JPH0331659A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH0331659A
JPH0331659A JP1167585A JP16758589A JPH0331659A JP H0331659 A JPH0331659 A JP H0331659A JP 1167585 A JP1167585 A JP 1167585A JP 16758589 A JP16758589 A JP 16758589A JP H0331659 A JPH0331659 A JP H0331659A
Authority
JP
Japan
Prior art keywords
compressor
capacity
accumulator
operating capacity
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1167585A
Other languages
Japanese (ja)
Other versions
JP2508842B2 (en
Inventor
Koji Ishikawa
石川 孝治
Masahiko Sugino
雅彦 杉野
Shuichi Tani
秀一 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1167585A priority Critical patent/JP2508842B2/en
Publication of JPH0331659A publication Critical patent/JPH0331659A/en
Application granted granted Critical
Publication of JP2508842B2 publication Critical patent/JP2508842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PURPOSE:To ensure a proper oil return amount even when operation capacity of a compressor is changed by a method wherein when a state in which operation capacity of the compressor is below a given value is continued for a given time or more, the solenoid valve of a bypass passage is opened, operation capacity of the compressor is increased, and when the delivery pressure of the compressor exceeds a given value, or when the delivery temperature of the compressor exceeds a given value, operation capacity is returned to a value in a state before the increase thereof. CONSTITUTION:When operation capacity CP of a compressor is reduced to a value lower than a preset control value CP0, counting of a operation time is started by a clocking means 15. When an integral time T1 exceeds a preset control value To1, oil recovery operation, i.e., operation, e.g. the increase of compressor operation capacity CP, opening of a solenoid valve 7, is effected. Further, when, during oil recovery operation, a delivery pressure or a delivery temperature exceeds a given control value, oil recovery operation is immediately completed, operation is returned to a normal state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は空気調和機の冷凍サイクル及び制御装置に関
するものであり、特に圧縮容量調整可能な圧縮機を用い
た空気調和機の返油システムに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a refrigeration cycle and control device for an air conditioner, and particularly relates to an oil return system for an air conditioner using a compressor with adjustable compression capacity. It is something.

〔従来の技術〕[Conventional technology]

従来この種の装置として第3図に示すものがある。 A conventional device of this type is shown in FIG.

図において、(1)は圧縮機、(2)は四方弁、(3)
は室外熱交換器、(4)は減圧装置、(6)は室内熱交
換器、(6)はアキュムレータ、(6m)は前記アキュ
ームレータ(6)の流出管途中にキリ穴をあけて構成さ
れる返油装置、αηおよび(6)はそれぞれガス側延長
配管および油側延長配管である。図中、実線矢印は冷房
運転時の冷媒流れ方向を、ま九破線矢印は暖房運転時の
冷媒流れ方向を示している。
In the figure, (1) is the compressor, (2) is the four-way valve, and (3) is the compressor.
is an outdoor heat exchanger, (4) is a pressure reducing device, (6) is an indoor heat exchanger, (6) is an accumulator, and (6m) is a drilled hole in the middle of the outflow pipe of the accumulator (6). The oil return device, αη, and (6) are a gas side extension pipe and an oil side extension pipe, respectively. In the figure, solid arrows indicate the flow direction of refrigerant during cooling operation, and broken arrows indicate the flow direction of refrigerant during heating operation.

