JPH0330853B2 - - Google Patents

Info

Publication number
JPH0330853B2
JPH0330853B2 JP57153981A JP15398182A JPH0330853B2 JP H0330853 B2 JPH0330853 B2 JP H0330853B2 JP 57153981 A JP57153981 A JP 57153981A JP 15398182 A JP15398182 A JP 15398182A JP H0330853 B2 JPH0330853 B2 JP H0330853B2
Authority
JP
Japan
Prior art keywords
photoreceptor
phthalocyanine
chlorine
gallium
charge generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57153981A
Other languages
Japanese (ja)
Other versions
JPS5944053A (en
Inventor
Yoichi Nishioka
Masaaki Umibe
Masakazu Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP15398182A priority Critical patent/JPS5944053A/en
Priority to US06/528,122 priority patent/US4587188A/en
Priority to DE3332005A priority patent/DE3332005C2/en
Publication of JPS5944053A publication Critical patent/JPS5944053A/en
Publication of JPH0330853B2 publication Critical patent/JPH0330853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic

Description

【発明の詳細な説明】 本発明は電子写真用感光体に関するものであ
り、特に物理的特性に優れ、かつ800nm前後の
長歯長光に対し高感度を有する感光体を提供しよ
うとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoreceptor for electrophotography, and in particular, it is an object of the present invention to provide a photoreceptor that has excellent physical properties and is highly sensitive to long-toothed long light of around 800 nm. be.

従来の電子写真用感光体としては、例えば第1
図の如くアルミニウム等の導電性基板11の上に
50μm程度のセレンSe膜12を真空蒸着法により
形成したものがある。しかしこの場合のアルミニ
ウム蒸着は約1時間を要すること及びこのSe感
光体は波長500nm付近までしか感度を有してい
ない等の問題がある。またこの第2図に示すよう
に、導電性基板21の上に50μm程度のSe層2を
形成し、この上に更に数μmのセレン−テルル
(Se−Te)合金層23を形成した感光体があるが
この感光体は上記Se−Te合金のTeの含有率が高
い程分光感度が長波長にまで伸びる反面、Teの
添加量が増加するにつれて表面電荷の保持特性が
不良となり事実上感光体として使用できなくなる
重大な問題がある。第6図には後記詳述する如
く、アルミニウム基板上に50μm厚のSe層を形成
し、この上に、Seが85mol%、Teが15mol%の
3μmのSe−Te合金を形成した積層感光体の分光
感度を例示したが、この場合、Te添加量は、概
ねこの程度の量が限度であつて、しかもこの感光
体は700nm付近までしか感度を有していない
(曲線C′)。
As a conventional electrophotographic photoreceptor, for example, the first
As shown in the figure, on a conductive substrate 11 made of aluminum etc.
There is one in which a selenium Se film 12 of about 50 μm is formed by vacuum evaporation. However, there are problems in this case, such as that aluminum vapor deposition requires about one hour and that this Se photoreceptor has sensitivity only up to a wavelength of around 500 nm. Further, as shown in FIG. 2, a photoreceptor is formed by forming a Se layer 2 of about 50 μm on a conductive substrate 21, and on top of this a selenium-tellurium (Se-Te) alloy layer 23 of several μm. However, in this photoreceptor, the higher the Te content in the Se-Te alloy mentioned above, the greater the spectral sensitivity extends to longer wavelengths, but as the amount of Te added increases, the surface charge retention properties deteriorate, effectively making the photoreceptor There is a serious problem that makes it unusable. As will be described in detail later, in Fig. 6, a 50 μm thick Se layer is formed on an aluminum substrate, and on top of this, 85 mol% Se and 15 mol% Te are added.
The spectral sensitivity of a laminated photoreceptor made of a 3μm Se-Te alloy is shown as an example, but in this case, the amount of Te added is generally limited to this amount, and this photoreceptor has sensitivity only up to around 700nm. (curve C′).

