JPH0333788B2 - - Google Patents

Info

Publication number
JPH0333788B2
JPH0333788B2 JP56170022A JP17002281A JPH0333788B2 JP H0333788 B2 JPH0333788 B2 JP H0333788B2 JP 56170022 A JP56170022 A JP 56170022A JP 17002281 A JP17002281 A JP 17002281A JP H0333788 B2 JPH0333788 B2 JP H0333788B2
Authority
JP
Japan
Prior art keywords
corrosion
cutting
rev
depth
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56170022A
Other languages
Japanese (ja)
Other versions
JPS5871378A (en
Inventor
Toshinori Ozaki
Juichi Ishikawa
Masanori Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56170022A priority Critical patent/JPS5871378A/en
Publication of JPS5871378A publication Critical patent/JPS5871378A/en
Publication of JPH0333788B2 publication Critical patent/JPH0333788B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Prevention Of Electric Corrosion (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は機械材料の防食法に関するもので、例
えば海水ポンプ等腐性環境下で用いる金属材料に
利用される。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for preventing corrosion of mechanical materials, and is used, for example, for metal materials used in corrosive environments such as seawater pumps.

従来、鋼材の一部をフレーム加熱する方法があ
るが鋼材の変形、製作工数および適用部分の限定
等に関し問題があつた。例えば特開昭49−3849号
公報参照。
Conventionally, there has been a method of flame heating a part of the steel material, but there have been problems with deformation of the steel material, manufacturing man-hours, and limitations on the parts to which it can be applied. For example, see Japanese Patent Application Laid-Open No. 49-3849.

本発明は上記に鑑みてなしたもので、腐食環境
下におけるステンレス鋼などの使用環境中で不動
態化現象を示す金属材料の防食法を提供すること
を目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method for preventing corrosion of a metal material that exhibits a passivation phenomenon in a use environment such as stainless steel in a corrosive environment.

本発明は同一部品(同一鋼種)の一部に切削加
工により腐食しやすい個所(加工変質層)を積極
的に与え、その部分を優先的に腐食させることに
より、逆にその他の部分(近傍域)を電気化学的
に防食し、部品としての機能を向上させようとす
るものである。本発明の切削加工条件は送り速度
と切込み深さの積が10-4〜5×10-3あるいは0.5
〜5mm2/revとすることが望ましく、また、金属
材料として18Cr−8Ni系オーステナイトステンレ
ス鋼、13Cr系マルテンサイトステンレス鋼、お
よびチタン合金を用いることが有効である。更に
切削加工部分は腐食損傷を防止したい個所の近傍
でかつ付与応力の小さい個所とすることが望まし
い。
The present invention actively creates corrosion-prone areas (process-affected layers) in parts of the same part (same steel type) through cutting, and by corroding those parts preferentially, conversely, other parts (nearby areas) ) to electrochemically prevent corrosion and improve its functionality as a component. The cutting conditions of the present invention are that the product of feed rate and depth of cut is 10 -4 to 5 x 10 -3 or 0.5
It is desirable to set the value to 5 mm 2 /rev, and it is effective to use 18Cr-8Ni austenitic stainless steel, 13Cr martensitic stainless steel, and titanium alloy as the metal material. Furthermore, it is desirable that the cutting portion be located near the location where corrosion damage is to be prevented and where the applied stress is small.

送り速度と切り込み深さの積が10-4mm2/回転以
下では切削加工そのものが本質的に不可能とな
る。10-4〜5×10-3mm2/回転では切削加工速度が
遅過ぎて切削工具が不安定に表面に接触し(バイ
トによるこすれが起る)加工変質層、即ちマルテ
ンサイト層が形成され易い。5×10-3〜0.5mm2
回転では通常切削加工の最適条件に有り、切削加
工後の表面が滑らかになり、腐食し易い加工変質
層が形成されず本発明の目的が達成出来ない。
0.5〜5mm2/回転では切削加工量が多いので最も
加工変質層が形成される。そして5mm2/回転を越
えると表面がささくれて粗雑になり応力集中等を
起して機械部品としての使用に耐えなくなる。
If the product of feed rate and depth of cut is less than 10 -4 mm 2 /rotation, cutting itself becomes essentially impossible. At 10 -4 to 5 x 10 -3 mm 2 /rotation, the cutting speed is too slow and the cutting tool comes into unstable contact with the surface (rubbing occurs due to the cutting tool), resulting in the formation of a machining-affected layer, that is, a martensitic layer. easy. 5×10 -3 ~0.5mm 2 /
Rotation is normally in the optimum conditions for cutting, and the surface after cutting becomes smooth, and a damaged layer that is susceptible to corrosion is not formed, making it impossible to achieve the object of the present invention.
At 0.5 to 5 mm 2 /rotation, the amount of cutting is large, so the most process-affected layer is formed. If the rotation speed exceeds 5 mm 2 /rotation, the surface becomes flaky and rough, causing stress concentration and the like, making it unsuitable for use as a mechanical part.