次に、冷房運転時の動作について説明する。圧縮機(1
)でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
は、四方弁(2)を介して室外熱交換器(3)にME人
し、室外空気に放熱する一方、冷媒は凝縮して高圧の液
冷媒となり、油側延長配管υを介して減圧装置(4)で
減圧され、低圧の気液混合冷媒となって、室内熱交換器
(5)に供給される。室内熱交換器(5)では、室内空
気から採熱して冷房する一方冷媒は蒸発して低圧のガス
冷媒となり、ガス側延長配管αυおよび四方弁(2)を
介してアキュムレータ(6)に流入する。アキュムレー
タ(6)では、室内熱交換器(5)で蒸発し切れなかっ
た液冷媒とガス冷媒を分離して圧縮機(1)に吸入させ
る一方、アキュムレータ(6)の底部に溜っている冷媒
と冷凍機油の混合液を返油装置(6番)を介して圧縮機
(1)に吸入させ、圧縮機(1)内部の潤滑に必要な油
量を適正に保持する。
Next, the operation during cooling operation will be explained. Compressor (1
), the discharged high-temperature, high-pressure gas refrigerant is transferred to the outdoor heat exchanger (3) via the four-way valve (2), and radiates heat to the outdoor air, while the refrigerant is condensed. The refrigerant becomes a high-pressure liquid refrigerant, is depressurized by the pressure reducing device (4) via the oil side extension pipe υ, becomes a low-pressure gas-liquid mixed refrigerant, and is supplied to the indoor heat exchanger (5). In the indoor heat exchanger (5), heat is collected from the indoor air for cooling, while the refrigerant evaporates to become a low-pressure gas refrigerant, which flows into the accumulator (6) via the gas side extension pipe αυ and the four-way valve (2). . In the accumulator (6), the liquid refrigerant and gas refrigerant that were not completely evaporated in the indoor heat exchanger (5) are separated and sucked into the compressor (1), while the refrigerant accumulated at the bottom of the accumulator (6) is The mixed liquid of refrigerating machine oil is sucked into the compressor (1) through the oil return device (No. 6) to maintain an appropriate amount of oil necessary for lubrication inside the compressor (1).

次に、暖房運転時の動作について説明する。圧縮機(1
)でガス冷媒を圧縮し、吐出された高温高圧のガス冷媒
は、四方弁(2)およびガス側延長配管01)を介して
室内熱交換器(6)に供給され、室内空気に放熱して暖
房する一方、冷媒は凝縮して高圧の液冷媒となる。この
液冷媒は、減圧装置(4)に流入し、減圧装置(4)で
減圧され低圧の気液混合冷媒となり室外熱交換器(3)
に供給され、室外空気より採熱して、低圧のガス冷媒と
なって、四方弁(2)を介してアキュムレータ(6)に
流入する。アキュムレータ(6)では冷房運転時と同様
に、ガス冷媒と液冷媒を分離する一方、圧縮81<1>
に必要な冷凍機油を返油する。
Next, the operation during heating operation will be explained. Compressor (1
), and the discharged high-temperature, high-pressure gas refrigerant is supplied to the indoor heat exchanger (6) via the four-way valve (2) and the gas side extension pipe 01), where it radiates heat to the indoor air. While heating, the refrigerant condenses into high-pressure liquid refrigerant. This liquid refrigerant flows into the pressure reducing device (4), where it is depressurized and becomes a low-pressure gas-liquid mixed refrigerant that passes through the outdoor heat exchanger (3).
It collects heat from the outdoor air, becomes a low-pressure gas refrigerant, and flows into the accumulator (6) via the four-way valve (2). In the accumulator (6), gas refrigerant and liquid refrigerant are separated as in the case of cooling operation, while compression 81<1>
Returns the necessary refrigeration oil.

