JPH0329888B2 - - Google Patents

Info

Publication number
JPH0329888B2
JPH0329888B2 JP57097755A JP9775582A JPH0329888B2 JP H0329888 B2 JPH0329888 B2 JP H0329888B2 JP 57097755 A JP57097755 A JP 57097755A JP 9775582 A JP9775582 A JP 9775582A JP H0329888 B2 JPH0329888 B2 JP H0329888B2
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber bundle
yarn
fibers
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57097755A
Other languages
Japanese (ja)
Other versions
JPS58214533A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9775582A priority Critical patent/JPS58214533A/en
Publication of JPS58214533A publication Critical patent/JPS58214533A/en
Publication of JPH0329888B2 publication Critical patent/JPH0329888B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は力学的性質、特に引張強伸度の改良さ
れた新規な炭素繊維束の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a novel carbon fiber bundle with improved mechanical properties, particularly tensile strength and elongation.

[従来技術] 従来、炭素繊維は比強度、比弾性率などの卓越
した力学的性質により航空・宇宙用、ゴルフクラ
ブシヤフト、釣竿、テニスラケツト等のスポーツ
用品、高速回転胴に広く使用され、さらに自動
車、船舶などの運輸機械等の各種用途に利用され
ようとしている。
[Prior Art] Conventionally, carbon fiber has been widely used in aerospace, sports equipment such as golf club shafts, fishing rods, and tennis rackets, and high-speed rotating bodies due to its excellent mechanical properties such as specific strength and specific modulus, and also in automobiles. It is expected to be used in various applications such as transportation machinery such as ships.

上記用途の中でも航空・宇宙用や運輸機械用な
ど構造材料としての耐久性と信頼性が強く要求さ
れる分野においては、複合材料の補強材としての
役割機能の中核をなす炭素繊維の品質、性能の向
上に対する要求は極めて大きいものがあり、これ
迄に多くの試みが為されてきた。
Among the above applications, in fields where durability and reliability as a structural material are strongly required, such as for aerospace and transportation machinery, the quality and performance of carbon fiber, which is the core of its role as a reinforcing material in composite materials, is There is an extremely high demand for improvement in the performance of the invention, and many attempts have been made to date.

ところで、一般に炭素繊維物性の点から“ハイ
グレード炭素繊維”と呼称されるものの多くは、
アクリル系繊維と前駆体繊維(プレカーサ)とし
て製造される。
By the way, most of what is generally called "high grade carbon fiber" from the point of view of carbon fiber physical properties,
It is manufactured as acrylic fiber and precursor fiber (precursor).

[発明が解決しようとする課題] 上記した炭素繊維の製造において、エネルギー
効率の向上、すなわち、製造コストの低減並びに
生産性向上のために単繊維本数を増大し、トータ
ルデニールの大きい繊維束の形態で焼成せんとす
ると、このような繊維束からの炭素繊維は構成単
繊維間の品質、性能上の差が大きく、再現性のあ
る品質、性能を付与し難いと云われている。
[Problems to be Solved by the Invention] In the production of the above-mentioned carbon fibers, in order to improve energy efficiency, that is, reduce production costs and improve productivity, the number of single fibers is increased and the form of fiber bundles with a large total denier is developed. It is said that if the carbon fibers from such a fiber bundle are fired in a carbon fiber bundle, there is a large difference in quality and performance between the constituent single fibers, and it is difficult to impart reproducible quality and performance.

そして、このような炭素繊維束を構成する単繊
維間の物性差の原因の1つとして、前記プレカー
サおよび炭素繊維の製造工程および条件に起因し
て、炭素繊維の構造的欠陥となつて現われる該繊
維表面の亀裂、内部ボイドあるいは異物混入など
の存在が指摘されている。
One of the causes of physical property differences between single fibers constituting such a carbon fiber bundle is the structural defects that appear in the carbon fibers due to the manufacturing process and conditions of the precursor and carbon fibers. The presence of cracks on the fiber surface, internal voids, or foreign matter contamination has been pointed out.

しかるに、本発明者らの検討によると、確かに
これら従来公知の炭素繊維の内部および外部構造
の欠陥を可及的に減少させることによつて、炭素
繊維束構成単繊維間の物性差が小さくなり、繊維
束としての力学的性質は向上するけれども、これ
らの内外部構造欠陥の減少のみでは炭素繊維束の
力学的性質の飛躍的向上が期待できず、特にコン
ポジツト物性に対応するストランド強伸度の向上
が十分でないことを見出し、本発明に至つたもの
である。
However, according to the studies of the present inventors, it is true that by reducing defects in the internal and external structures of these conventionally known carbon fibers as much as possible, the differences in physical properties between the single fibers constituting the carbon fiber bundle can be reduced. Although this improves the mechanical properties of the fiber bundle, it is not possible to expect a dramatic improvement in the mechanical properties of the carbon fiber bundle simply by reducing these internal and external structural defects. The present invention was developed based on the discovery that the improvement was not sufficient.