以下、実施例を用いて説明する。 This will be explained below using examples.

(1) SUS304鋼丸棒(60φ×500mm)3本を用い一
本に両端より150mm間に以下の切削を与えた。
イ切込み深さ0.02mm、送り速度0.05mm/rev
(10-3mm2/rev)、ロ切込み深さ5mm、送り速度
0.4mm/rev(2.0mm2/rev)、ハ切込み深さ0.5mm、
送り速度0.4mm/rev(0.2mm2/rev)。そして丸棒
中央部200mmにはハと同じ切削条件とした。そ
の後、この丸棒を3%NaCl溶液中に6ケ月浸
漬し、腐食状況を観察した。その結果、上記イ
およびロにおいては丸棒両端より150mm間が激
しく腐食しているものの、丸棒中央部(200mm)
には腐食は見られなかつた。一方、上記ハにつ
いては丸棒全体において不均質に腐食が発生し
ていた。
(1) Three SUS304 steel round bars (60φ x 500mm) were used, and each bar was cut as follows between 150mm from both ends.
A depth of cut 0.02mm, feed rate 0.05mm/rev
(10 -3 mm 2 /rev), depth of cut 5 mm, feed rate
0.4mm/rev (2.0mm 2 /rev), depth of cut 0.5mm,
Feed rate 0.4mm/rev (0.2mm 2 /rev). The same cutting conditions as C were used for the 200 mm central part of the round bar. Thereafter, this round bar was immersed in a 3% NaCl solution for 6 months, and the state of corrosion was observed. As a result, in A and B above, although the area between 150mm from both ends of the round bar was severely corroded, the central part of the round bar (200mm)
No corrosion was observed. On the other hand, regarding C above, corrosion occurred non-uniformly throughout the round bar.

ここで、上記の挙動を理解する目的で腐食部
分の詳細な観察を行なつた。この結果、試料イ
の腐食は腐食の起点が切削加工にともなう切粉
の付着部分にあり、その下方においていわゆる
隙間腐食が発生していた。又、試料ロについて
は切削加工に併う辷り線およびマルテンサイト
変態部分が優先的に腐食していた。
Here, detailed observations of the corroded parts were carried out for the purpose of understanding the above behavior. As a result, the starting point of the corrosion in Sample A was located in the area where chips were attached due to cutting, and so-called crevice corrosion occurred below this area. In addition, for sample RO, the slip lines and martensitic transformed portions along with the cutting process were preferentially corroded.

したがつて、上記の挙動は切削加工により優
先的に腐食しやすい層(部分)が得られること
を示しており、同時にその近傍の部分では電気
防食の原理により防食されたものと判断され
る。
Therefore, the above behavior indicates that a layer (portion) that is more likely to corrode is preferentially obtained through cutting, and at the same time, it is judged that the layer (portion) in the vicinity of this layer is protected against corrosion by the principle of cathodic protection.

ここで、実機部品において上記の現象を適用
するとすれば、付与応力が小さいとか、ダ肉が
ついているなどで多少の腐食損傷が許される部
分に上記の特種な切削加工を与え、その他の部
分(腐食損傷が許されない部分)は通常の切削
加工を与えることが有効である。
If we were to apply the above phenomenon to actual machine parts, we would apply the above-mentioned special cutting process to parts where some corrosion damage is allowed due to small applied stress or dead skin, and then apply the special cutting process to other parts ( It is effective to apply normal cutting to areas where corrosion damage is not allowed.