また、アキュムレータ(6)は冷房運転時と暖房運転時
に必要な冷媒量の差により発生する余剰冷媒量を回収す
る機能がある。つまり、第3図に示す如き冷媒回路構成
の場合、暖房運転時には、油側延長配管α匂内の冷媒状
態は低圧の気液混合冷媒であるため、必要な冷媒量は比
較的少ない。これに対して、冷房運転時には、油側延長
配管槃内の冷媒状態は高圧の液冷媒となるため、比重量
も大きく、必要な冷媒量が多くなる。従って、暖房運転
時には、多量の冷媒液がアキュムレータ(6)内に停滞
する。この停滞する余剰冷媒量は、延長配管αりおよび
02の配管長が長くなる程多くなる。
Further, the accumulator (6) has a function of recovering the surplus amount of refrigerant generated due to the difference in the amount of refrigerant required during cooling operation and heating operation. That is, in the case of the refrigerant circuit configuration shown in FIG. 3, during heating operation, the refrigerant state in the oil side extension pipe α is a low-pressure gas-liquid mixed refrigerant, so the amount of refrigerant required is relatively small. On the other hand, during cooling operation, the state of the refrigerant in the oil side extension pipe becomes a high-pressure liquid refrigerant, so the specific weight is also large and the required amount of refrigerant increases. Therefore, during heating operation, a large amount of refrigerant liquid remains in the accumulator (6). The amount of surplus refrigerant that stagnates increases as the extension pipe α and the length of the 02 pipe become longer.

なお、返油袋ffi(6m)を介して圧縮機(1)に流
入する液冷媒と冷凍機油の混合液流量は簡易的に下に示
す圧力式により求まる。
The flow rate of the mixture of liquid refrigerant and refrigerating machine oil flowing into the compressor (1) via the oil return bag ffi (6 m) is simply determined by the pressure equation shown below.

ΔP1+ΔP2靭ΔP3 八P1: ガス冷媒がアキュム流出管に流入する際に発
生する損失および流出管内 の管摩擦損失 八戸2:アキュムレータ内液面高さによる液柱圧 ΔP、:返油装!!i(キリ穴)前後に発生する差圧 つまり、ガス冷媒の流速が速くなる程ΔP1が大きくな
り、かつアキュムレータ(6)内部の余剰冷媒液層が多
くなる程ΔP1が大きくなるので、返油装置(61)前
後の差圧が太きく /、r 9 、結果的に混合液流量
が増加する。
ΔP1 + ΔP2 Toughness ΔP3 8P1: Loss that occurs when gas refrigerant flows into the accumulator outflow pipe and pipe friction loss in the outflow pipe Hachinohe 2: Liquid column pressure ΔP due to the liquid level height in the accumulator: Oil return system! ! The differential pressure that occurs before and after i (through hole), that is, the faster the flow rate of the gas refrigerant, the larger ΔP1 becomes, and the larger the surplus refrigerant liquid layer inside the accumulator (6), the larger ΔP1 becomes. (61) The differential pressure before and after becomes large /, r 9 , and as a result, the mixed liquid flow rate increases.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上のように従来の空気調和機では、アキュムレータ(
6)の返油は、冷媒流速を、余剰冷媒液量に影響される
ため、転負荷時の運転ではガス速度が低下し、そのため
前記圧力式に示す通りΔP1の低下により結果的に圧縮
機への油の戻りが悪くなり、こういう状態が長時間連続
すると圧縮機の故障へと至るという間Mがあっ2と。
As mentioned above, in conventional air conditioners, the accumulator (
6) Return oil is affected by the amount of surplus refrigerant liquid, so the gas velocity decreases during load change operation, and as a result, as shown in the pressure equation above, ΔP1 decreases, resulting in a decrease in the flow rate of the refrigerant to the compressor. The oil returned poorly, and if this condition continued for a long time, it would lead to compressor failure.

尚、空気調和機に使用する圧縮機(1)を容量可変形と
した場合には、ガス流速の範囲が広くなり、小容量時に
おけるガス流速の低下が著しく、油の戻りも極端に悪く
なる。
In addition, when the compressor (1) used in the air conditioner is of a variable capacity type, the range of gas flow velocity becomes wider, the gas flow velocity decreases significantly at small capacity, and oil return becomes extremely poor. .

また、室内機と室外機関の高低差が大きい時には、重力
の影響により、ガス管内に油が溜りやすくなり、返油量
は更に減少するため、ユニットの設ahの制約が生じ、
使い勝手も悪くなるという問題もあった。
In addition, when there is a large difference in height between the indoor unit and the outdoor engine, oil tends to accumulate in the gas pipe due to the influence of gravity, further reducing the amount of oil returned, which creates constraints on the installation of the unit.
There was also the problem of poor usability.

