JPH0330061B2 - - Google Patents

Info

Publication number
JPH0330061B2
JPH0330061B2 JP60227182A JP22718285A JPH0330061B2 JP H0330061 B2 JPH0330061 B2 JP H0330061B2 JP 60227182 A JP60227182 A JP 60227182A JP 22718285 A JP22718285 A JP 22718285A JP H0330061 B2 JPH0330061 B2 JP H0330061B2
Authority
JP
Japan
Prior art keywords
water
overflow
water supply
weir
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60227182A
Other languages
Japanese (ja)
Other versions
JPS6287744A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60227182A priority Critical patent/JPS6287744A/en
Publication of JPS6287744A publication Critical patent/JPS6287744A/en
Publication of JPH0330061B2 publication Critical patent/JPH0330061B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Air Humidification (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は加湿器等に水を供給する給水タンク
の溢水構造に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to an overflow structure for a water supply tank that supplies water to a humidifier or the like.

〔従来の技術〕[Conventional technology]

第3図は加湿器に給水する場合の従来の給水タ
ンクの構成図であり、1は給水タンク、2は給水
管で、3はこの給水管に接続された電磁弁、4は
給水タンク1に給水管2を接続する給水口、5は
電磁弁3を入切(発停)するフロートスイツチ、
6は水8を加湿器7へ供給する送水管で、9はこ
の送水管が給水タンクに接続される送水口であ
る。10は溢水管で、11は溢水口である。12
は円筒堰である。又加湿器7の構成を図5〜図7
に示す。これらの図において、13は多孔質シー
ト14を重ね合わせて端部を接着あるいは熱融着
して方形状に形成した中空多孔性部材であり、両
端部13aには中空部13bに連通する給水口1
5、排水口16が設けられている。17は中空多
孔性部材13に添えて巻き込まれた波状のスペー
サで通風路を形成するものである。18は外形が
直方体状に中芯部材であり、中空多孔性部材13
および波状のスペーサ17が中芯部材18を中心
にして、巻き付けられることにより加湿器7を形
成するものである。
Figure 3 is a configuration diagram of a conventional water tank used to supply water to a humidifier. 1 is the water tank, 2 is the water pipe, 3 is the solenoid valve connected to this water pipe, and 4 is the water tank 1. A water supply port to which the water supply pipe 2 is connected, 5 a float switch that turns on and off the solenoid valve 3;
6 is a water pipe that supplies water 8 to the humidifier 7, and 9 is a water port through which this water pipe is connected to a water tank. 10 is an overflow pipe, and 11 is an overflow port. 12
is a cylindrical weir. The structure of the humidifier 7 is shown in FIGS. 5 to 7.
Shown below. In these figures, 13 is a hollow porous member formed into a rectangular shape by overlapping porous sheets 14 and bonding or heat-sealing the ends, and a water supply port communicating with the hollow part 13b is provided at both ends 13a. 1
5. A drain port 16 is provided. Reference numeral 17 is a wavy spacer wound around the hollow porous member 13 to form a ventilation path. 18 is a core member having a rectangular parallelepiped outer shape, and a hollow porous member 13
The humidifier 7 is formed by winding the wavy spacer 17 around the core member 18.

次に動作について説明する。加湿器等に使用さ
れる従来の給水タンクは、上記のように構成さ
れ、加湿される水8は送水口9より送水管6を経
て加湿器7に供給され、給水タンク1の水位が下
がりA以下になるとフロートスイツチ5が作動し
て電磁弁3が入になり、水8が給水タンク1内に
給水される。又第4図に示すごとく水8が給水タ
ンク1内に給水されて水位がBより上になると再
びフロートスイツチ5が作動して、逆に電磁弁3
を切る。この動作を繰り返すことにより、常に加
湿器7に低い水圧で水8を供給することができ
る。
Next, the operation will be explained. A conventional water supply tank used for a humidifier or the like is constructed as described above, and the water 8 to be humidified is supplied from the water supply port 9 through the water supply pipe 6 to the humidifier 7, and the water level in the water supply tank 1 is lowered A. When the temperature is below, the float switch 5 is activated, the solenoid valve 3 is turned on, and water 8 is supplied into the water supply tank 1. Further, as shown in Fig. 4, when water 8 is supplied into the water supply tank 1 and the water level becomes higher than B, the float switch 5 is activated again, and the solenoid valve 3 is activated again.
cut. By repeating this operation, water 8 can be constantly supplied to the humidifier 7 at low water pressure.