(2) (1)で示した丸棒を用い上記のように優先的に
腐食しやすい層(部分)が得られる切削加工条
件を検討した。切削速度は20〜150m/minと
し、切込深さ0.01〜5mm、送り速度0.01〜1
mm/revとした。その結果、(A)切粉の表面への
付着、(B)辷り線およびマレテンサイト変態は切
削速度に対し明確に依存せず、切込深さと送り
速度の積(切削断面積)に強く依存した。そし
て、その値が10-4〜5×10-3mm2/revの場合、
前記(A)が、0.5〜5mm2/revの時前記(B)が生じ
た。又、この試料を前記実施例1と同様に腐食
試験した結果、前記加工層の優先的腐食およ
び、その他の個所(丸棒中央部)の防食が確認
された。特に切込深さが0.01mmの時、送り速度
が0.01、0.1および0.5mm/revのとき、あるいは
切込深さが0.1mmのとき送り速度が0.001、0.01、
0.05mm/revの場合が優れていた。又、切込深
さが0.5mmのとき送り速度が1、2.5および5
mm/revのとき、あるいは切込深さが5mmのと
き送り速度が0.1、0.3および1mm/revの場合
も優れていた。
(2) Using the round bar shown in (1), we investigated cutting conditions that would yield a layer (portion) that is preferentially susceptible to corrosion as described above. Cutting speed is 20 to 150 m/min, depth of cut is 0.01 to 5 mm, and feed rate is 0.01 to 1.
mm/rev. As a result, (A) adhesion of chips to the surface, (B) slip lines and martensite transformation do not clearly depend on cutting speed, but strongly depend on the product of depth of cut and feed rate (cutting cross-sectional area). depended on. And if the value is 10 -4 ~ 5 × 10 -3 mm 2 /rev,
The above (B) occurred when the above (A) was 0.5 to 5 mm 2 /rev. Further, as a result of carrying out a corrosion test on this sample in the same manner as in Example 1, preferential corrosion of the processed layer and corrosion protection of other parts (the central part of the round bar) were confirmed. In particular, when the depth of cut is 0.01 mm, the feed rate is 0.01, 0.1, and 0.5 mm/rev, or when the depth of cut is 0.1 mm, the feed rate is 0.001, 0.01,
The case of 0.05mm/rev was excellent. Also, when the depth of cut is 0.5mm, the feed rate is 1, 2.5 and 5.
mm/rev, or when the cutting depth was 5 mm and the feed rate was 0.1, 0.3, and 1 mm/rev, it was also excellent.

(3) 実施例1において素材をSUS403およびチタ
ン(TB35)とし同様な加工を与えた後、前者
については0.3%NaCl溶液、後者については
1N、H2SO4+3%NaCl溶液中で6ケ月腐食試
験を行なつた。その結果、(1)と同様にいずれの
場合も特種な切削加工を与えた部分が優先的に
腐食し、丸棒中央部は防食されていた。この場
合は特に切込深さと送り速度の積が10-4〜5×
103mm2/revの時有効であつた。
(3) After applying the same processing to SUS403 and titanium (TB35) as materials in Example 1, a 0.3% NaCl solution was applied to the former, and a 0.3% NaCl solution was applied to the latter.
A 6 month corrosion test was conducted in a 1N, H 2 SO 4 +3% NaCl solution. As a result, as in (1), in each case, the part that had been given a special cutting process corroded preferentially, while the central part of the round bar was protected from corrosion. In this case, especially the product of depth of cut and feed rate is 10 -4 ~ 5×
It was effective at 10 3 mm 2 /rev.

(4) SUS304鋼を用い、1350mm口径の立軸斜流ポ
ンプ軸を制作した。軸形状は長さ3880mmで軸長
中央部の最大太さ220mmφ軸の両端に近ずく程
段階的に細くなつており最小径は軸下端で140
mmφ、軸上端で136mmφである。そして軸上端
より125mm〜165mmの個所(182mmφ)はグラン
ドパツキンと摺動し、下端より480〜620mmはメ
タルスリーブと嵌合するよう構成されている。
(4) A vertical mixed flow pump shaft with a diameter of 1350 mm was manufactured using SUS304 steel. The shaft shape is 3880mm long, with a maximum diameter of 220mm at the center of the shaft length.The diameter gradually tapers as it approaches both ends of the shaft, and the minimum diameter is 140mm at the bottom end of the shaft.
mmφ, 136mmφ at the upper end of the shaft. The part 125mm to 165mm from the upper end of the shaft (182mmφ) slides on the gland packing, and the part 480 to 620mm from the lower end fits into the metal sleeve.

ここで、前記のグランドパツキンおよびメタ
ルスリーブとの接する部分は従来、ポンプの停
止期間中隙間腐食を多発していた個所である。
Here, the portions where the gland packing and the metal sleeve come into contact are areas where crevice corrosion has conventionally occurred frequently during periods when the pump is stopped.