この発明は、かかる問題点を解決するためになされたも
ので圧縮機の運転容量が変化しても、適度な返油ゑを確
保して、圧縮機の運転状態を良好に維持する空気調和機
を得ることを目的としている。
This invention was made to solve this problem, and is an air conditioner that maintains a good operating condition of the compressor by ensuring an appropriate amount of oil return even if the operating capacity of the compressor changes. The purpose is to obtain.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる空気調和機は、圧縮機と四方弁の間の
接続配管途中よ軛電磁弁を介してアキュムレータまたは
アキュムレータ流入配管に接続されたバイパス路及び、
前記圧縮機の運転容量を制御する運転容量制御手段と前
記電磁弁を制御する1[磁弁制御手段とを設け、圧縮機
が所定以下の運転容量を所定時間以上継続した場合、前
記圧縮機の運転容量を増加させると共に前記電磁弁を開
略するようにしたものである。
The air conditioner according to the present invention includes a bypass path connected to an accumulator or an accumulator inflow pipe via a yoke solenoid valve in the middle of a connecting pipe between a compressor and a four-way valve;
An operating capacity control means for controlling the operating capacity of the compressor and a magnetic valve control means for controlling the electromagnetic valve are provided, and when the compressor continues to have an operating capacity below a predetermined value for more than a predetermined time, The operating capacity is increased and the solenoid valve is opened.

また、運転容量制御手段からの出力による容量増加運転
時間を計時する計時手段と、圧縮機の吐出圧力を検出す
る吐出圧力検出手段、及び吐出温度を検出する吐出温度
検知手段とを設け、容量増加運転時間が所定時間以上継
続したとき、または上記検知手段により吐出圧力、また
は吐出温度が所定値以上のとき、圧縮機の運転容量を、
運転容量増加前の状態に戻すようにしたものである。
In addition, a timer for measuring the capacity increasing operation time based on the output from the operating capacity control means, a discharge pressure detecting means for detecting the discharge pressure of the compressor, and a discharge temperature detecting means for detecting the discharge temperature are provided. When the operating time continues for a predetermined time or more, or when the discharge pressure or discharge temperature is higher than a predetermined value as determined by the detection means, the operating capacity of the compressor is
This is to restore the state to the state before the increase in operating capacity.

〔作用〕[Effect]

この発明では、圧縮機の運転容量が所定値以下の状態が
所定時間以上継続した場合、バイパス路の電磁弁を開略
し、圧縮機の運転容量を増加させるようにし、圧縮機へ
の適度な返油量を確保する。
In this invention, when the operating capacity of the compressor remains below a predetermined value for a predetermined period of time or more, the solenoid valve in the bypass path is opened to increase the operating capacity of the compressor, thereby providing an appropriate return to the compressor. Ensure the amount of oil.

また、計時手段により容量増加運転時間を計時し、この
容量増加運転時間が所定時間以上継続したとき、または
、圧縮機の吐出圧力が所定値以上のとき、または圧縮機
の吐出温度が所定値以上の場合は運転容量増加前の状態
に戻すようにしたため、空調機が異常な状態に陥ること
もない。
In addition, the capacity increase operation time is measured by a timing means, and when this capacity increase operation time continues for a predetermined time or more, or when the compressor discharge pressure is a predetermined value or more, or when the compressor discharge temperature is a predetermined value or more. In this case, the air conditioner is returned to the state before the increase in operating capacity, so the air conditioner does not fall into an abnormal state.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による空気調和機の全体構
成図である。図において、(1) 、 (z) 、 (
3) 。
FIG. 1 is an overall configuration diagram of an air conditioner according to an embodiment of the present invention. In the figure, (1), (z), (
3).