また、電磁弁3、またはフロートスイツチ5の
故障により、電磁弁3が連続開となつた場合、水
位が上昇し、円筒堰12を溢水して溢水管11よ
り排水される。
Furthermore, if the solenoid valve 3 or the float switch 5 is broken and the solenoid valve 3 is continuously opened, the water level rises, overflows the cylindrical weir 12, and is drained from the overflow pipe 11.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記のような従来の給水タンクでは、電磁弁3
またはフロートスイツチ5の故障により、電磁弁
3が連続開となつた場合、円筒堰12から溢水し
うる溢水量即ち溢水能力Q0は、給水タンク1の
外壁高さをh1、円筒堰12の高さをh2とし、各々
の高低差(h1−h2)を△h、円筒堰12の周長を
b、としたとき、 Q0=μ2/3b△h√2△となり<μは堰の形 状係数> 給水口4からの給水量Q1が一定とすればQ1
Q0でなければ、給水タンク1より水が溢れ出す
事になる。従い、上記、溢水能力Q0が大きい程
好ましいと云えるが、従来の円筒堰12では、給
水タンク1の内寸により、周長bが限定され、ま
た、堰の形状係数μも、円筒の場合は、溢水流が
中心に向つて縮流されるので、直線堰に較べて、
かなり小さくなる。従つて溢水能力Q0を増すに
は、高低差△hを大きくする必要があるが、△h
を大きくするには、給水タンク1の外壁高さhi
大きくしなければならず、即ち、給水タンク1の
大形化につながる。
In the conventional water tank as shown above, solenoid valve 3
Alternatively, when the solenoid valve 3 is continuously opened due to a failure of the float switch 5, the amount of water that can overflow from the cylindrical weir 12, that is, the overflow capacity Q 0 is determined by dividing the height of the outer wall of the water tank 1 by h 1 and the height of the outer wall of the cylindrical weir 12. When the height is h 2 , each height difference (h 1 − h 2 ) is △h, and the circumference of the cylindrical weir 12 is b, then Q 0 =μ2/3b△h√2△, and <μ is Shape factor of weir > If water supply amount Q 1 from water supply port 4 is constant, Q 1
If Q is not 0 , water will overflow from water tank 1. Therefore, it can be said that the larger the overflow capacity Q 0 is, the more preferable it is, but in the conventional cylindrical weir 12, the circumferential length b is limited by the internal dimensions of the water tank 1, and the weir shape factor μ also depends on the cylindrical shape. In this case, the overflow flow is constricted toward the center, so compared to a straight weir,
It becomes quite small. Therefore, in order to increase the overflow capacity Q0 , it is necessary to increase the height difference △h, but △h
In order to increase the height, the outer wall height h i of the water tank 1 must be increased, which leads to an increase in the size of the water tank 1.

この発明は、上記のような問題点を解消するた
めになされたもので、給水タンク1を大きくする
事なく溢水能力Q0を増加できる装置を得ること
を目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a device that can increase the overflow capacity Q 0 without increasing the size of the water tank 1.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る給水タンクは、給水口及び送水
口が設けられた貯水室と溢水口が設けられた溢水
室とを溢水堰により区画し、上記溢水堰の横断面
形状をジグザグ状に形成して堰の総長さを長くす
ることにより上記目的を達成するものである。
The water supply tank according to the present invention has a water storage chamber provided with a water supply port and a water supply port, and an overflow chamber provided with an overflow port, which are divided by an overflow weir, and the cross-sectional shape of the overflow weir is formed in a zigzag shape. The above purpose is achieved by increasing the total length of the weir.