更に別に第3図に示すように、アルミニウム基
板31上に1μm程度のクロロジアンブルーまた
はスクウアリリウム酸誘導体をコーテイングして
電荷発生層32を形成し、この上に絶縁抵抗の高
いポイビニルカルバゾールまたはピラゾリン誘導
体とポリカーボネート樹脂との混合物を10〜20μ
mコーテイングして電荷輸送層33を形成した所
謂機能分離型の感光体もある。しかしかかる機能
分離型感光体の分光感度特性は、上記電荷発生層
の特性で決定されるが、現在この感光体は700n
m以上の光に対して感度を有していないのが実状
である。
Furthermore, as shown in FIG. 3, a charge generation layer 32 is formed by coating an aluminum substrate 31 with approximately 1 μm of chlorodiane blue or a squarylic acid derivative, and on this is coated with a polyvinylcarbazole or pyrazoline derivative having high insulation resistance. and a mixture of polycarbonate resin and 10~20μ
There is also a so-called functionally separated type photoreceptor in which a charge transport layer 33 is formed by m-coating. However, the spectral sensitivity characteristics of such functionally separated photoreceptors are determined by the characteristics of the charge generation layer, and currently this photoreceptor has a 700 nm
The reality is that they are not sensitive to light of wavelengths greater than m.

近年レーザー光を光源とし、電子写真用感光体
を用いたレーザービームプリンタ等では、半導体
レーザーを光源に用いることが種々試みられてお
り、この場合該光源の波長は800nm前後である
ことから800nm前後の長波長光に対し高感度な
特性を有する感光体が強く要求されている。
In recent years, various attempts have been made to use semiconductor lasers as light sources in laser beam printers that use laser light as a light source and electrophotographic photoreceptors, and in this case, the wavelength of the light source is around 800 nm. There is a strong demand for a photoreceptor that is highly sensitive to long wavelength light.

ここに本発明者等は、上記の点に鑑み検討を重
ねた結果中心金属がガリウムで該ガリウムには塩
素が結合し更にフタロシアニン環の周囲のベンゼ
ン環の水素の一部分が塩素で置換されているフタ
ロシアニンを用い、その蒸着膜を溶媒蒸気処理し
てなる電荷発生体とした機能分離型感光体が、上
述の波長800nm前後の光に対して、高感度を有
し、しかも該感光体が安価に作成することが可能
である等の知見を得、この発明に到達したのであ
る。
The inventors of the present invention, after repeated studies in view of the above points, found that the central metal is gallium, chlorine is bonded to the gallium, and a portion of the hydrogen in the benzene ring surrounding the phthalocyanine ring is replaced with chlorine. A functionally separated photoreceptor using phthalocyanine as a charge generator obtained by treating the vapor-deposited film with solvent vapor has high sensitivity to the above-mentioned light with a wavelength of around 800 nm, and the photoreceptor is inexpensive. This invention was achieved based on the knowledge that it is possible to create the same.

即ちこの発明は、導電性支持体上に、有機光導
電性物質による電荷発生層及びこの上に電荷輸送
層を形成した機能分離型電子写真用感光体におい
て、前記電荷発生層の有機光導電性物質が、 一般式 で表わされるガリウムを中心金属として該ガリウ
ムに塩素が結合したフタロシアニンである基本構
造を持ち、このフタロシアニン環の周囲のベンゼ
ン環の水素の一部分が塩素で置換された構造のフ
タロシアニンであり、その蒸着膜を溶媒蒸気処理
したものであることを特徴とする電子写真用感光
体である。
That is, the present invention provides a functionally separated electrophotographic photoreceptor in which a charge generation layer made of an organic photoconductive substance and a charge transport layer are formed on a conductive support, wherein the organic photoconductivity of the charge generation layer is The substance has the general formula It has a basic structure of phthalocyanine in which chlorine is bonded to gallium with gallium as the central metal, and a part of the hydrogen in the benzene ring surrounding this phthalocyanine ring is replaced with chlorine. An electrophotographic photoreceptor characterized in that it is obtained by subjecting it to solvent vapor treatment.