(4)、(5)= f6)、 (6m)、及びal)、
(2)は第3図に示す空気調和機と同様のものであり、
(7)は電磁弁、(8)は、圧縮機(1)と四方弁(2
)の間の接続配管からアキュムレータ(6)またはアキ
ュムレータ(6)への流入管に接続されたバイパス路、
(9)は吐出温度検出手段、 QOは吐出圧力検出手段
であり、いずれも圧縮機(1)と四方弁(2)の間の吐
出配管に取付けられたものである。Q3は前記圧力検出
手段01による検出圧力に基づき、圧縮機(1)の運転
容量を制御する運転容量制御手段、α→は前記バイパス
路(8)に設けらnた電磁弁(7)の開閉制御を行なう
電磁弁制御手段、0りは、圧縮機の運転容量が所定値以
下になっている時間及び、返油量確保のために圧縮機運
転容量を増加している時間を計時する計時手段である。
(4), (5) = f6), (6m), and al),
(2) is similar to the air conditioner shown in Figure 3,
(7) is a solenoid valve, (8) is a compressor (1) and a four-way valve (2).
) a bypass line connected to the accumulator (6) or the inflow pipe to the accumulator (6) from the connecting pipe between
(9) is a discharge temperature detection means, and QO is a discharge pressure detection means, both of which are attached to the discharge piping between the compressor (1) and the four-way valve (2). Q3 is operating capacity control means for controlling the operating capacity of the compressor (1) based on the pressure detected by the pressure detecting means 01, and α→ is the opening/closing of the solenoid valve (7) provided in the bypass path (8). A solenoid valve control means for controlling, and a timing means for measuring the time when the operating capacity of the compressor is below a predetermined value and the time when the operating capacity of the compressor is increased to ensure the amount of oil returned. It is.

尚、図中実線矢印は冷房運転時の冷媒流れ方向を示し、
破線矢印は暖房運転時の冷媒流れ方向を示す。冷房運転
並びに暖房運転時の冷媒の動作については、第3図に示
す従来の空気調和機と全く同様なので説明を省略し、圧
縮機小容竜運転時の動作について説明する。
In addition, the solid line arrow in the figure indicates the refrigerant flow direction during cooling operation.
The dashed arrow indicates the refrigerant flow direction during heating operation. The operation of the refrigerant during the cooling operation and the heating operation is completely the same as that of the conventional air conditioner shown in FIG. 3, so the explanation will be omitted, and the operation during the compressor small capacity operation will be explained.

第2図は運転容量制御手段I%電磁弁制御手段α慢及び
計時手段OQの制御状態を示すフローチャートである。
FIG. 2 is a flowchart showing the control status of the operating capacity control means I% solenoid valve control means α and the time measurement means OQ.

ステップOeで運転が開始すると、運転状態に合わせて
圧縮機は運転容量を制卸していく。ここで、負荷が小さ
く、圧縮機の運転容量cpが小さくなり、予め設定しで
ある制御値CPo以下か否かをステップ0乃で判定し、
制御値CPo以下であれば、計時手段aつによりその運
転時間のカウントを開始し、ステップ(ト)で示す如く
、積算時間T、が予め設定しである制御値To1以上と
なった場合は、ステップOIで示す油回収動作、つまり
圧縮機運転容ficPの増加と、電磁弁(7)の開路と
いう動作を行なう。
When the operation starts in step Oe, the compressor reduces or reduces the operating capacity according to the operating state. Here, it is determined in step 0 whether or not the load is small and the operating capacity cp of the compressor is small and is equal to or less than a preset control value CPo,
If it is less than the control value CPo, the timer a starts counting the operating time, and as shown in step (G), if the cumulative time T becomes more than the preset control value To1, The oil recovery operation indicated by step OI, that is, the operation of increasing the compressor operating capacity ficP and opening the solenoid valve (7) is performed.

