JPH0333676B2 - - Google Patents

Info

Publication number
JPH0333676B2
JPH0333676B2 JP22626383A JP22626383A JPH0333676B2 JP H0333676 B2 JPH0333676 B2 JP H0333676B2 JP 22626383 A JP22626383 A JP 22626383A JP 22626383 A JP22626383 A JP 22626383A JP H0333676 B2 JPH0333676 B2 JP H0333676B2
Authority
JP
Japan
Prior art keywords
silicon
graphite
refractory
coating
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22626383A
Other languages
Japanese (ja)
Other versions
JPS60118685A (en
Inventor
Yasuhiro Matsushita
Mamoru Imashiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Original Assignee
Nippon Crucible Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd filed Critical Nippon Crucible Co Ltd
Priority to JP22626383A priority Critical patent/JPS60118685A/en
Publication of JPS60118685A publication Critical patent/JPS60118685A/en
Publication of JPH0333676B2 publication Critical patent/JPH0333676B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は耐酸化性、耐食性にすぐれた窒化珪
素被覆黒鉛質耐火物の製造方法に関する。 黒鉛−炭化珪素系もしくは黒鉛−アルミナ系な
どの黒鉛質耐火物の耐酸化性、耐食性を向上する
ため、耐火物表面に被覆膜を形成させることが従
来から行われている。被覆膜は耐火物表面に充分
な強度で密着すること、酸素との接触において充
分な気密性を有すること、膜自身が耐食性、耐火
性を有していることなどが必要であるが、従来か
ら行われている被覆膜は、密着性、気密性は充分
であつても耐食性が充分でないなど、一長一短が
あつて前記の諸性質を充分に満足させるものは未
だ見当らない。 この発明は、以上の実情に鑑みなされたもの
で、重量で金属珪素粉末75〜99%、アルミナ粉末
1〜25%に焼結助剤を加えた泥漿を黒鉛質耐火物
の表面に塗布したのち、窒素雰囲気中において高
温で加熱することを特徴とする窒素珪素被覆黒鉛
質耐火物の製造方法を要旨とするものである。 次にその詳細について説明すると、金属珪素は
高温の窒素雰囲気中で窒素と反応して窒化珪素を
生成する。窒化珪素は熱膨脹率が小さいので、耐
火物表面が加熱され被覆膜がいち早く急熱されて
も、また耐火物自体が高温になつたときでも両者
の膨脹差が小さいことから、それに伴う剥離は起
こさない。金属珪素は耐火物の生地界面では耐火
物中の炭素と反応して炭化珪素となるから、被覆
膜は耐火物と極めて強固に密着する。金属珪素粉
末は、粒度74μm以下のものを使用する。74μm
以上では窒化珪素化反応に長時間かかるので好ま
しくない。金属珪素粉末は前記粒度のものを重量
で75〜95%使用する。75%以下では窒化珪素被覆
膜の性質が充分に出ないので好ましくなく、また
99%以上では耐食性が悪くなるので好ましくな
い。 アルミナ粉末と金属珪素粉末を併用すると金属
珪素の反応焼結とアルミナの自己焼結との相乗効
果により低気孔で強固な窒化珪素被覆が形成さ
れ、溶融金属やスラグに対する耐食性が良好とな
るので、被覆した黒鉛質耐火物の耐食性が著しく
向上する。アルミナ粉末は粒度74μm以下のもの
を使用する。74μm以上では焼結性が悪くなるの
で気密で強固な被覆を形成せず、好ましくない。
アルミナ粉末は前記粒度のものを1〜25%、好ま
しくは5〜10%使用する。1%以下では耐食性が
悪くなつて好ましくなく、また25%以上では被覆
膜の熱膨脹率が大きくなり、被覆膜が剥離し易く
なるので好ましくない。 焼結助剤としては硼酸、無水硼酸、ホウ砂など
の硼酸塩等を使用する。これらの焼結助剤の水溶
液を前記粉末に混合すると、その泥漿物が耐火物
素地によく接着し、また乾燥強度が得られ、高温
では焼結助剤となる。焼結助剤はその量が少ない
と接着性等の効果がなく、過量では硼酸系ガラス
として残留し、耐火度を低下させる。重量濃度で
約10%水溶液が適当である。 前記金属珪素粉末、アルミナ粉末に硼酸水溶液
等を加えた泥漿を黒鉛質耐火物表面に被覆させた
のち、窒素ガスを流入させた炉内で950℃まで100
℃/hrで昇温し2時間保持する。この段階で金属
珪素の粒子表面を窒化させる。2時間保持しない
でそのまま昇温を続けると金属珪素は温度上昇と
共に表面が軟化し、窒化より先に珪素粒子間で焼
結するに至るため、窒素の拡散が著しく遅れ、均
一な膜厚の窒化珪素が生成しない。次に1350℃ま
で50℃/hrで昇温し、12時間保持する。このよう
な昇温パターンをとると金属珪素の約95%が窒化
珪素化し、膜厚が均一で、気密かつ強固な窒化珪
素被覆が形成される。 このようにして出来た耐火物は、耐酸化性およ
び耐食性にすぐれているから、この発明の方法は
黒鉛坩堝、浸漬ノズル、ロングノズル、同フラツ
クスライン部、キユポラ用れんがなどの溶融金
属、溶融スラグなどに対する侵食の防止に有効で
ある。 次に実施例について説明する。 93%の純度を有する74μm以下の金属珪素粉末
95重量%と、98%の純度を有する74μm以下のア
ルミナ粉末5重量%に重量濃度10%の硼酸水溶液
を加えた泥漿の黒鉛−炭化珪素系黒鉛坩堝表面に
膜厚1.5mmの被覆をした。被覆後充分に乾燥した
のち、内容積200の加熱炉に入れ、950℃まで
100℃/hrで昇温し2時間保持した。その後1350
まで50℃/hrで昇温し、12時間保持した。全加熱
中4/minの窒素ガスを炉内に流した。 冷却後、被覆物をx線回折にかけたところ、第
1図のようにSi3N4、Si2ON2、Si、Al2O3などが
みられるが、金属珪素の約95%が窒化珪素に変化
していることが判明した。 次に、上記条件で300番黒鉛坩堝(黄銅300Kgを
溶解できる容量をもつもの)の表面に被覆を形成
させ実炉試験をしたところ、第1表の結果を得る
ことができ、従来品に比較して良好な成績を収め
