体 塩化ビニル−酢酸ビニル−無水マレイン酸共重合体 キャリア輸送層の形成に使用される溶剤或は分l!媒と
しては広く任意のものを用いることができる。例えば、
n−ブチルアミン、エチレンジアミン、N、N−ジメチ
ルホルムアミド、アセトン、メチルエチルケトン、シク
ロヘキサノン、テトラヒドロフラン、ジオキサン、酢酸
エチル、酢酸ブチル、メチルセルソルブ、エチルセルソ
ルブ、エチレングリコールジメチルエーテル、トルエン
、キシレン、アセトフェノン、クロロホルム、ジクロロ
メタン、ジクロロエタン、トリクロロエタン、メタノー
ル、エタノール、プロパノール、ブタノール等が挙げら
れる。
Polycarbonate Polycarbonate 2 Resin Acrylic Resin Methacrylic Resin Polynylidene Chloride Polystyrene
Styrene-butadiene copolymer polyvinyl acetate polyvinylcarbazole styrene-alkyd resin silicone resin silicone-alkyd resin polyester phenolic resin polyurethane epoxy resin vinylidene chloride-acrylonitrile copolymer vinyl chloride-vinyl acetate copolymer vinyl chloride-vinyl acetate-maleic anhydride Solvent or component used to form the acid copolymer carrier transport layer! A wide variety of media can be used. for example,
n-Butylamine, ethylenediamine, N,N-dimethylformamide, acetone, methyl ethyl ketone, cyclohexanone, tetrahydrofuran, dioxane, ethyl acetate, butyl acetate, methyl cellosolve, ethyl cellosolve, ethylene glycol dimethyl ether, toluene, xylene, acetophenone, chloroform, dichloromethane , dichloroethane, trichloroethane, methanol, ethanol, propanol, butanol and the like.

バインダー樹脂に対するキャリア輸送物質の割合は好ま
しくは10〜500重量%とされ、また、キャリア輸送
層の厚みは好ましくは1〜100μ−1更に好ましくは
5〜30μ層とされる。
The ratio of the carrier transport substance to the binder resin is preferably 10 to 500% by weight, and the thickness of the carrier transport layer is preferably 1 to 100 μ-1, more preferably 5 to 30 μ.

本発明の感光体の感光層には感度の向上や残留電位の減
少、或いは反復使用時の疲労の低減を目的として、電子
受容性物質を含有させることができる。このような電子
受容性物質としては例えば、無水コハク酸、無水マレイ
ン酸、ジブロム無水コハク酸、無水フタル酸、テトラク
ロル無水フタル酸、テトラブロム無水フタル酸、3−ニ
トロ無水7 タルW、4−二1・ロ無水フタル酸、無水
ピロメリット酸、無水メリット酸、テt−ラシアノエチ
レン、テトラシアノキノジメタン、0−ジニトロベンゼ
ン、諷−ジニトロベンゼン、1,3.5−トリニトロベ
ンゼン、p−ニトロベンゾニトリル、ビクリルクロライ
ド、キノンクロルイミド、クロラニル、ブロマニル、ジ
クロルジシアノ−p−ベンゾキノン、アントラキノン、
ジニトロアントラキノン、9−フルオレニリデンマロノ
ジニトリル、ポリニトロ−9−フルオレニリデンマロノ
ジニトリル、ピクリン酸、0−二1へ口安息香酸、p−
二トロ安息香酸、3.5−ジニトロ安息香酸、ペンタフ
ルオロ安息香酸、5−二1へロサリチル酸、3゜5−ジ
ニトロサリチル酸、フタル酸、メリット酸、その他の電
子親和力の大きい化合物を挙げることができる。電子受
容性物質の添加割合はキル9フ発生物質の暖間100に
対して0.01〜200が望ましく、更には0.1〜1
0Gが好ましい。
The photosensitive layer of the photoreceptor of the present invention can contain an electron-accepting substance for the purpose of improving sensitivity, reducing residual potential, or reducing fatigue during repeated use. Examples of such electron-accepting substances include succinic anhydride, maleic anhydride, dibromo succinic anhydride, phthalic anhydride, tetrachlorophthalic anhydride, tetrabromo phthalic anhydride, 3-nitroanhydride 7 tal W, 4-21 - Phthalic anhydride, pyromellitic anhydride, mellitic anhydride, tetracyanoethylene, tetracyanoquinodimethane, 0-dinitrobenzene, dinitrobenzene, 1,3.5-trinitrobenzene, p-nitro Benzonitrile, vicryl chloride, quinone chlorimide, chloranil, bromanil, dichlorodicyano-p-benzoquinone, anthraquinone,
Dinitroanthraquinone, 9-fluorenylidene malonodinitrile, polynitro-9-fluorenylidene malonodinitrile, picric acid, 0-21 hebenzoic acid, p-
Nitrobenzoic acid, 3.5-dinitrobenzoic acid, pentafluorobenzoic acid, 5-21-herosalicylic acid, 3゜5-dinitrosalicylic acid, phthalic acid, mellitic acid, and other compounds with high electron affinity may be mentioned. can. The addition ratio of the electron-accepting substance is preferably 0.01 to 200, more preferably 0.1 to 1.
0G is preferred.