前記油回収制作が開始すると、前記計時手段(至)によ
り、油回収動作時間の連続経過時間T2をカウントし、
ステップ(1)に示す如く、前記連続時間T2が所定の
油回収動作最大規制時間ToHに達すると、ステップ(
2)に示す如く前記油回収動作を終了し、圧縮機運転容
量cpを運転容量増加前の状態に戻すと同時に、電磁弁
(7)も閉路する。また、ステツプ勾において連続時間
T2が規制時間To1以下の場合であ・つても、ステッ
プ6!])、Ulζ示す如く所定の制御値Pdo 、 
Tdo以上となれば、同様に油回収動作終了する。
When the oil recovery production starts, the time measurement means (to) counts a continuous elapsed time T2 of the oil recovery operation time,
As shown in step (1), when the continuous time T2 reaches the predetermined maximum oil recovery operation regulation time ToH, step (
As shown in 2), when the oil recovery operation is completed and the compressor operating capacity cp is returned to the state before the increase in operating capacity, the solenoid valve (7) is also closed. Furthermore, even if the continuous time T2 is less than the regulation time To1 in the step slope, step 6! ]), Ulζ As shown, the predetermined control value Pdo,
If it becomes Tdo or more, the oil recovery operation is similarly terminated.

つまり、本実施例による冷媒回路においては、圧縮機の
運転容量が小さくなり、冷媒のガス流速が低下する事に
より、圧縮機への返油量が減少した場合、−時的に圧縮
機の運転容量を増加し、返油量を確保すると共に、圧力
が所定値以下の場合高圧の上昇を抑制するため’f47
a弁(7)を間略し、吐出ガスの一部を低圧側へバイパ
スさせるように構成している。さらに、油回収動作中、
吐出圧力または吐出温度が、所定の制御値以上となった
場合は即座に油回収動作を終了し、通常運転に復帰する
0 〔発明の効果〕 この発明は以上説明し九ように構成されているので、以
下に記載されるような効果を奏する。
In other words, in the refrigerant circuit according to this embodiment, when the operating capacity of the compressor becomes smaller and the refrigerant gas flow rate decreases, resulting in a decrease in the amount of oil returned to the compressor, - 'f47 to increase capacity, secure oil return amount, and suppress high pressure rise when pressure is below a specified value.
The a-valve (7) is omitted and a part of the discharged gas is bypassed to the low pressure side. Additionally, during oil recovery operations,
When the discharge pressure or discharge temperature exceeds a predetermined control value, the oil recovery operation is immediately terminated and normal operation is resumed. [Effects of the Invention] This invention is constructed as described above. Therefore, the following effects are produced.