ることができた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a silicon nitride-coated graphite refractory having excellent oxidation resistance and corrosion resistance. BACKGROUND ART In order to improve the oxidation resistance and corrosion resistance of graphite refractories such as graphite-silicon carbide or graphite-alumina refractories, it has been conventionally practiced to form a coating film on the surface of the refractories. The coating film must adhere to the surface of the refractory with sufficient strength, have sufficient airtightness in contact with oxygen, and the film itself must have corrosion resistance and fire resistance. The coating films made from the above have advantages and disadvantages, such as insufficient corrosion resistance even though they have sufficient adhesion and airtightness, and so far no coating film has been found that fully satisfies the above-mentioned properties. This invention was made in view of the above circumstances, and after applying a slurry made by adding a sintering aid to 75-99% metal silicon powder and 1-25% alumina powder by weight on the surface of graphite refractories. The gist of this invention is a method for producing a nitrogen-silicon-coated graphite refractory, which is characterized by heating at high temperature in a nitrogen atmosphere. Next, the details will be explained. Metallic silicon reacts with nitrogen in a high temperature nitrogen atmosphere to produce silicon nitride. Silicon nitride has a small coefficient of thermal expansion, so even if the surface of the refractory is heated and the coating film is quickly and rapidly heated, or even when the refractory itself reaches a high temperature, the difference in expansion between the two is small, so the resulting peeling will not occur. I won't wake you up. Metallic silicon reacts with carbon in the refractory to form silicon carbide at the material interface of the refractory, so the coating film adheres extremely firmly to the refractory. The metal silicon powder used has a particle size of 74 μm or less. 74μm
The above is not preferable because the silicon nitride reaction takes a long time. Metallic silicon powder having the above particle size is used in an amount of 75 to 95% by weight. If it is less than 75%, it is not preferable because the properties of the silicon nitride coating film cannot be fully exhibited.
If it exceeds 99%, corrosion resistance deteriorates, which is not preferable. When alumina powder and metallic silicon powder are used together, a strong silicon nitride coating with low porosity is formed due to the synergistic effect of reactive sintering of metallic silicon and self-sintering of alumina, and it has good corrosion resistance against molten metal and slag. Corrosion resistance of coated graphite refractories is significantly improved. Use alumina powder with a particle size of 74 μm or less. If the thickness is 74 μm or more, the sinterability deteriorates and an airtight and strong coating cannot be formed, which is not preferable.