また、上記感光層中には、保存性、耐久性、嗣環境依存
性を向上させる目的で酸化防止剤や光安定剤等の劣化防
止剤を含有させることができる。
Further, the photosensitive layer may contain deterioration inhibitors such as antioxidants and light stabilizers for the purpose of improving storage stability, durability, and environmental dependence.

なお、m1図に示した単m構成の感光体においては、感
光層2に用いるキャリア発生物質は本発明に係るチタニ
ルフタロシアニン等であり、キャリア輸送物質は上述し
たものから選択してよい。
In the photoreceptor having a single meter structure shown in the m1 diagram, the carrier generating substance used in the photosensitive layer 2 is titanyl phthalocyanine according to the present invention, etc., and the carrier transporting substance may be selected from those mentioned above.

また、感光層2のバインダー樹脂は前記の本発明に係る
バインダー樹脂を少なくとも主成分として使用する。そ
の他、感光層2への添加物質も上述したものと同様であ
ってよい。
Further, the binder resin of the photosensitive layer 2 uses the above-mentioned binder resin according to the present invention as at least the main component. Other substances added to the photosensitive layer 2 may also be the same as those mentioned above.

前記導電性支持体としては、金属板、金属ドラム等が用
いられる他、導電性ポリマーや酸化インジウム等の導電
性化合物、もしくはアルミニウム、パラジウム等の金属
の薄層を塗布、蒸着、ラミネート等の手段により紙やプ
ラスチックフィルムなどの上に設けてなるものが用いら
れる。
As the conductive support, a metal plate, a metal drum, etc. are used, and a thin layer of a conductive polymer, a conductive compound such as indium oxide, or a metal such as aluminum or palladium is coated, vapor-deposited, laminated, etc. Depending on the situation, a material provided on paper, plastic film, etc. is used.

本発明の感光体の構成は以上に例示したが、以下の実施
例からも明らかなように、レーザー光を露光手段とする
感光体として高感度特性を有し、且つ、反転現像時に黒
色斑点などの欠点を生ずることのない優れた特性を有す
る。
The structure of the photoreceptor of the present invention has been exemplified above, but as is clear from the following examples, it has high sensitivity characteristics as a photoreceptor that uses laser light as an exposure means, and also has black spots etc. during reversal development. It has excellent properties without any disadvantages.

[実施例] 以下、本発明を実施例によって更に詳細に説明する。[Example] Hereinafter, the present invention will be explained in more detail with reference to Examples.

まず、各種のチタニルフタロシアニンllRnの合成例
を述べる。
First, examples of synthesis of various titanyl phthalocyanines llRn will be described.

(合成例1) 1.3−ジイミノイソインドリン29.2Qとスルホラ
ン2001ftを混合し、チタニウムテトライソブ0ボ
キシド17.0(lを加え、窒素雰囲気下に140℃で
2時間反応させた。放冷した後析出物を濾取し、クロロ
ホルムで洗浄、2%の塩酸水溶液で洗浄、水洗、メタノ
ール洗浄して、乾燥の後25. sg(88,5%)の
チタニルフタロシアニンを得た。
(Synthesis Example 1) 29.2 Q of 1,3-diiminoisoindoline and 2001 ft of sulfolane were mixed, 17.0 (l) of titanium tetraisobutoxide was added, and the mixture was reacted at 140° C. for 2 hours under a nitrogen atmosphere. After cooling, the precipitate was collected by filtration, washed with chloroform, 2% aqueous hydrochloric acid, water, and methanol, and after drying, 25.sg (88.5%) of titanyl phthalocyanine was obtained.