圧縮機の運転容量が小さくなって冷媒のガス流速が低下
したり、室内機を室外機の間の高低差が大きくて、圧縮
機への返油量が減少している状態が続いた場合、−時的
に圧縮機の運転容量を増加させ、圧縮機への返油量を7
jχ保するため圧縮機が油不足になる事がなく、圧縮機
の故障がなくなり信頼性が向、ヒする、また、圧力、及
び吐出温度が上昇した場合には、容量増加運転から運転
容量憎加前の状態に戻すようにしているためユニットが
異常運転することもない。
If the operating capacity of the compressor decreases and the refrigerant gas flow rate decreases, or if the height difference between the indoor unit and outdoor unit is large and the amount of oil returned to the compressor continues to decrease, - Temporarily increases the operating capacity of the compressor and reduces the amount of oil returned to the compressor by 7
This prevents the compressor from running out of oil, which eliminates compressor failure and improves reliability.In addition, when pressure and discharge temperature rise, the operation changes from capacity increase operation to capacity increase operation. Since the unit is returned to its previous state, the unit will not operate abnormally.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一寅施例による空気調和践の全体
構成図、第2図は、本空気調和機の油回収動作に関する
制御フローチャート、第3図は従来の空気調和機の全体
構成図である。 図中、(1)は圧縮機、(2)は四方弁、(3)は室外
熱交換器、(4)は減圧装置、(5)は室内熱交換器、
(6)はアキュムレータ、(7)は電磁弁、(9)は吐
出温度検出手段、0Qは吐出圧カオ・λ出手段、03は
運転容爪制御手段、α→は電磁弁制御手段、(至)は計
時手段である。 なお、各IZ中同−符号は、同−又は相当部分を示す。
Fig. 1 is an overall configuration diagram of an air conditioning system according to an embodiment of the present invention, Fig. 2 is a control flowchart regarding the oil recovery operation of this air conditioner, and Fig. 3 is an overall configuration diagram of a conventional air conditioner. It is a diagram. In the figure, (1) is a compressor, (2) is a four-way valve, (3) is an outdoor heat exchanger, (4) is a pressure reduction device, (5) is an indoor heat exchanger,
(6) is an accumulator, (7) is a solenoid valve, (9) is a discharge temperature detection means, 0Q is a discharge pressure/λ output means, 03 is an operation capacity claw control means, α→ is a solenoid valve control means, ) is a timekeeping means. Note that the same symbol in each IZ indicates the same or equivalent part.

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮容量調整可能な圧縮機、四方弁、室外熱交換
器、減圧装置、室内熱交換器、アキュムレータを配管接
続した冷媒回路、上記圧縮機と上記四方弁との接続配管
の途中より電磁弁を介して上記アキュムレータまたはア
キュムレータ流入配管に接続されたバイパス路、上記圧
縮機の運転容量を制御する運転容量制御手段、上記電磁
弁を制御する電磁弁制御手段、上記圧縮機の運転容量が
所定値以下の場合に計時する計時手段とを備え、前記計
時手段による計時時間が所定時間以上の場合には、上記
運転容量制御手段により上記圧縮機の運転容量を増加さ
せると共に、上記電磁弁を開路するようにしたことを特
徴とする空気調和機。
(1) A refrigerant circuit in which a compressor with adjustable compression capacity, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are connected via piping, and an electromagnetic electromagnetic circuit connected to the piping between the compressor and the four-way valve. a bypass path connected to the accumulator or accumulator inflow pipe via a valve; operating capacity control means for controlling the operating capacity of the compressor; electromagnetic valve control means for controlling the electromagnetic valve; and a timer for measuring when the time is equal to or less than a predetermined time, and when the time measured by the timer is equal to or greater than a predetermined time, the operating capacity control means increases the operating capacity of the compressor and opens the solenoid valve. An air conditioner characterized by:
(2)圧縮容量調整可能な圧縮機、四方弁、室外熱交換
器、減圧装置、室内熱交換器、アキュムレータを配管接
続した冷媒回路、上記圧縮機と上記四方弁との接続配管
の途中より電磁弁を介して上記アキュムレータまたはア
キュムレータ流入配管(2)計時手段は、運転容量制御
手段からの出力に基づく容量増加運転時間を計時し、こ
の容量増加運転時間が所定時間以上継続したとき、また
は吐出圧力検出手段により検出された圧縮機の吐出圧力
が所定圧力以上のとき、または吐出温度検出手段により
検出された吐出ガス温度が所定温度以上のとき、運転容
量制御手段により圧縮機の運転容量を運転容量増加前の
状態に戻すことを特徴とする請求項1記載の空気調和機
(2) A refrigerant circuit in which a compressor with adjustable compression capacity, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and an accumulator are connected via piping, and an electromagnetic electromagnetic circuit connected to the piping between the compressor and the four-way valve. The accumulator or accumulator inflow pipe (2) timing means measures the capacity increase operation time based on the output from the operation capacity control means through the valve, and when this capacity increase operation time continues for a predetermined time or more, or the discharge pressure When the discharge pressure of the compressor detected by the detection means is above a predetermined pressure, or when the discharge gas temperature detected by the discharge temperature detection means is above a predetermined temperature, the operating capacity of the compressor is changed to the operating capacity by the operating capacity control means. The air conditioner according to claim 1, wherein the air conditioner returns to the state before the increase.
JP1167585A 1989-06-29 1989-06-29 Air conditioner Expired - Lifetime JP2508842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1167585A JP2508842B2 (en) 1989-06-29 1989-06-29 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1167585A JP2508842B2 (en) 1989-06-29 1989-06-29 Air conditioner