The alumina powder having the above particle size is used in an amount of 1 to 25%, preferably 5 to 10%. If it is less than 1%, the corrosion resistance deteriorates, which is undesirable, and if it exceeds 25%, the coefficient of thermal expansion of the coating film increases, making it easy to peel off the coating film, which is not preferred. As the sintering aid, boric acid, boric anhydride, borates such as borax, etc. are used. When an aqueous solution of these sintering aids is mixed with the powder, the slurry adheres well to the refractory substrate, provides dry strength, and serves as a sintering aid at high temperatures. If the amount of the sintering aid is small, there will be no effect on adhesive properties, and if the amount is excessive, it will remain as boric acid glass, reducing the fire resistance. An aqueous solution having a concentration of about 10% by weight is suitable. After coating the surface of the graphite refractories with a slurry made by adding boric acid aqueous solution to the metal silicon powder and alumina powder, the mixture was heated to 950°C in a furnace with nitrogen gas introduced.
Raise the temperature at ℃/hr and hold for 2 hours. At this stage, the surface of the metallic silicon particles is nitrided. If you continue to raise the temperature without holding it for 2 hours, the surface of metallic silicon will soften as the temperature rises, and sintering will occur between silicon particles before nitriding, which will significantly delay the diffusion of nitrogen and result in a uniform nitriding film thickness. Silicon is not produced. Next, the temperature was raised to 1350°C at a rate of 50°C/hr and held for 12 hours. When such a temperature increase pattern is used, approximately 95% of the metal silicon is converted to silicon nitride, and a uniform, airtight, and strong silicon nitride coating is formed. The refractory made in this way has excellent oxidation resistance and corrosion resistance, so the method of this invention can be applied to graphite crucibles, immersion nozzles, long nozzles, flux line parts, molten metals such as cupora bricks, etc. Effective in preventing erosion of slag, etc. Next, an example will be described. Metallic silicon powder below 74μm with 93% purity
The surface of a graphite-silicon carbide graphite crucible was coated with a slurry of 5% by weight of alumina powder of 74 μm or less with a purity of 95% by weight and a purity of 98% and an aqueous solution of boric acid with a concentration of 10% by weight to a thickness of 1.5 mm. After coating and drying thoroughly, put it in a heating furnace with an internal volume of 200 and heat up to 950℃.
The temperature was raised at 100°C/hr and held for 2 hours. then 1350
The temperature was raised to 50°C/hr and held for 12 hours. Nitrogen gas was flowed into the furnace at a rate of 4/min during the entire heating process. After cooling, the coating was subjected to X-ray diffraction, and as shown in Figure 1, Si 3 N 4 , Si 2 ON 2 , Si, Al 2 O 3 , etc. were observed, but about 95% of the metallic silicon was silicon nitride. It turned out that there was a change in. Next, under the above conditions, we formed a coating on the surface of a No. 300 graphite crucible (which has a capacity to melt 300 kg of brass) and conducted an actual furnace test, and the results shown in Table 1 were obtained and compared with the conventional product. I was able to achieve good results. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被覆物のx線回折図である。 FIG. 1 is an x-ray diffraction diagram of the coating.