生成物は20倍量の濃硫酸に溶解し、10000倍量に
あけて析出させて、濾取した後にウェットケーキを1,
2−ジクロルエタンにて50℃で10時間加熱して第3
図に示すx16回折スペクトルをもつ結晶型とした。こ
の結晶はブラッグ角2θの9.6°のピーク強度が27
.2’のそれの102%であった。
The product was dissolved in 20 times the volume of concentrated sulfuric acid, poured into 10,000 times the volume to precipitate it, and after filtering, the wet cake was dissolved in 1,000 times the volume.
The third mixture was heated in 2-dichloroethane at 50°C for 10 hours.
A crystal form having the x16 diffraction spectrum shown in the figure was obtained. This crystal has a peak intensity of 27° at a Bragg angle of 2θ of 9.6°.
.. It was 102% of that of 2'.

(合成例2) 1.3−ジイミノイソインドリン29.2(lとスルホ
ラン200112を混合し、チタニウムテトライソプロ
ボキジド17. ogを加え、窒素雰囲気下に140℃
で2時間反応させた。放冷した後析出物を濾取し、クロ
ロホルムで洗浄、2%の塩酸水溶液で洗浄、水洗、メタ
ノール洗浄して、乾燥の後25. sg< 88.5%
)のチタニルフタロシアニンを得た。
(Synthesis Example 2) Mix 29.2 (l) of 1,3-diiminoisoindoline and sulfolane 200112, add 17.0 g of titanium tetraisoproboxide, and heat at 140°C under a nitrogen atmosphere.
The mixture was allowed to react for 2 hours. After cooling, the precipitate was collected by filtration, washed with chloroform, washed with a 2% aqueous hydrochloric acid solution, washed with water, washed with methanol, and dried. 25. sg<88.5%
) titanyl phthalocyanine was obtained.

生成物は20(8ffi+7)I!1itl[:溶解り
、、100倍1の水にあけて析出させて、濾取した後に
ウェットケーキを1,2−ジクロルエタンにて室温で1
時間撹拌して第4図に示すxsit回折スペクトルをも
つ結晶型とした。この結晶はブラッグ角2θの9.6°
のピーク強度が27.2°のそれの75%であった。
The product is 20(8ffi+7)I! 1 itl [: dissolved, poured into 100 times 1 water to precipitate, collected by filtration, and diluted the wet cake with 1,2-dichloroethane at room temperature.
After stirring for a period of time, a crystal form having an xsit diffraction spectrum shown in FIG. 4 was formed. This crystal has a Bragg angle of 2θ of 9.6°
The peak intensity at 27.2° was 75% of that at 27.2°.

(合成例3) フタロジニトリル25.6(Jとα−クロルナフタレン
1501J2の混合物中に窒素気流下で6.5m12の
四塩化チタンを滴下し、200〜220℃の温度で5時
間反応させた。析出物を濾取し、α−クロルナフタレン
で洗浄した後、クロロホルムで洗浄し、続いてメタノー
ルで洗浄した。次いでアンモニア水中で還流して加水分
解を完結させた後、水洗、メタノール洗浄し乾燥の後ゲ
ータニルフタロシアニン21.8(1(7!i、6%)
を得た。
(Synthesis Example 3) 6.5 ml of titanium tetrachloride was added dropwise into a mixture of phthalodinitrile 25.6 (J) and α-chlornaphthalene 1501J2 under a nitrogen stream, and the mixture was reacted at a temperature of 200 to 220°C for 5 hours. The precipitate was collected by filtration, washed with α-chlornaphthalene, then washed with chloroform, and then washed with methanol.Then, the precipitate was refluxed in aqueous ammonia to complete hydrolysis, and then washed with water, methanol, and dried. After getanylphthalocyanine 21.8 (1 (7!i, 6%)
I got it.