Publications (2)

Publication Number Publication Date
JPH0331659A true JPH0331659A (en) 1991-02-12
JP2508842B2 JP2508842B2 (en) 1996-06-19

Family

ID=15852484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1167585A Expired - Lifetime JP2508842B2 (en) 1989-06-29 1989-06-29 Air conditioner

Country Status (1)

Country Link
JP (1) JP2508842B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP2018004106A (en) * 2016-06-28 2018-01-11 三菱電機株式会社 Air conditioner
JPWO2017022076A1 (en) * 2015-08-04 2018-02-22 三菱電機株式会社 Refrigeration apparatus and method of operating refrigeration apparatus
CN113483449A (en) * 2021-07-09 2021-10-08 青岛海尔空调器有限总公司 Oil return control method for indoor unit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119366A (en) * 1985-11-18 1987-05-30 ダイキン工業株式会社 Refrigerator
JPH0163946U (en) * 1987-10-15 1989-04-25

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62119366A (en) * 1985-11-18 1987-05-30 ダイキン工業株式会社 Refrigerator
JPH0163946U (en) * 1987-10-15 1989-04-25

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006275440A (en) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp Refrigerating device
JP4537242B2 (en) * 2005-03-30 2010-09-01 三菱電機株式会社 Refrigeration equipment
JPWO2017022076A1 (en) * 2015-08-04 2018-02-22 三菱電機株式会社 Refrigeration apparatus and method of operating refrigeration apparatus
US10571159B2 (en) 2015-08-04 2020-02-25 Mitsubishi Electric Corporation Refrigeration apparatus and method for operating refrigeration apparatus
JP2018004106A (en) * 2016-06-28 2018-01-11 三菱電機株式会社 Air conditioner
CN113483449A (en) * 2021-07-09 2021-10-08 青岛海尔空调器有限总公司 Oil return control method for indoor unit
CN113483449B (en) * 2021-07-09 2022-09-06 青岛海尔空调器有限总公司 Oil return control method for indoor unit

Also Published As

Publication number Publication date
JP2508842B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP6188948B2 (en) Air conditioner
WO2016009487A1 (en) Air conditioning apparatus
JP6223469B2 (en) Air conditioner
JP2011117626A (en) Air conditioner
JP4036288B2 (en) Air conditioner
US7171825B2 (en) Refrigeration equipment
JP2016003848A (en) Air conditioning system and control method for the same
JP5418253B2 (en) Refrigeration cycle equipment
JP5783783B2 (en) Heat source side unit and refrigeration cycle apparatus
US7451615B2 (en) Refrigeration device
JP2004278825A (en) Air conditioner
CN108954501B (en) Air conditioner
JP2018185116A (en) Refrigeration cycle device
JPH11107966A (en) Air conditioning device
JP2006258418A (en) Refrigerating device
JPH0331659A (en) Air conditioner
JP2004003717A (en) Air conditioner
WO1994012834A1 (en) Air-conditioner
JPH04340046A (en) Operation control device of air conditioner
JPH07190455A (en) Refrigerating/air-conditioning system
JP7236606B2 (en) refrigeration cycle equipment
JPH1038387A (en) Operation controller of air conditioner
JP2003106689A (en) Air conditioner
JP2008032391A (en) Refrigerating unit
JP2003028518A (en) Air conditioner

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080416

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14