JPH0332631B2 - - Google Patents

Info

Publication number
JPH0332631B2
JPH0332631B2 JP2420086A JP2420086A JPH0332631B2 JP H0332631 B2 JPH0332631 B2 JP H0332631B2 JP 2420086 A JP2420086 A JP 2420086A JP 2420086 A JP2420086 A JP 2420086A JP H0332631 B2 JPH0332631 B2 JP H0332631B2
Authority
JP
Japan
Prior art keywords
chamber
pressure
seal roll
nitrogen gas
seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2420086A
Other languages
Japanese (ja)
Other versions
JPS62182276A (en
Inventor
Yoshiteru Moryama
Takuya Aiko
Kyosuke Oohashi
Seiichi Nagameguri
Heizaburo Furukawa
Yasuaki Sekiguchi
Kuniaki Tauchi
Shigemi Menda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Nisshin Co Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Nisshin Steel Co Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2420086A priority Critical patent/JPS62182276A/en
Publication of JPS62182276A publication Critical patent/JPS62182276A/en
Publication of JPH0332631B2 publication Critical patent/JPH0332631B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は連続真空蒸着メツキラインにおいて、
ストリツプ溶接部の通過によつても賦圧室や冷却
室の負圧化を生じない負圧防止方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is applied to a continuous vacuum evaporation plating line,
The present invention relates to a negative pressure prevention method that does not cause negative pressure in a pressure chamber or cooling chamber even when a strip weld passes through the weld.

<技術背景> 真空蒸着メツキは、亜鉛メツキ鋼板の連続製造
技術について研究が進められ、現在実用化の段階
にある。該連続真空蒸着メツキラインには前処理
炉を経て入側シールロール室、真空蒸着室、出側
シールロール室および冷却室が順次配置されてお
り、更に入側シールロール室と前処理炉の間には
不活性ガスの賦圧室が介設されている。
<Technical Background> Vacuum evaporation plating has been researched into continuous manufacturing technology for galvanized steel sheets, and is currently at the stage of practical application. The continuous vacuum deposition plating line includes a pretreatment furnace, an inlet seal roll chamber, a vacuum deposition chamber, an outlet seal roll chamber, and a cooling chamber, and furthermore, between the inlet seal roll chamber and the pretreatment furnace. is equipped with an inert gas pressure chamber.

該賦圧室は蒸着室に酸素等の燃焼ガスが侵入せ
ず、かつ溶融メツキと真空メツキとを兼用する場
合の都合上設けられている。即ち、真空蒸着メツ
キにおいては蒸着室が真空に保たれるので、空気
が蒸着室に侵入しないようにシールロール室の端
部に外気圧より高い圧力を負荷した賦圧室を設け
て不活性ガス、主に窒素ガスでシールする。また
溶融メツキと真空蒸着メツキとの兼用ラインにお
いて、溶融メツキの還元炉と蒸着メツキとの真空
室とを直結すると還元炉の水素を含有するガスを
真空ポンプで吸引することになり、万一真空が破
られて蒸着室に空気が侵入すると爆発を起こす危
険がある。そのため、上記賦圧室を設けてこのよ
うな危険を防止する。
The pressure chamber is provided for the convenience of preventing combustion gases such as oxygen from entering the deposition chamber and for the purpose of performing both melt plating and vacuum plating. That is, in vacuum deposition plating, the deposition chamber is kept in a vacuum, so in order to prevent air from entering the deposition chamber, a pressure chamber loaded with a pressure higher than the outside pressure is provided at the end of the seal roll chamber, and an inert gas is applied to the chamber. , mainly sealed with nitrogen gas. In addition, in a line that combines fusion plating and vacuum evaporation plating, if the reduction furnace for fusion plating and the vacuum chamber for evaporation plating are directly connected, the hydrogen-containing gas from the reduction furnace will be sucked in by the vacuum pump. There is a risk of an explosion if the gasket is broken and air enters the deposition chamber. Therefore, the above-mentioned pressure chamber is provided to prevent such a danger.