生成物は1(Hllffiのa 硝酸に溶解し、100
倍色の水にあけて析出させて、濾取した後にウェットケ
ーキを1,2−ジクロルエタンにて室温で1時間撹拌し
て第5図に示すX線回折スペクトルをもつ結晶型とした
。この結晶はブラッグ角2θの9.6°のピーク強度が
27.2°のそれの45%であった。
The product is 1 (Hllffi's a) dissolved in nitric acid, 100
After pouring into double-colored water to precipitate and collecting by filtration, the wet cake was stirred in 1,2-dichloroethane at room temperature for 1 hour to obtain a crystal form having the X-ray diffraction spectrum shown in FIG. In this crystal, the peak intensity at a Bragg angle of 2θ of 9.6° was 45% of that at 27.2°.

(比較合成例1) フタロジニトリル25.8gとα−クロルナフタレン1
50wj2の混合物中に窒素気流下で6.5112の四
塩化チタンを滴下し、200〜220℃の温度で5時間
反応させた。析出物を濾取し、α−クロルナフタレンで
洗浄した後、クロロホルムで洗浄し、続いてメタノール
で洗浄した。次いでアンモニア水中で還流して加水分解
を完結させた後、水洗、メタノール洗浄し乾燥の後チタ
ニルフタロシアニン21.8Q  (75,6%)を得
た。
(Comparative synthesis example 1) 25.8 g of phthalodinitrile and 1 α-chlornaphthalene
6.5112 titanium tetrachloride was added dropwise into the 50wj2 mixture under a nitrogen stream, and the mixture was reacted at a temperature of 200 to 220°C for 5 hours. The precipitate was collected by filtration, washed with α-chlornaphthalene, then with chloroform, and then with methanol. The mixture was then refluxed in aqueous ammonia to complete hydrolysis, washed with water, washed with methanol, and dried to obtain titanyl phthalocyanine 21.8Q (75.6%).

生成物は10倍mの濃硫酸に溶解し、100倍匹の水に
あけて析出させて、濾取した後にウェットケーキを0−
ジクロルベンゼンにて室温で1時間撹拌して第6図に示
すXta回折スペクトルをもつ結晶型とした。この結晶
はブラッグ角2θの9.6°のピーク強度が27.2°
のそれの35%であった。
The product was dissolved in 10 times the volume of concentrated sulfuric acid, poured into 100 times the volume of water to precipitate it, and after filtering, the wet cake was dissolved in 0-
The mixture was stirred in dichlorobenzene at room temperature for 1 hour to obtain a crystal form having the Xta diffraction spectrum shown in FIG. This crystal has a peak intensity of 27.2° at a Bragg angle of 2θ of 9.6°.
It was 35% of that of .

(比較合成例2) 合成例1のウェットケーキを乾燥後、α−クロOナフタ
レンを用いて、加熱撹拌することによって、第7図に示
すようなβ型のチタニルフタロシアニンを得た。
(Comparative Synthesis Example 2) After drying the wet cake of Synthesis Example 1, β-type titanyl phthalocyanine as shown in FIG. 7 was obtained by heating and stirring using α-chloroO naphthalene.

(実施例1) 共重合ポリアミド「ラッカマイト50◇3」 (大日本
インキ社製)3部(部はllfll部を示す二以下同じ
)をメタノール100部に加熱溶解し、0.6μ量フイ
ルタで濾過した後、8!透塗布法によって、アルミニウ
ムドラム上に塗布し、膜厚0.5μ躍の下引層を形成し
た。
(Example 1) Copolymerized polyamide "Laccamite 50 ◇ 3" (manufactured by Dainippon Ink Co., Ltd.) 3 parts (where "part" means "llfll" is the same below) were heated and dissolved in 100 parts of methanol, and filtered with a 0.6μ filter. After that, 8! It was coated on an aluminum drum by a transparent coating method to form a subbing layer with a thickness of 0.5 μm.