以下本発明を具体的な実施例を示しつつ詳述す
る。
The present invention will be described in detail below with reference to specific examples.

実施例 オルトフタロジニトリル(東京化成社製)12.8
gと純度99.999%の塩化ガリウム(フルウチ化学
社製)4.4gを300℃のマントルヒーター中のビー
カー中でかくはん混合しながら反応させフタロニ
トリル法を用いてガリウムを中心金属とする上記
一般式で示されるフタロシアニンである基本構造
を持ち、この基本構造のフタロシアニンと該基本
構造のフタロシアニン環の周囲のベンゼン環の水
素の一部分が塩素で置換されたフタロシアニンと
の混合物を合成した。かかる生成物は青黒色の塊
状として得られるので、これを微粉砕したのちテ
トラヒドロフラン(THF)で洗浄し、THF可溶
物を除去し精製した。次に、得られたフタロシア
ニンの含有塩素量を燃焼フラスコ法を用いて分析
した結果、その量はフタロシアニン1分子あたり
2.26個であり、このうち1個は中心金属のガリウ
ムと結合しているのでフタロシアニン環の周囲の
ベンゼン環の水素と置換している塩素は平均1.26
個であつた。
Example Orthophthalodinitrile (manufactured by Tokyo Kasei Co., Ltd.) 12.8
g and 4.4 g of gallium chloride (manufactured by Furuuchi Chemical Co., Ltd.) with a purity of 99.999% were reacted while stirring and mixing in a beaker in a mantle heater at 300°C. A mixture of a phthalocyanine with this basic structure and a phthalocyanine in which a portion of the hydrogens of the benzene ring surrounding the phthalocyanine ring of the basic structure was replaced with chlorine was synthesized. This product was obtained as a blue-black lump, and was purified by pulverizing it and washing it with tetrahydrofuran (THF) to remove THF-soluble materials. Next, the amount of chlorine contained in the obtained phthalocyanine was analyzed using the combustion flask method, and the amount was found to be per molecule of phthalocyanine.
2.26, and one of these is bonded to the central metal gallium, so the average number of chlorine substituted for hydrogen in the benzene ring around the phthalocyanine ring is 1.26.
It was individual.

次にこのフタロシアニンを、真空蒸着装置中の
アルミナるつぼに10mg入れ、るつぼ温度500℃で
抵抗加熱蒸着法によりガラス板上に0.02μmの薄
膜を形成した。この薄膜の600〜900nmの光に対
する光吸収スペクトルを自記分光光度計を用い測
定した結果を第4図の曲線Aで示した。同図の如
くこの薄膜の吸収スペクトルは670mmに肩ピーク、
730nmに最大ピークを示した。
Next, 10 mg of this phthalocyanine was placed in an alumina crucible in a vacuum deposition apparatus, and a 0.02 μm thin film was formed on a glass plate by resistance heating vapor deposition at a crucible temperature of 500°C. The light absorption spectrum of this thin film for light in the wavelength range of 600 to 900 nm was measured using a self-recording spectrophotometer, and the results are shown by curve A in FIG. As shown in the figure, the absorption spectrum of this thin film has a shoulder peak at 670 mm.
The maximum peak was shown at 730 nm.

上記薄膜試料を、テトラヒドロフラン蒸気中に
て20時間曝露し同様に光吸収スペクトルを調べた
ところ、同曲線Bのように前記吸収ピークが長波
長域即ち最大ピークが745nmにシフトした。
When the thin film sample was exposed to tetrahydrofuran vapor for 20 hours and the optical absorption spectrum was examined in the same manner, the absorption peak shifted to a longer wavelength region, that is, the maximum peak was shifted to 745 nm, as shown in curve B.