ところで、上記真空蒸着メツキ装置において、
連続鋼板を蒸着メツキするばあい、鋼板の溶接部
が賦圧室を通過する際、シールロールが溶接部に
よつて僅かに押し広げられると、窒素ガスが蒸着
室側に漏れて賦圧室が負圧になり、還元炉の水素
や空気が賦圧室に侵入する。賦圧室から蒸着室に
至るラインは負圧に保たれるので、上記溶接部が
進むにつれてシール漏れの状態となり、上記酸素
や水素が蒸着室に侵入する虞があり、これにより
爆発を起こす危険がある。これを防止するために
該賦圧室の圧力を検出し、シール漏れを補償する
量の窒素ガスを賦圧室に供給して、その負圧化を
防止することが考えられるが、圧力復帰の時定数
が大きく、しかも圧力制御のために窒素ガスの供
給と放出とが繰り返されるので圧力のハンチング
が発生し、瞬間的に負圧になり、賦圧室の負圧化
を充分に防止出来ない。また賦圧室にシール漏れ
の量を上回る量の窒素ガスを常時供給することも
考えられるが、この場合にはシール漏れの量が多
くなり、しかも負圧防止効果は不十分である。
By the way, in the vacuum evaporation plating apparatus mentioned above,
When plating a continuous steel plate, when the welded part of the steel plate passes through the pressure chamber, if the seal roll is slightly expanded by the welded part, nitrogen gas leaks into the vapor deposition chamber and the pressure chamber is closed. The pressure becomes negative and hydrogen and air from the reduction furnace enter the pressure chamber. Since the line from the pressurization chamber to the deposition chamber is maintained at negative pressure, as the weld progresses, the seal may leak and the oxygen or hydrogen may enter the deposition chamber, which may cause an explosion. There is. In order to prevent this, it is possible to detect the pressure in the pressure chamber and supply nitrogen gas to the pressure chamber in an amount that compensates for seal leakage, thereby preventing the pressure from becoming negative. Since the time constant is large and nitrogen gas is repeatedly supplied and released for pressure control, pressure hunting occurs and instantaneous negative pressure occurs, making it impossible to sufficiently prevent negative pressure in the pressurization chamber. . It is also conceivable to constantly supply nitrogen gas in an amount exceeding the amount of seal leakage to the pressurizing chamber, but in this case, the amount of seal leakage increases and the effect of preventing negative pressure is insufficient.

また、冷却室は蒸着メツキ面の酸化を防止する
為、窒素雰囲気に保たれており、冷却室でシール
漏れが生ずると蒸着メツキ面の酸化を招く。これ
を防止するため冷却室自体に窒素ガスを供給する
と上記賦圧室の場合と同様の問題を生ずる。
In addition, the cooling chamber is kept in a nitrogen atmosphere to prevent oxidation of the plating surface, and if a seal leak occurs in the cooling chamber, the plating surface will oxidize. If nitrogen gas is supplied to the cooling chamber itself in order to prevent this, the same problem as in the case of the pressure chamber described above will occur.

<発明の構成> 本発明は賦圧室の後工程であるシールロール室
ないし冷却室に窒素ガスを供給することによりハ
ンチングを生ぜずに効果的に賦圧室ないし冷却室
の負圧化を防止し、上記シール漏れの問題を解決
したものである。
<Structure of the Invention> The present invention effectively prevents negative pressure in the pressure chamber or cooling chamber without causing hunting by supplying nitrogen gas to the seal roll chamber or cooling chamber, which is a subsequent process of the pressure chamber. This solves the problem of seal leakage mentioned above.

本発明によれば、賦圧室とこれに接続する入側
シールロール室を経由して真空蒸着室に至り出側
シールロール室を経て冷却室に至る連続真空蒸着
メツキラインにおいて、ストリツプ溶接部の通過
を予め検出し、該検出信号に応じて上記シールロ
ール室の任意のシール部分に不活性ガスを供給す
ることを特徴とする賦圧室ないし冷却室の負圧防
止方法が提供される。
According to the present invention, in the continuous vacuum evaporation plating line that goes from the pressure chamber and the inlet seal roll chamber connected to the vacuum evaporation chamber to the cooling chamber via the outlet seal roll chamber, the strip welds pass through the plating line. There is provided a method for preventing negative pressure in a pressurization chamber or a cooling chamber, which is characterized by detecting in advance the detection signal and supplying inert gas to an arbitrary seal portion of the seal roll chamber in accordance with the detection signal.