〔作用〕[Effect]

この発明における給水タンクは、溢水堰の横断
面形状をジグザグ状に形成することにより、堰の
総長さが長くなり、同一水位差での溢水量が増量
され、換言すれば、給水タンクの大きさを小さく
する。
In the water supply tank of the present invention, by forming the cross-sectional shape of the overflow weir in a zigzag shape, the total length of the weir is increased, and the amount of overflow at the same water level difference is increased.In other words, the size of the water supply tank is increased. Make smaller.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明す
る。第1図及び第2図において、21は横断面形
状がジグザグ状に形成されたジグザグ状の溢水
堰、22は上記ジグザグ状の溢水堰21により区
画された溢水室、23は上記溢水室22の底部に
あけられた溢水口である。
An embodiment of the present invention will be described below with reference to the drawings. In FIGS. 1 and 2, 21 is a zigzag-shaped overflow weir with a zigzag cross-sectional shape, 22 is an overflow chamber partitioned by the zigzag overflow weir 21, and 23 is the overflow chamber 22. This is an overflow port drilled at the bottom.

上記のように構成された給水タンクにおいて
は、電磁弁3またはフロートスイツチ5の故障に
より、電磁弁3が連続開になつた場合、水位が上
昇し上記ジグザグ状に溢水堰を溢水し、溢水室2
2内に流れ込み、溢水口23より溢水管10を介
して、ドレンパン等へ排出される。この溢水能力
Q0は、円筒堰の場合と同様、 Q0=μ2/3b△h√2△ ……〔1〕 で求められるが、この場合のbはジグザグ状の溢
水堰の総長さを示し、また堰の形状係数μは、円
筒堰の場合のμに較べかなり大きな値となる。
In the water supply tank configured as described above, if the solenoid valve 3 or the float switch 5 is continuously opened due to a failure, the water level rises and overflows the overflow weir in the zigzag pattern described above, resulting in an overflow chamber. 2
2 and is discharged from the overflow port 23 through the overflow pipe 10 to a drain pan or the like. This flooding capacity
As in the case of a cylindrical weir, Q 0 can be found as The shape factor μ is a considerably larger value than μ in the case of a cylindrical weir.

(但し、双方の堰の断面形状は同一とした場合)
従つて、ジグザグ状の溢水堰では、総長さbを大
きくとれるので、溢水能力Q0は円筒堰に較べ、
大幅に改善される。また、最大給水量QMから給
水タンクの外壁高さと堰の高低△hの最小値を求
めると、次式となる。
(However, if the cross-sectional shapes of both weirs are the same)
Therefore, in a zigzag-shaped overflow weir, the total length b can be made larger, so the overflow capacity Q 0 is smaller than that of a cylindrical weir.
Significantly improved. Further, the minimum value of the outer wall height of the water supply tank and the height △h of the weir is calculated from the maximum water supply amount Q M as follows.

即ち、実機における高低差△hは、上記〔2〕
式で求められる値よりも大きくする必要がある。
In other words, the height difference △h in the actual machine is the same as [2] above.
It needs to be larger than the value calculated by the formula.