次に、具体的に上記のようにして得られたフタ
ロシアニンをアルミナるつぼ中に0.1g入れ、る
つぼ温度500℃で抵抗加熱蒸着を約20分間行い第
5図に示す構造の如く、アルミニウム基板51上
に、電荷発生層52(0.2μm)を形成した。これ
をテトラヒドロフラン蒸気中に20時間曝露した
後、テトラヒドロフランに溶解したポリビニルカ
ルバゾール樹脂(東京化成社製、特級)をコーテ
イングし、テトラヒドロフランを充分乾燥させ電
荷輸送層53(6μm厚さ)を形成し、感光体を
得た。
Next, 0.1 g of the phthalocyanine obtained as described above was put into an alumina crucible, and resistance heating vapor deposition was performed at a crucible temperature of 500°C for about 20 minutes to form a structure on an aluminum substrate 51 as shown in FIG. A charge generation layer 52 (0.2 μm) was formed thereon. After exposing this to tetrahydrofuran vapor for 20 hours, it was coated with polyvinylcarbazole resin (manufactured by Tokyo Kasei Co., Ltd., special grade) dissolved in tetrahydrofuran, and the tetrahydrofuran was thoroughly dried to form a charge transport layer 53 (6 μm thick), which was then photosensitive. I got a body.

得られた感光体の電子写真的特性である分光感
度を測定した結果を第6図中に曲線Cで示した 同図から明らかなように、この感光体は900n
mにおいても1cm2/μJ以上の(実測値1.4cm2/μJ)
の非常に高い感度が認められ、800nmにおいて
は2.5cm2/μJの高感度を示した。このように600〜
900nmの領域において、ほぼフラツトな特性を
有する感光体は現在殆んど知らていないのであ
り、上述のレーザービームプリンター等の装置に
用いる場合極めて有利である。
The results of measuring the spectral sensitivity, which is an electrophotographic characteristic, of the photoreceptor obtained are shown as curve C in Figure 6.As is clear from the figure, this photoreceptor has a 900 nm
Even in m, it is more than 1cm 2 /μJ (actual value 1.4cm 2 /μJ)
A very high sensitivity of 2.5 cm 2 /μJ was observed at 800 nm. 600 ~ like this
At present, there are almost no known photoreceptors having substantially flat characteristics in the 900 nm region, and this is extremely advantageous when used in devices such as the above-mentioned laser beam printer.

比較例 アルミニウム基板上に実施例により得たフタロ
シアニンを真空蒸着法により薄膜0.2μmを形成し
た。得られたものをテトラヒドロフラン溶媒蒸気
処理を行わずにポリビニルクラバゾールのテトラ
ヒドロフラン溶液をコーテイングし乾燥厚さ6μ
mの電荷輸送層を形成し感光体を作成した。
Comparative Example A thin film of 0.2 μm was formed from the phthalocyanine obtained in the example on an aluminum substrate by vacuum evaporation. The obtained product was coated with a tetrahydrofuran solution of polyvinyl clavazole without performing tetrahydrofuran solvent vapor treatment to a dry thickness of 6 μm.
A photoreceptor was prepared by forming a charge transport layer of m.

得られた感光体の分光感度を測定した結果を第
7図に示したが、同図によれば850nmまでは1
〜1.5cm2/μJの感度を示したが、900nm附近に至
つてこれが約1/2に低下した。即ち同図からの実
測によれば800nmにおいて1.5cm2/μJ、900nmに
おいて0.7cm2/μJであつた。
The results of measuring the spectral sensitivity of the obtained photoreceptor are shown in Figure 7. According to the figure, up to 850 nm, the spectral sensitivity is 1.
It showed a sensitivity of ~1.5 cm 2 /μJ, but this decreased to about 1/2 at around 900 nm. That is, according to actual measurements from the same figure, it was 1.5 cm 2 /μJ at 800 nm and 0.7 cm 2 /μJ at 900 nm.

上述の通り、実施例による感光体は、蒸着膜に
対する溶媒蒸気処理によつてこれを行わない比較
列に比べて、特に850〜950nm波長域において約
1.7〜2倍の感度上昇が確認され、特性向上は顕
著であることが判つた。
As mentioned above, the photoreceptor according to the example has a property that the vapor deposited film is subjected to solvent vapor treatment, so that the photoreceptor has approximately
An increase in sensitivity of 1.7 to 2 times was confirmed, and it was found that the improvement in characteristics was remarkable.