既に述べたように賦圧室および冷却室のシール
漏れは主にストリツプ(鋼板)の溶接部分の通過
によつて生ずる。即ち上記溶接部分は板厚が厚い
のでシールロールを僅かに押し広げてシール漏れ
を生ずる。そこで本発明は該溶接部の通過を予め
検出して不活性ガス、主に窒素ガスを該賦圧室お
よび冷却室以外のシール部分に供給してその負圧
化を防止する。鋼板の溶接部分の通過を予め検出
するには、鋼板の進行に伴つて上記溶接部分をト
ラツキングすれば良い。また賦圧室に設置した圧
力計によりシール漏れを検出し、圧力低下量に応
じて必要な窒素ガス供給量を把握し、更には賦圧
室とその入側ラインとの圧力差を検出して万一発
生する賦圧室の負圧を検出し、この検出信号に応
じて窒素ガスをシールロール室等に供給する。賦
圧室の負圧化を防止するために窒素ガスを供給す
る部分としては入側シールロール室中の賦圧室側
のシールロール部分が好ましい。この部分は最初
に真空吸引される部分であり、空気の侵入を初期
の段階で防止するうえで都合が良い。
As already mentioned, seal leakage in the pressure chamber and the cooling chamber is mainly caused by the passage of the welded portion of the strip (steel plate). That is, since the plate thickness of the welded portion is thick, the seal roll is slightly expanded, causing seal leakage. Therefore, the present invention detects the passage of the welded portion in advance and supplies an inert gas, mainly nitrogen gas, to the sealed portions other than the pressure chamber and the cooling chamber to prevent the pressure from becoming negative. In order to detect in advance the passage of a welded portion of a steel plate, it is sufficient to track the welded portion as the steel plate advances. In addition, a pressure gauge installed in the pressure chamber detects seal leakage, determines the required amount of nitrogen gas supply according to the amount of pressure drop, and also detects the pressure difference between the pressure chamber and its inlet line. Negative pressure in the pressure chamber that should occur is detected, and nitrogen gas is supplied to the seal roll chamber or the like in response to this detection signal. The seal roll portion on the pressure chamber side in the entrance seal roll chamber is preferable as the portion to which nitrogen gas is supplied to prevent negative pressure in the pressure chamber. This part is the first part to be vacuumed, and is convenient for preventing air from entering at an early stage.

次に、冷却室においても蒸着メツキ面の酸化を
防止するため予め窒素ガスが供給されている。そ
こで上記賦圧室の場合と同様に上記溶接部の通過
を予め検出して冷却室直前のシールロール部分に
窒素ガスを供給し、冷却室の負圧化を防止する。
Next, nitrogen gas is also supplied in advance to the cooling chamber in order to prevent oxidation of the vapor-deposited plating surface. Therefore, as in the case of the pressurizing chamber, passage of the welded portion is detected in advance and nitrogen gas is supplied to the seal roll portion immediately in front of the cooling chamber to prevent negative pressure in the cooling chamber.