一方、合成例1において(qられた第3図のX 12回
折パターンを石するチタニルフタロシアニン3部、バイ
ンダ樹脂としてポリメチルメタクリル酸ンドミルを用い
て分散した液を、先の下引層の上に、浸透塗布法によっ
て塗7Gして、膜厚0.2μmのキャリア発生層を形成
した。次いで、キtzリア輸送物質T−1の188、ポ
リカーボネート樹脂「ニーピロンZ 200J (三菱
瓦斯化学社製)1.5部、微量のシリコーンオイルrK
F−54J  (信越化学社製〉を、1,2−ジクロロ
エタン10部に溶解した液を用いて浸透塗布し乾燥の後
、膜厚25μ−のキャリア輸送層を形成した。このよう
にして得られた感光体を試料1とする。
On the other hand, in Synthesis Example 1, a dispersion of 3 parts of titanyl phthalocyanine, which shows the X12 diffraction pattern in Figure 3, and polymethyl methacrylic acid domil as a binder resin, was applied onto the previous subbing layer. 7G was applied by a penetrating coating method to form a carrier generation layer with a film thickness of 0.2 μm.Next, 188 of Kitz rear transport material T-1 and polycarbonate resin “Nipilon Z 200J (manufactured by Mitsubishi Gas Chemical Co., Ltd.) 1 were applied. .5 parts, trace amount of silicone oil rK
F-54J (manufactured by Shin-Etsu Chemical Co., Ltd.) was applied by penetration using a solution dissolved in 10 parts of 1,2-dichloroethane, and after drying, a carrier transport layer with a thickness of 25 μm was formed. Sample 1 is the photoreceptor.

(実施例2〜7) キャリア発生物質の種類及びキャリア発生層の樹脂の種
類を表−2に示すものとした他は実施例表−2から、本
発明の感光体は、比較感光体に比して高感度特性を有し
、かつ画像欠陥が少なく、反転現像時の黒斑点が少ない
ことがわかる。しかも分散安定性が良好なため、1ケ月
後の特性が変化しないことがわかる。
(Examples 2 to 7) From Table 2 of Examples, except that the type of carrier generating substance and the type of resin of the carrier generating layer were as shown in Table 2, the photoreceptors of the present invention were compared with the comparative photoreceptors. It can be seen that the film has high sensitivity characteristics, fewer image defects, and fewer black spots during reversal development. Moreover, since the dispersion stability is good, it can be seen that the characteristics do not change after one month.

[発明の効果] 以上詳細に説明したように、本発明の感光体によれば、
反転現像時の黒斑点等の発生が少なく、′Is感度、高
画質の画像が安定して得られる。
[Effects of the Invention] As explained in detail above, according to the photoreceptor of the present invention,
There is little occurrence of black spots during reversal development, and images with high sensitivity and high quality can be stably obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明の感光体の層構成を
例示する断面図、第3図〜第5図はそれぞれ本発明の実
施例のチタニルフタロシアニン顔料のX線回折スペクト
ル図、第6図及び第7図はそれぞれ比較例のチタニルフ
タロシアニン顔料のXPj回折スペクトル図である。 1・・・導電性支持体 2・・・単層構成の感光層 3・・・下引層 4・・・21!J構成の感光層 5・・・キャリア発生層 6・・・キャリア輸送層
1 and 2 are cross-sectional views illustrating the layer structure of the photoreceptor of the present invention, respectively. 7 and 7 are XPj diffraction spectra of titanyl phthalocyanine pigments of comparative examples, respectively. 1... Conductive support 2... Single-layer photosensitive layer 3... Subbing layer 4... 21! J-configuration photosensitive layer 5...carrier generation layer 6...carrier transport layer

Claims (3)