Claims (1)

【特許請求の範囲】[Claims] 1 重量で金属珪素粉末75〜99%、アルミナ粉末
1〜25%に焼結助剤を加えた泥漿を黒鉛質耐火物
の表面に塗布したのち、窒素雰囲気中において高
温で加熱することを特徴とする窒化珪素被覆黒鉛
質耐火物の製造方法。
1. A slurry made by adding a sintering aid to 75-99% metal silicon powder and 1-25% alumina powder by weight is applied to the surface of graphite refractories, and then heated at high temperature in a nitrogen atmosphere. A method for producing a silicon nitride-coated graphite refractory.
JP22626383A 1983-11-30 1983-11-30 Manufacture of silicon nitride-coated graphitic refractories Granted JPS60118685A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22626383A JPS60118685A (en) 1983-11-30 1983-11-30 Manufacture of silicon nitride-coated graphitic refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22626383A JPS60118685A (en) 1983-11-30 1983-11-30 Manufacture of silicon nitride-coated graphitic refractories

Publications (2)

Publication Number Publication Date
JPS60118685A JPS60118685A (en) 1985-06-26
JPH0333676B2 true JPH0333676B2 (en) 1991-05-17

Family

ID=16842457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22626383A Granted JPS60118685A (en) 1983-11-30 1983-11-30 Manufacture of silicon nitride-coated graphitic refractories

Country Status (1)

Country Link
JP (1) JPS60118685A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148492A (en) * 1984-08-17 1986-03-10 株式会社 ほくさん Method of coating mold material for high temperature
US5909232A (en) * 1992-02-27 1999-06-01 Fuji Photo Film Co., Ltd. Thermal recording system for preheating a thermosensitive recording medium and method therefor
CN114560707A (en) * 2022-03-24 2022-05-31 湖南国发控股有限公司 Formula, preparation and application process of silicon nitride impregnant for kiln furniture production

Also Published As

Publication number Publication date
JPS60118685A (en) 1985-06-26

Similar Documents

Publication Publication Date Title
CN107814591B (en) Preparation method of boride modified silicon-based antioxidant coating on surface of carbon material
EP0134769B1 (en) Oxidation prohibitive coatings for carbonaceous articles
EP1745164B1 (en) Crucible for the crystallization of silicon
US3385723A (en) Carbon article coated with beta silicon carbide
US4717693A (en) Process for producing beta silicon nitride fibers
US4528244A (en) Fused silica shapes
JPH0333676B2 (en)
CN115448731B (en) Preparation method of graphite crucible coating for vanadium-nitrogen alloy
JPH11236286A (en) Production of boron carbide coating
JPH0232233B2 (en)
JPH03146470A (en) Silicon carbide-based material
JPS63159258A (en) Manufacture of oxidation-resistant silicon nitride material
CN111410560A (en) Preparation method of silicified graphite with high-density SiC coating
JPS59227787A (en) Silicon carbide with anticorrosive protection coating and manufacture
JP2000351679A (en) Production of silicon carbide-based porous form and the resultant silicon carbide-based porous form
TWI343830B (en)
JP3268303B2 (en) Non-oxide refractory raw materials and refractories with excellent oxidation resistance
CN112430130B (en) High-temperature-resistant composite coating and preparation process thereof
JP3520998B2 (en) Heat-resistant silicon nitride sintered body and method for producing the same
JPS589882A (en) Super hard heat-resistant ceramics and manufacture
JP2620075B2 (en) Graphite material for Ga compound single crystal pulling device
JPS61219787A (en) Crucible for producing single crystal for high-purity semiconductor
JPS61116284A (en) Crucible for melting metal
KR20050104932A (en) Surface treatment method of carbon melting pot for liquid metal ingot and slip composite
JPH03237068A (en) Corrosion resistant aluminum nitride sintered molded body for molten aluminum