以上説明したように本発明による感光体は、上
述した蒸着膜に対して、単に溶媒蒸気処理を行う
ことにより、800nm前後の近赤外域の感度を大
幅に上昇させ、かかる波長域の光源である半導体
レーザを用いたレーザビームプリンタ用の感光体
として優れた効果を発揮し、又使用する電荷発生
層は、ごく薄い膜で十分であり、真空装置を使用
する時間が短時間で済み感光体の作成が容易で安
価に量産が可能である等の効果を奏する。また本
感光体は上述したレーザービームプリンタのみで
なく、フアツクスまたはLEDを光源としたプリ
ンタ、更には、半導体レーザーを光源としたその
他の光記録デバイスにも適時応用することができ
る。
As explained above, the photoreceptor according to the present invention can significantly increase the sensitivity in the near-infrared region of around 800 nm by simply subjecting the above-described vapor-deposited film to a solvent vapor treatment, and can be used as a light source in this wavelength region. It exhibits excellent effects as a photoreceptor for laser beam printers that use semiconductor lasers, and the charge generation layer used only needs to be a very thin film, and the time required to use a vacuum device is short. It has the advantage of being easy to create and mass-produced at low cost. Further, the present photoreceptor can be applied not only to the above-mentioned laser beam printer, but also to a printer using a fax or LED as a light source, and furthermore, to other optical recording devices using a semiconductor laser as a light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電子写真用感光体の一例の断面
図、第2図は同他のSe−(Se−Te)積層型電子
写真用感光体の断面図、第3図は同機能分離型の
電子写真用感光体の一例の断面図、第4図は本発
明にて用いるフタロシアニンの一例の光吸収スペ
クトル図、第5図は本発明による感光体の一例の
断面図、第6図は実施例による感光体の分光感度
曲線、第7図は比較例による感光体の分光感度曲
線を示す図である。 51……アルミニウム基板、52……電荷発生
層、53……電荷輸送層。
Figure 1 is a sectional view of an example of a conventional electrophotographic photoreceptor, Figure 2 is a sectional view of another Se-(Se-Te) laminated type electrophotographic photoreceptor, and Figure 3 is a functionally separated type. FIG. 4 is a light absorption spectrum diagram of an example of phthalocyanine used in the present invention, FIG. 5 is a cross-sectional view of an example of a photoconductor according to the present invention, and FIG. FIG. 7 is a diagram showing a spectral sensitivity curve of a photoreceptor according to a comparative example. 51... Aluminum substrate, 52... Charge generation layer, 53... Charge transport layer.

Claims (1)

【特許請求の範囲】 1 導電性支持体上に、有機光導性物質による電
荷発生層及びこの上に電荷輸送層を形成した機能
分離型電子写真用感光体において、前記電荷発生
層の有機光導電性物質が、 一般式 で表わされるガリウムを中心金属とし該ガリウム
に塩素が結合したフタロシアニンである基本構造
を持ち、このフタロシアニン環の周囲のベンゼン
環の水素の一部分が塩素で置換された構造のフタ
ロシアニンであり、その蒸着膜を溶媒蒸気処理し
たものであることを特徴とする電子写真用感光
体。
[Scope of Claims] 1. A functionally separated electrophotographic photoreceptor in which a charge generation layer made of an organic photoconductive substance and a charge transport layer are formed on a conductive support, wherein the organic photoconductivity of the charge generation layer is The chemical substance has the general formula This phthalocyanine has a basic structure in which gallium is the central metal and chlorine is bonded to the gallium, and a portion of the hydrogen in the benzene ring surrounding this phthalocyanine ring is replaced with chlorine. An electrophotographic photoreceptor, characterized in that it is obtained by subjecting it to solvent vapor treatment.
JP15398182A 1982-09-06 1982-09-06 Electrophotographic receptor Granted JPS5944053A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP15398182A JPS5944053A (en) 1982-09-06 1982-09-06 Electrophotographic receptor
US06/528,122 US4587188A (en) 1982-09-06 1983-08-31 Phthalocyanine photoconductor for electrophotography
DE3332005A DE3332005C2 (en) 1982-09-06 1983-09-05 Electrophotographic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15398182A JPS5944053A (en) 1982-09-06 1982-09-06 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5944053A JPS5944053A (en) 1984-03-12
JPH0330853B2 true JPH0330853B2 (en) 1991-05-01