<実施例> 第1図および第2図に本発明に係る負圧防止方
法の実施例を示す。第1図は入側シールロール室
に窒素ガスを供給する例を示し、第2図は冷却室
直前の出側シールロール室に窒素ガスを供給する
例を示す。第1図において賦圧室1はダクト2を
介して入側シールロール室3に接続しており、賦
圧室1の入口直前にシールロール4が設けられ、
シールロール室3の内部に第1シールロール5、
第2シールロール6が順次配設されている。鋼板
7は賦圧室1およびシールロール室3を経由して
図示しない真空蒸着室に導かれる。賦圧室1には
供給路8を通じて窒素ガスが充填されており、該
賦圧室1と上記シールロール4付近とに差圧発信
器10が設置され、該差圧発信器10には調節計
11が接続し、該調節計11は上記窒素ガス供給
路8に介設した調節弁12に接続する。更に賦圧
室1には低圧発信器13が設けられ、該低圧発信
器13は賦圧室1の窒素ガスを外部に放出する排
気路に介設した調節弁14に接続している。一方
上記窒素ガス供給路8はシールロール室3側に分
岐し、上記第1シールロール5と第2シールロー
ル6との間に窒素ガスを供給する供給路9が形成
され、該管路9に調節弁15が介設され、該調節
弁15は上記調節計11に接続している。鋼板7
の溶接部が通過するのに伴い、賦圧室1とシール
ロール4外方との間で窒素ガスが漏れ、差圧が生
じると、差圧発信器10によつてこの圧力変動が
検出され、調節計11を介して窒素ガス供給路8
の調節弁12が自動的に開放され、所定量の窒素
ガスが賦圧室1に補充される。同時に、供給路9
の調節弁15が開放され、所定量の窒素ガスがシ
ールロール室3に供給され、賦圧室1の負圧化を
防止し、入側ラインからの水素ガスないし空気の
侵入を防止する。尚、差圧発信器10の信号によ
り補給する窒素ガス量は予め定めておいてもよ
く、また発生する差圧の程度に応じて定めてもよ
い。
<Example> FIG. 1 and FIG. 2 show an example of the negative pressure prevention method according to the present invention. FIG. 1 shows an example in which nitrogen gas is supplied to the inlet seal roll chamber, and FIG. 2 shows an example in which nitrogen gas is supplied to the outlet seal roll chamber immediately before the cooling chamber. In FIG. 1, the pressure chamber 1 is connected to the inlet seal roll chamber 3 via the duct 2, and a seal roll 4 is provided just before the entrance of the pressure chamber 1.
A first seal roll 5 is provided inside the seal roll chamber 3.
Second seal rolls 6 are sequentially arranged. The steel plate 7 is led to a vacuum deposition chamber (not shown) via the pressure chamber 1 and the seal roll chamber 3. The pressurization chamber 1 is filled with nitrogen gas through a supply path 8, and a differential pressure transmitter 10 is installed between the pressurization chamber 1 and the vicinity of the seal roll 4, and the differential pressure transmitter 10 is equipped with a controller. 11 is connected, and the controller 11 is connected to a control valve 12 interposed in the nitrogen gas supply path 8. Further, the pressurization chamber 1 is provided with a low pressure transmitter 13, and the low pressure transmitter 13 is connected to a control valve 14 interposed in an exhaust path for discharging nitrogen gas from the pressurization chamber 1 to the outside. On the other hand, the nitrogen gas supply path 8 branches to the seal roll chamber 3 side, and a supply path 9 for supplying nitrogen gas is formed between the first seal roll 5 and the second seal roll 6. A control valve 15 is interposed, and the control valve 15 is connected to the controller 11. Steel plate 7
As the welded part passes through, nitrogen gas leaks between the pressurizing chamber 1 and the outside of the seal roll 4, and a pressure difference is generated. This pressure fluctuation is detected by the differential pressure transmitter 10, Nitrogen gas supply path 8 via controller 11
The control valve 12 is automatically opened, and the pressure chamber 1 is replenished with a predetermined amount of nitrogen gas. At the same time, supply path 9
The control valve 15 is opened, and a predetermined amount of nitrogen gas is supplied to the seal roll chamber 3 to prevent negative pressure in the pressure chamber 1 and prevent hydrogen gas or air from entering from the inlet line. Note that the amount of nitrogen gas to be supplied may be determined in advance based on the signal from the differential pressure transmitter 10, or may be determined in accordance with the degree of differential pressure that occurs.

上記実施例は窒素ガスを賦圧室と同時にシール
ロール室に供給する例を示したが、このような窒
素ガス供給回路に限らず、シールロール室のみに
窒素ガスを補給するようにしてもよい。例えば、
図示するように賦圧室1に低圧発信器20を設
け、該低圧発信器20と上記シールロール室に窒
素ガスを供給する管路22に介設した調節弁23
とを調節計21を介して接続し、低圧発信器20
の検出信号に応じて調節弁23を開放し、窒素ガ
スをシールロール室3に供給する。
Although the above embodiment shows an example in which nitrogen gas is supplied to the sealing roll chamber at the same time as the pressurizing chamber, the nitrogen gas supply circuit is not limited to such a nitrogen gas supply circuit, and nitrogen gas may be supplied only to the sealing roll chamber. . for example,
As shown in the figure, a low pressure transmitter 20 is provided in the pressure application chamber 1, and a control valve 23 is interposed between the low pressure transmitter 20 and a conduit 22 for supplying nitrogen gas to the seal roll chamber.
is connected to the low voltage transmitter 20 via the controller 21.
The control valve 23 is opened in response to the detection signal, and nitrogen gas is supplied to the seal roll chamber 3.