次に軸への特種な切削加工は軸上端より170〜
260mmの個所(太さ195mmφ)(○ア)1720〜1800mm
の個所(太さ220mmφ)(○イ)および下端より630
〜710minの個所(太さ200mmφ)(○ウ)とし、○ア
と○ウについては切削速度105m/mm、切込深さ5
mm、送り速度0.2mm/revとした。又、○イについて
は切削速度65m/s、切込深さ0.02mm、送り速度
0.025mm/revとした。以上の軸を前記ポンプに組
込み、海水環境で2年2ケ月運転した(その間の
停止時間は合計1年3ケ月)。その結果、前記○ア
○イ○ウ部分は激しく腐食していたが、その他の部
分、特に、グランドパツキンおよびメタルスリー
ブと接する部分にはほとんど腐食は見られなかつ
た。
Next, the special cutting process on the shaft is from 170mm to the top end of the shaft.
260mm point (thickness 195mmφ) (○A) 1720~1800mm
630 from the point (thickness 220mmφ) (○A) and the bottom edge
~710min (thickness 200mmφ) (○U), cutting speed 105m/mm, depth of cut 5 for ○A and ○U
mm, and the feed rate was 0.2 mm/rev. Also, for ○A, the cutting speed is 65m/s, the depth of cut is 0.02mm, and the feed rate is
It was set to 0.025mm/rev. The above shaft was assembled into the pump and operated in a seawater environment for 2 years and 2 months (with a total of 1 year and 3 months of downtime). As a result, although the ○A○I○U portions were severely corroded, almost no corrosion was observed in other parts, especially the parts in contact with the gland packing and the metal sleeve.

一方、従来の軸(加工条件は切削速度105m/
s、切込深さ0.2mm、送り速度0.4mm/revで上記
と同一設置場所でほぼ同一期間運転)の場合、腐
食は軸全体に対し多数の孔食として生じ、特にグ
ランドパツキンおよびメタルスリーブと接する個
所でい巾広い隙間腐食および最大3mmに達する孔
食が生じていた。
On the other hand, the conventional axis (machining conditions are cutting speed 105m/
s, depth of cut 0.2 mm, feed rate 0.4 mm/rev, and operated at the same installation location and for almost the same period as above), corrosion occurs as a large number of pitting corrosion on the entire shaft, especially on the gland packing and metal sleeve. Wide crevice corrosion and pitting corrosion of up to 3 mm occurred at the contact points.

以上のことから本発明軸は従来軸に対し腐食孔
を起点とした軸の切損およびグランドパツキンか
らの水もれ等に対し問題が生じにくく、信頼性が
高いことが理解される。
From the above, it is understood that the shaft of the present invention is more reliable than the conventional shaft because it is less prone to problems such as breakage of the shaft starting from corrosion holes and water leakage from the gland packing.

又、本発明の加工部分における腐食形態は主に
加工変質層のみが腐食するため浅い孔食となり、
一般的に多く見られる深い孔食にはならない。こ
の事実は使用部品が配管のように貫通孔を極度に
きらう場合、および強度部材のように深い孔食か
ら割れが発生することをきらう場合などに有効で
あることを意味し、本発明の特徴の一つである。
これは前記の海水ポンプへの適用例の場合、被加
工部分に深い孔食は生じていない事実からも説明
される。
In addition, the form of corrosion in the machined parts of the present invention is mainly shallow pitting corrosion because only the process-affected layer corrodes.
Deep pitting corrosion, which is commonly seen, does not occur. This fact means that it is effective in cases where the parts to be used are extremely sensitive to through-holes, such as piping, and cases where cracks due to deep pitting corrosion are to be avoided, such as in strength members. one of.
This can also be explained by the fact that in the case of the application to the seawater pump mentioned above, deep pitting corrosion did not occur in the processed part.

以上説明したように本発明によれば、鋼材の変
形がなく、また製作工数および適用部分に限定さ
れない金属材料の防食法が得られる。
As explained above, according to the present invention, it is possible to obtain a corrosion prevention method for metal materials that does not cause deformation of the steel material and is not limited to the number of manufacturing steps and the applicable parts.