Family

ID=15574298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15398182A Granted JPS5944053A (en) 1982-09-06 1982-09-06 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5944053A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358813A (en) * 1902-01-13 1994-10-25 Fuji Xerox Co., Ltd. Crystals of chlorogallium phthalocyanine and method of preparing them
JPS59155847A (en) * 1983-02-25 1984-09-05 Toyo Ink Mfg Co Ltd Electrophotographic sensitive body
JP3166293B2 (en) * 1991-04-26 2001-05-14 富士ゼロックス株式会社 Novel hydroxygallium phthalocyanine crystal, photoconductive material comprising the new crystal, and electrophotographic photoreceptor using the same
US5393629A (en) * 1991-04-26 1995-02-28 Fuji Xerox Co., Ltd. Electrophotographic photoreceptor
JP2797847B2 (en) * 1992-06-25 1998-09-17 富士ゼロックス株式会社 Electrophotographic photoreceptor
JP2797852B2 (en) * 1992-07-24 1998-09-17 富士ゼロックス株式会社 Electrophotographic photoreceptor
JPH08120190A (en) * 1994-08-31 1996-05-14 Fuji Xerox Co Ltd Production of chlorogallium phthalocyanine crystal
US8206880B2 (en) 2009-06-05 2012-06-26 Ricoh Company, Ltd. Electrophotographic photoreceptor, and image forming apparatus and process cartridge therefor using the photoreceptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57148745A (en) * 1981-03-11 1982-09-14 Nippon Telegr & Teleph Corp <Ntt> Lamination type electrophotographic receptor

Also Published As

Publication number Publication date
JPS5944053A (en) 1984-03-12

Similar Documents

Publication Publication Date Title
JPS60254139A (en) Formation of electrostatic photographic image
JPH035744B2 (en)
JPS59166959A (en) Laminated type electrophotographic sensitive body
JPH0330853B2 (en)
JPH0330854B2 (en)
JP3343275B2 (en) Phthalocyanine composition, method for producing the same, electrophotographic photoreceptor using the same, and coating liquid for charge generation layer
JPS6059354A (en) Electrophotographic sensitive body
US4731312A (en) Photoconductor for electrophotography comprises indium phthalocyanine
US4587188A (en) Phthalocyanine photoconductor for electrophotography
EP0288876B1 (en) Electrophotographic plate
JPS6059355A (en) Electrophotographic sensitive body
EP0228202B1 (en) Electrophotographic photoconductor using phthalocyanine compound
JPS58162955A (en) Organic photoconductor
JPS59133550A (en) Electrophotographic sensitive body
JPH0727245B2 (en) Electrophotographic photoreceptor
US4513072A (en) Dual layer electrophotographic recording material containing a layer of selenium, arsenic and halogen, and thereabove a layer of selenium and tellurium
JPS58123542A (en) Electrophotographic receptor
JPS59174846A (en) Electrophotographic sensitive body
JPS60260054A (en) Electrophotographic sensitive body
JPS59174845A (en) Electrophotographic sensitive body
JPS59174847A (en) Electrophotographic sensitive body
JPS6126062A (en) Electrophotographic sensitive body
JP2532795B2 (en) Method for manufacturing electrophotographic photoreceptor
JPS59128544A (en) Electrophotographic sensitive body
KR19980081562A (en) Electrophotographic photosensitive member and its manufacturing method