すなわち、本発明の目的とするところは、構成
単繊維相互間の力学的性質の変動が少なく、繊維
束としての力学的性質の改良された耐久性、信頼
性に富む複合材料を与える炭素繊維束を提供する
にあり、他の目的は複合材料としての力学的性質
の1尺度であるストランド強伸度の著しく改良さ
れた炭素繊維束を提供するにある。
That is, the object of the present invention is to provide a carbon fiber bundle that has less variation in mechanical properties among constituent single fibers and that provides a composite material with improved mechanical properties as a fiber bundle, durability, and reliability. Another object of the present invention is to provide a carbon fiber bundle that has significantly improved strand strength and elongation, which is a measure of the mechanical properties of a composite material.

[課題を解決するための手段] 本発明の上記目的は、アクリロニトリル系重合
体溶液を実質ドラフト5.0以下で凝固浴中に吐出
し、得られた湿潤糸条を乾燥あるいは乾燥緻密化
されるまでの工程において、ニツプローラ等によ
る圧力を1.5Kg/cm2以下に維持すると共に、回転
ガイドローラを用いて水洗、延伸等の工程を通過
させた後、シリコン系油剤処理を施し、次に乾燥
して炭素繊維前駆体繊維を作製し、しかる後該糸
条を焼成することを特徴とする改良された力学的
性質を有する炭素繊維束の製造法によつて達成す
ることができる。
[Means for Solving the Problems] The above-mentioned object of the present invention is to discharge an acrylonitrile polymer solution into a coagulation bath at a draft of 5.0 or less, and dry the obtained wet yarn until it is dried or densified. In the process, the pressure is maintained at 1.5Kg/cm 2 or less using a nip roller, etc., and after passing through processes such as water washing and stretching using a rotating guide roller, a silicone oil treatment is applied, and then it is dried and carbonized. This can be achieved by a method for producing carbon fiber bundles with improved mechanical properties, which is characterized in that a fiber precursor fiber is prepared and then the yarn is fired.

すなわち、本発明において、先ずアクリル系重
合体の紡糸原液を多ホール紡糸口金孔から凝固浴
中に吐出する際の実質ドラフト、すなわち、引取
速度V1に対する自由吐出線速度Vfの比V1/Vf
5.0以下、好ましくは2.0〜4.5の範囲とする必要が
ある。この実質ドラフトが5.0を越えると得られ
る炭素繊維の表層筋乱れ欠陥が発生し易い。また
実質ドラフトが2.0より小さいと、単糸相互間の
融着を生じ易くなる場合があり好ましくない。そ
して重要なことは、このような実質ドラフトで紡
糸された凝固糸条は少なくとも該糸条が乾燥ある
いは乾燥緻密化される迄の工程において、ニツプ
ローラ等による圧力を1.5Kg/cm2以下に維持する
と共に、その糸条を回転ガイドローラを用いて、
凝固、延伸、水洗、延伸等の各工程を通過させる
ことである。すなわち、前記乾燥工程以前の工程
において、該糸条のガイドとして固定ガイドを用
いたり、湿潤糸条を1.5Kg/cm2を越える圧力下に
プレスすると、単糸間融着防止はもちろんのこ
と、表層筋乱れ欠陥の少ない炭素繊維束を得るこ
とが難しくなり、その後の工程、特に焼成プロセ
スの条件を如何に選択しても欠陥の修復が困難に
なる。なお、擬似融着のみであれば、油剤の選
択、得られるプリカーサの開繊処理などである程
度解決することができるが、表層筋乱れ欠陥の発
生防止には効果がないのである。
That is, in the present invention, first, the actual draft when the spinning dope of the acrylic polymer is discharged from the multi-hole spinneret hole into the coagulation bath, that is, the ratio of the free discharge linear velocity V f to the take-up velocity V 1 is V 1 / V f
It needs to be 5.0 or less, preferably in the range of 2.0 to 4.5. When the actual draft exceeds 5.0, defects in the surface striations of the resulting carbon fibers are likely to occur. Moreover, if the actual draft is smaller than 2.0, it is not preferable because it may easily cause fusion between the single yarns. What is important is that the pressure applied by a nip roller or the like is maintained at 1.5 kg/cm 2 or less for the coagulated yarn spun in such a substantially draft manner, at least in the process until the yarn is dried or dried and densified. At the same time, the thread is rotated using a rotating guide roller.
It involves passing through various steps such as coagulation, stretching, washing with water, and stretching. That is, in the process before the drying process, if a fixed guide is used as a guide for the yarn or if the wet yarn is pressed under a pressure exceeding 1.5 kg/cm 2 , it will not only prevent fusion between single yarns, but also It becomes difficult to obtain a carbon fiber bundle with few surface striation defects, and it becomes difficult to repair the defects no matter how the conditions of the subsequent process, especially the firing process, are selected. Incidentally, if only pseudo-fusion is involved, the problem can be solved to some extent by selecting an oil agent, opening the obtained precursor, etc., but it is not effective in preventing the occurrence of surface streak disorder defects.