【特許請求の範囲】[Claims] (1)導電性支持体上に感光層を有する電子写真感光体
において、前記感光層がCu−Kα特性X線(波長1.
54Å)に対するブラッグ角2θの主要ピークが少なく
とも9.6゜±0.2゜及び27.2゜±0.2゜にあ
り且つ9.6゜±0.2゜のピーク強度が27.2゜±
0.2゜のピーク強度の40%以上であるチタニルフタ
ロシアニン顔料を含有し、前記感光層はさらにバインダ
ーとしてアクリル樹脂、ポリエステル樹脂、ポリスチレ
ン樹脂、エチレン−酢酸ビニル共重合体及び塩化ビニル
−酢酸ビニル共重合体から選ばれる少なくとも1種を含
有することを特徴とする電子写真感光体。
(1) In an electrophotographic photoreceptor having a photosensitive layer on a conductive support, the photosensitive layer is exposed to Cu-Kα characteristic X-rays (wavelength 1.
54 Å), the main peaks of the Bragg angle 2θ are at least 9.6° ± 0.2° and 27.2° ± 0.2°, and the peak intensity at 9.6° ± 0.2° is 27.2° ±
The photosensitive layer contains a titanyl phthalocyanine pigment having a peak intensity of 40% or more at 0.2°, and the photosensitive layer further contains an acrylic resin, a polyester resin, a polystyrene resin, an ethylene-vinyl acetate copolymer, and a vinyl chloride-vinyl acetate copolymer as a binder. An electrophotographic photoreceptor comprising at least one selected from polymers.
(2)前記感光層は、前記バインダーをシクロヘキサノ
ンにて溶解し、これに前記チタニルフタロシアニン顔料
を分散させた分散液を用いて作製されたものであること
を特徴とする請求項1記載の電子写真感光体。
(2) The photosensitive layer is produced using a dispersion in which the binder is dissolved in cyclohexanone and the titanyl phthalocyanine pigment is dispersed therein. Photoreceptor.
(3)前記感光層がキャリア発生層及びキャリア輸送層
がこの順に積層されてなり、該キャリア発生層が前記チ
タニルフタロシアニン顔料及びバインダーを含有する請
求項1又は2記載の電子写真感光体。
(3) The electrophotographic photoreceptor according to claim 1 or 2, wherein the photosensitive layer is formed by laminating a carrier generation layer and a carrier transport layer in this order, and the carrier generation layer contains the titanyl phthalocyanine pigment and a binder.
JP16859889A 1989-06-30 1989-06-30 Electrophotographic sensitive body Pending JPH0333862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16859889A JPH0333862A (en) 1989-06-30 1989-06-30 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16859889A JPH0333862A (en) 1989-06-30 1989-06-30 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0333862A true JPH0333862A (en) 1991-02-14

Family

ID=15871024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16859889A Pending JPH0333862A (en) 1989-06-30 1989-06-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0333862A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414053A (en) * 1990-05-07 1992-01-20 Ricoh Co Ltd Manufacture of electrophotographic sensitive body
FR2757861A1 (en) * 1996-12-26 1998-07-03 Sharp Kk Crystalline titanyl phthalocyanine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0414053A (en) * 1990-05-07 1992-01-20 Ricoh Co Ltd Manufacture of electrophotographic sensitive body
FR2757861A1 (en) * 1996-12-26 1998-07-03 Sharp Kk Crystalline titanyl phthalocyanine
US5972551A (en) * 1996-12-26 1999-10-26 Sharp Kabushiki Kaisha Crystalline titanyl phthalocyanines and use thereof

Similar Documents

Publication Publication Date Title
JP3166283B2 (en) Method for producing novel crystals of hydroxygallium phthalocyanine
JPH0797221B2 (en) Image forming method
JP2657836B2 (en) Electrophotographic photoreceptor
JP2813812B2 (en) Electrophotographic photoreceptor and method of manufacturing the same
US5338636A (en) Dichlorotin phthalocyanine crystal electrophotographic photoreceptor using the same, and coating composition for electrophotographic photoreceptor
US6268096B1 (en) Titanyl phthalocyanine crystal and electrophotographic photoreceptor using the same
US5643703A (en) Hydroxygallium phthalocyanine crystal, process for preparing same, and electrophotographic photoreceptor comprising same
JP2700859B2 (en) Photoconductor
JP2000313819A (en) Phthalocyanine composition, its production and electrophotographic photoreceptor prepared by using the same
JP2922219B2 (en) Electrophotographic photoreceptor
JP2976313B2 (en) Electrophotographic photoreceptor
JP2002129058A (en) Phthalocyanine composition, its production method and sensitive material for electrophotographic photoreceptor using the same
JP2974036B2 (en) Electrophotographic photoreceptor
JP2813813B2 (en) Electrophotographic photoreceptor
JPH0333862A (en) Electrophotographic sensitive body
JP2867045B2 (en) Electrophotographic photoreceptor
JP2813810B2 (en) Electrophotographic photoreceptor
JP2813811B2 (en) Electrophotographic photoreceptor
JP2704657B2 (en) Photoconductor
JP2003233206A (en) Electrophotographic photoreceptor
JP2976312B2 (en) Electrophotographic photoreceptor
JPH0333857A (en) Electrophotographic sensitive body
JP2657839B2 (en) Electrophotographic photoreceptor
JPH0333861A (en) Electrophotographic sensitive body
JPH06234937A (en) Phthalocyanine crystal mixture, its production, and electrophotographic photoreceptor made using the same