Claims (1)

【特許請求の範囲】 1 使用環境中で不働態化現象を示すステンレス
鋼又はチタン合金の表面の一部に、送り速度と切
込み深さの積が10-4〜5×10-3或いは0.5〜5
mm2/回転で切削加工して腐食しやすい加工変質層
を与え、その部分を優先的に腐食させることによ
り、その他の部分を電気化学的に防食することを
特徴とする金属材料の防食法。 2 前記加工変質層を腐食防止個所の近傍で、か
つ付与応力の小さい個所に与えることを特徴とす
る特許請求の範囲第1項に記載の金属材料の防食
法。
[Claims] 1. On a part of the surface of stainless steel or titanium alloy that exhibits a passivation phenomenon in the usage environment, the product of feed rate and depth of cut is 10 -4 to 5 × 10 -3 or 0.5 to 5
A method for preventing corrosion of metal materials, which is characterized by cutting at a rate of mm 2 /rotation to provide a damaged layer that is susceptible to corrosion, and by corroding that part preferentially, electrochemically protects other parts. 2. The method for preventing corrosion of metal materials according to claim 1, characterized in that the process-affected layer is provided in the vicinity of a corrosion-prevented area and at a location where applied stress is small.
JP56170022A 1981-10-26 1981-10-26 Preventing method for corrosion of metallic material Granted JPS5871378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56170022A JPS5871378A (en) 1981-10-26 1981-10-26 Preventing method for corrosion of metallic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56170022A JPS5871378A (en) 1981-10-26 1981-10-26 Preventing method for corrosion of metallic material

Publications (2)

Publication Number Publication Date
JPS5871378A JPS5871378A (en) 1983-04-28
JPH0333788B2 true JPH0333788B2 (en) 1991-05-20

Family

ID=15897143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56170022A Granted JPS5871378A (en) 1981-10-26 1981-10-26 Preventing method for corrosion of metallic material

Country Status (1)

Country Link
JP (1) JPS5871378A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937342A1 (en) 2020-07-09 2022-01-12 Japan Tobacco Inc. Power supply unit for aerosol generation device
EP4088592A1 (en) 2021-05-10 2022-11-16 Japan Tobacco Inc. Power supply unit for an aerosol generation device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102852846B (en) * 2012-08-22 2016-03-16 广东省佛山水泵厂有限公司 A kind of sea water pump of anti-marine organism corrsion

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485124A (en) * 1977-12-20 1979-07-06 Nisshin Steel Co Ltd Method of preventing red rust production of stainless steel in burning atomosphere

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5485124A (en) * 1977-12-20 1979-07-06 Nisshin Steel Co Ltd Method of preventing red rust production of stainless steel in burning atomosphere

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3937342A1 (en) 2020-07-09 2022-01-12 Japan Tobacco Inc. Power supply unit for aerosol generation device
US11246351B2 (en) 2020-07-09 2022-02-15 Japan Tobacco Inc. Power supply unit for aerosol generation device
EP4088592A1 (en) 2021-05-10 2022-11-16 Japan Tobacco Inc. Power supply unit for an aerosol generation device
EP4238432A1 (en) 2021-05-10 2023-09-06 Japan Tobacco Inc. Aerosol generation device

Also Published As

Publication number Publication date
JPS5871378A (en) 1983-04-28

Similar Documents

Publication Publication Date Title
EP2135698B1 (en) Methods of treating metal articles and articles made therefrom
EP0931854A1 (en) Corrosion inhibiting of stainless steel in organic sulphonic acid
FR2721327A1 (en) Lead-free, tin@-zinc@ alloy coating for metallic architectural materials
JPH0333788B2 (en)
Thakur et al. Optimization of minimum quantity lubrication parameters in high speed turning of superalloy Inconel 718 for sustainable development
US3847763A (en) Method of reducing wear of a cemented carbide roll
JP4179740B2 (en) Sliding member for blade shaft of drainage pump with excellent corrosion resistance and wear resistance
Belgasim et al. Modeling of residual stresses induced in machining aluminum magnesium alloy (Al–3Mg)
US3199989A (en) Corrosion inhibitor and method of using the same
Hassiotis et al. Influence of surface roughness on corrosion resistance of turned carbon steel parts
Seung-Jun et al. Effects of flow velocity on electrochemical behavior of seachest 5083-H116 Al alloy for ship
GB2073751A (en) Improvements in urea synthesis
JP2525345B2 (en) End mill
JPH08175828A (en) Roll for float glass production
CN218611742U (en) Groove cutter with high strength and long service life
JPS6288509A (en) Surface coated cemented carbide end mill
EP3918104B1 (en) Use of a dlc coated part in a galvanizing bath
US4755191A (en) Finishing of hard chromium plated products
Bohnsack German Views on the Influence of Feedwater Chemistry on Crack Damage in Deaerators
GB2023644A (en) Improved Lubricant
Utami et al. Effect of hot-dip galvanized zinc coating time on corrosion behaviour of ASTM A36
Shawki et al. Corrosion Failures: Identification, Diagnosis & Remedies
KR930011626B1 (en) Steel for pipe
SU1092024A1 (en) Welding wire composition
JPH06272007A (en) Galvanizing tank