次に、第2図において、冷却室30には供給路
31を通じて窒素ガスが供給されている。一方、
出側シールロール室32には他の窒素ガス供給路
33が接続し、該供給路33に調節弁34が介設
され、該調節弁34は調節計35を介して冷却室
30に設けた低圧発信器36に接続している。
Next, in FIG. 2, nitrogen gas is supplied to the cooling chamber 30 through a supply path 31. on the other hand,
Another nitrogen gas supply path 33 is connected to the exit seal roll chamber 32 , and a control valve 34 is interposed in the supply path 33 . It is connected to a transmitter 36.

尚、ストリツプ溶接部の通過を予め検出する手
段の一例を第1図中に示す。図中、40はロー
ル、41はモータ、42はストリツプ移動量測定
部、43は溶接点の検出器、44は溶接点トラツ
キング演算器である。
Incidentally, an example of a means for detecting in advance the passage of a strip weld is shown in FIG. In the figure, 40 is a roll, 41 is a motor, 42 is a strip movement measuring section, 43 is a welding point detector, and 44 is a welding point tracking calculator.

<発明の効果> 本発明の方法によれば、賦圧室および冷却室の
負圧化が確実に防止できるので、空気や還元炉の
水素が真空蒸着室に侵入する虞がなく、鋼板の連
続蒸着メツキを安全に実施できる。更にシール室
の入り口側に予め窒素ガスを供給することによ
り、シールロールで区画された各真空室の圧力変
動が未然に防止され、各真空室の圧力を適切に保
持することが溶易になる。
<Effects of the Invention> According to the method of the present invention, negative pressure in the pressurization chamber and the cooling chamber can be reliably prevented, so there is no possibility that air or hydrogen from the reduction furnace will enter the vacuum deposition chamber, and the continuous steel plate Vapor plating can be performed safely. Furthermore, by supplying nitrogen gas to the entrance side of the sealing chamber in advance, pressure fluctuations in each vacuum chamber divided by the sealing roll are prevented, making it easier to maintain the pressure in each vacuum chamber appropriately. .

更に、冷却室の負圧化が防止され、鋼板メツキ
面の酸化が防止されるのでメツキ層の密着性が向
上する。
Furthermore, negative pressure in the cooling chamber is prevented, and oxidation of the plated surface of the steel plate is prevented, so the adhesion of the plated layer is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明の実施例を示す概
略図である。 図面中、1……賦圧室、2……ダクト、3……
シールロール室、4,5,6……シールロール、
7……鋼板、8,9……供給路、10……差圧発
信器、11,21……調節計、12,14,1
5,23……調節弁、13,20……低圧発信
器。
1 and 2 are schematic diagrams showing an embodiment of the present invention. In the drawing, 1...pressure chamber, 2...duct, 3...
Seal roll chamber, 4, 5, 6...Seal roll,
7... Steel plate, 8, 9... Supply path, 10... Differential pressure transmitter, 11, 21... Controller, 12, 14, 1
5, 23... Control valve, 13, 20... Low pressure transmitter.

Claims (1)