即ち、 となるが、実際には、給水タンク1の取付精度
(傾き)及び、給水による水面の波立ち等を考慮
すれば、〔3〕式に安全係数を掛け、 とする事により、給水タンク1の外壁より、溢水
する事なく確実に溢水管10を介して、ドレンパ
ンに排水する事ができる。
That is, However, in reality, if we consider the installation accuracy (tilt) of the water tank 1 and the ripples on the water surface due to water supply, we can multiply the formula [3] by the safety factor, By doing so, water can be reliably drained from the outer wall of the water supply tank 1 to the drain pan via the overflow pipe 10 without overflowing.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、給水タンク
内を横断面形状がジグザグ状の溢水堰で区画して
溢水室を設けることにより、給水タンクを小さく
することができるとともに、溢水に対する信頼性
の高い給水タンクを得ることができた。
As described above, according to the present invention, by dividing the inside of the water supply tank with an overflow weir having a zigzag cross-sectional shape and providing an overflow chamber, the water supply tank can be made smaller and its reliability against overflows can be improved. I was able to get a high water tank.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例を示す給水タン
クの斜視図、第2図は第1図に示す給水タンクの
平面図、第3図及び第4図は従来の給水タンクを
示す断面図、第5図は中空多孔性部材を用いた加
湿器の構成図、第6図は第5図に示す中空多孔性
部材の展開図、第7図は第6図−における断
面を矢印の方向に見た断面図である。図におい
て、4は給水口、9は送水口、24は貯水室、2
3は溢水口、22は溢水室、1は給水タンク、2
1は溢水堰である。なお、図中、同一符号は同
一、又は相当部分を示す。
Fig. 1 is a perspective view of a water tank showing an embodiment of the present invention, Fig. 2 is a plan view of the water tank shown in Fig. 1, and Figs. 3 and 4 are sectional views showing a conventional water tank. , Fig. 5 is a block diagram of a humidifier using a hollow porous member, Fig. 6 is a developed view of the hollow porous member shown in Fig. 5, and Fig. 7 is a cross section in Fig. 6 - taken in the direction of the arrow. FIG. In the figure, 4 is a water supply port, 9 is a water supply port, 24 is a water storage chamber, 2
3 is the overflow port, 22 is the overflow room, 1 is the water tank, 2
1 is an overflow weir. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 給水口及び送水口が設けられた貯水室と溢水
口が設けられた溢水室とを有する給水タンクにお
いて、上記貯水室と上記溢水室とを区画し、上記
貯水室から上記溢水室に溢水させる溢水堰の横断
面形状をジグザグ状に形成したことを特徴とする
給水タンク。
1. In a water supply tank having a water storage chamber provided with a water supply port and a water supply port, and an overflow chamber provided with a water overflow port, the water storage chamber and the overflow chamber are separated, and water is allowed to overflow from the water storage chamber into the overflow chamber. A water supply tank characterized by the overflow weir having a zigzag cross-sectional shape.
JP60227182A 1985-10-11 1985-10-11 Feed water tank Granted JPS6287744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60227182A JPS6287744A (en) 1985-10-11 1985-10-11 Feed water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60227182A JPS6287744A (en) 1985-10-11 1985-10-11 Feed water tank

Publications (2)

Publication Number Publication Date
JPS6287744A JPS6287744A (en) 1987-04-22
JPH0330061B2 true JPH0330061B2 (en) 1991-04-26

Family

ID=16856771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60227182A Granted JPS6287744A (en) 1985-10-11 1985-10-11 Feed water tank

Country Status (1)

Country Link
JP (1) JPS6287744A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01131837A (en) * 1987-11-16 1989-05-24 Sanyo Electric Co Ltd Air conditioner
JPH01131838A (en) * 1987-11-16 1989-05-24 Sanyo Electric Co Ltd Air conditioner
JP4751412B2 (en) * 2008-03-13 2011-08-17 株式会社東洋製作所 Humidified bread
CN106662355B (en) 2014-07-04 2019-04-23 三菱电机株式会社 Air-conditioning air-breather equipment
JP2016080335A (en) * 2014-10-22 2016-05-16 パナソニック株式会社 Heating and humidification device

Also Published As

Publication number Publication date
JPS6287744A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
US3273872A (en) Distributor plate
US3480149A (en) Flat casing filter device
JPH0330061B2 (en)
US2883345A (en) Emulsion breaker
KR830005883A (en) Separation method of oily water powder by granulation and its device
US3136871A (en) Pressure responsive liquid level control
JPH0254131B2 (en)
JPS6277532A (en) Water supply tank
CN217247348U (en) Integrative filter core of hydrocarbon chemical industry medium filtration and dehydration
JPH0112004Y2 (en)
JPS6438593A (en) Thermal accumulation device
JPS64978Y2 (en)
JP3085047B2 (en) Water supply structure from water tank to humidifying element
US3191536A (en) Float and hydro-pneumatic tank including same
JPS61163005U (en)
JPS61129972U (en)
JPS6238075Y2 (en)
JPH044816Y2 (en)
JPS5815352Y2 (en) Oil leak prevention valve for underwater oil storage tank
JPS63197834A (en) Humidifier
JPH0676489U (en) Drain trap
JPS6335410U (en)
JPS55124513A (en) Membrane separation module
JPH0342099Y2 (en)
SU1427337A1 (en) Controller of interface of two media