【特許請求の範囲】 1 賦圧室とこれに接続する入側シールロール室
を経由して真空蒸着室に至り出側シールロール室
を経て冷却室に至る連続真空蒸着メツキラインに
おいて、ストリツプ溶接部の通過を予め検出し、
該検出信号に応じて上記シールロール室の任意の
シール部分に不活性ガスを供給することを特徴と
する賦圧室ないし冷却室の負圧防止方法。 2 上記入側シールロール室の賦圧室側シール部
分に不活性ガスを供給する特許請求の範囲第1項
の負圧防止方法。 3 上記出側シールロール室の冷却室直前のシー
ルロール部分に不活性ガスを供給する特許請求の
範囲第1項の負圧防止方法。
[Claims] 1. In a continuous vacuum evaporation plating line that passes through a pressure chamber and an inlet seal roll chamber connected thereto to a vacuum evaporation chamber, passes through an outlet seal roll chamber, and reaches a cooling chamber, the strip welds are Detect passing in advance,
A method for preventing negative pressure in a pressurization chamber or a cooling chamber, comprising supplying an inert gas to any seal portion of the seal roll chamber in response to the detection signal. 2. The negative pressure prevention method according to claim 1, wherein an inert gas is supplied to the pressure chamber side seal portion of the entrance seal roll chamber. 3. The method for preventing negative pressure according to claim 1, in which inert gas is supplied to the seal roll portion of the exit seal roll chamber immediately before the cooling chamber.
JP2420086A 1986-02-07 1986-02-07 Method for preventing negative pressure in pressurizing chamber or cooling chamber of continuous vacuum deposition plating line Granted JPS62182276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2420086A JPS62182276A (en) 1986-02-07 1986-02-07 Method for preventing negative pressure in pressurizing chamber or cooling chamber of continuous vacuum deposition plating line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2420086A JPS62182276A (en) 1986-02-07 1986-02-07 Method for preventing negative pressure in pressurizing chamber or cooling chamber of continuous vacuum deposition plating line

Publications (2)

Publication Number Publication Date
JPS62182276A JPS62182276A (en) 1987-08-10
JPH0332631B2 true JPH0332631B2 (en) 1991-05-14

Family

ID=12131676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2420086A Granted JPS62182276A (en) 1986-02-07 1986-02-07 Method for preventing negative pressure in pressurizing chamber or cooling chamber of continuous vacuum deposition plating line

Country Status (1)

Country Link
JP (1) JPS62182276A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109847417A (en) * 2017-11-30 2019-06-07 南通星辰合成材料有限公司 A kind of high organic wastewater with high salt is temporary and precipitates storage tank

Also Published As

Publication number Publication date
JPS62182276A (en) 1987-08-10

Similar Documents

Publication Publication Date Title
US7338728B2 (en) Fuel cell block including a water separator
KR940006184A (en) Decompression Treatment System and Decompression Treatment Method
US4904547A (en) Fuel-cell device
US20090302007A1 (en) Device for centring and clamping tubular parts, comprising means for regulating the gas flow rate in order to control the oxygen content
WO2003001580A1 (en) Thermal oxidation process control by controlling oxidation agent partial pressure
CN111593292B (en) Dynamic detection device and detection method for carbon potential of vacuum furnace
JPH0332631B2 (en)
EP1150328A3 (en) Vacuum system for film formation apparatus and process, leak judgement method, and computer-readable recording medium with recorded leak-judgment-executable program
KR960703640A (en) FIRE DETECTING AND COUNTERACTING METHOD IN SEALING DEVICE AT INLET / OUTLET OF COMPARTMENT OF CONTINUOUS HEAT TREATMENT FURNACE OR THE LIKE FOR METALLIC STRIP
WO2022230766A1 (en) Gas processing system
KR20100032107A (en) System and method for detecting defective of weldingpart of lng tank
JPH06346882A (en) Purge gas quantity control device for shaft seal of dry vacuum
JPS63238274A (en) Method for preventing negative pressure in continuous vacuum deposition plating line
US3949593A (en) Diffusion monitoring apparatus
CN115332584A (en) Fuel gas concentration measuring and controlling device for fuel cell engine
JP3104287B2 (en) Storage method when the molten carbonate fuel cell is stopped
JPH07119559A (en) Controller for internal combustion engine
JPS63238275A (en) Method for preventing negative pressure in continuous vapor deposition plate device
CN1153016C (en) Closure member and method for preventing flange from being leakage
JP4203836B2 (en) Method for detecting gas leakage in inner pipe of gas multi-pipe
JPH0347924A (en) Method for controlling inner pressure in continuous annealing furnace
JPH0976062A (en) First layer welding method
JPH0636477Y2 (en) Sealing device for closed melting furnace
JPH04187897A (en) Backup system in case of abnormality of dry-gas seal
JP2022170680A (en) Gas processing system