ここでいうニツプローラ等による圧力とは、ニ
ツプローラ等にかかる全荷重(自重、エアー押圧
力、メカロスなどの総和)を糸条の被ニツプ面積
で除した値であり、被ニツプ面積とは全糸幅と感
圧紙(たとえば、富士フイルム(株)製“プレスケー
ル”)などで測定した糸条の長さ方向のニツプ長
との積である。
The pressure exerted by the nip roller, etc. here is the value obtained by dividing the total load (total of its own weight, air pressing force, mechanical loss, etc.) applied to the nip roller, etc. by the nipped area of the yarn, and the nipped area is the total yarn width. It is the product of the nip length in the longitudinal direction of the yarn, measured with pressure-sensitive paper (for example, "Prescale" manufactured by Fuji Film Corporation).

上記の条件のもとに延伸された糸条は、シリコ
ン系油剤処理を施した後、乾燥工程に導かれる。
The yarn drawn under the above conditions is treated with a silicone oil and then led to a drying process.

なお、乾燥以降の工程としては、スチームまた
は加圧スチーム中での二次延伸、油剤付与等の任
意の工程を採用することができる。
Note that as the process after drying, any process such as secondary stretching in steam or pressurized steam, application of an oil agent, etc. can be adopted.

このようにして得られるアクリル系繊維糸条
は、炭素繊維用プレカーサとして、単糸繊度が
0.5〜1.5d、単糸本数が1000本以上、引張強伸度
が5.7g/d以上、好ましくは6.0〜7.5g/dおよ
び8〜12%、繊度変動率が8%以下、好ましくは
5%以下の糸条がよく、このような物性を有する
糸条を目標としてアクリル系繊維糸条の製造条件
を選定するのがよい。
The acrylic fiber yarn obtained in this way can be used as a carbon fiber precursor with a fineness of single filament.
0.5 to 1.5 d, the number of single yarns is 1000 or more, the tensile strength and elongation is 5.7 g/d or more, preferably 6.0 to 7.5 g/d and 8 to 12%, and the fineness fluctuation rate is 8% or less, preferably 5%. The following yarns are preferred, and the manufacturing conditions for the acrylic fiber yarn should be selected with the goal of yarns having such physical properties.

上記プレカーサは230〜350℃の酸化性雰囲気中
で緊張下、通常0.1〜1.0g/dの張力下に加熱し
て酸化繊維に転換され、次に好ましくは1000℃以
上、より好ましくは1200〜1600℃の不活性雰囲気
中で加熱して炭化する。
The precursor is converted into oxidized fibers by heating under tension in an oxidizing atmosphere at 230 to 350°C, usually at a tension of 0.1 to 1.0 g/d, and then heated at preferably 1000°C or higher, more preferably 1200 to 1600°C. Carbonize by heating in an inert atmosphere at ℃.

なお、必要とあればさらに高温の不活性雰囲気
中で加熱して黒鉛化することができる。
Note that, if necessary, graphitization can be achieved by further heating in an inert atmosphere at a high temperature.

そして、これらの焼成工程において、糸条間の
融着防止のためのプレーサの開繊処理、雰囲気気
体中に含まれる不純物による繊維の汚染、融着も
しくは炭素繊維表面への不純物の付着防止のため
の該雰囲気ガスの清浄化処理等の手段を講じて、
得られる炭素繊維束構成単繊維の構造的欠陥の発
生を防止し、かつ内部ボイドの形成を抑制するの
が好ましい。
In these firing processes, the placer is opened to prevent fusion between the yarns, and the fibers are contaminated by impurities contained in the atmospheric gas, and to prevent fusion or adhesion of impurities to the carbon fiber surface. By taking measures such as cleaning the atmospheric gas,
It is preferable to prevent the occurrence of structural defects in the resulting single fibers constituting the carbon fiber bundle and to suppress the formation of internal voids.

[実施例] 以下、実施例により本発明を具体的に説明す
る。
[Example] Hereinafter, the present invention will be specifically explained with reference to Examples.

本例中、炭素繊維の単繊維物性およびストラン
ド物性、並びに単繊維の引張破断試験は次のとお
り行つたものである。
In this example, the single fiber physical properties and strand physical properties of the carbon fibers, as well as the tensile rupture test of the single fibers, were conducted as follows.

単繊維強度および同伸度 JIS−R−7601に記載された単繊維試験方法に
準じて測定した。
Single fiber strength and elongation Measured according to the single fiber test method described in JIS-R-7601.

ストランド強度および同伸度 JIS−R−7601に記載された樹脂含浸ストラン
ド試験方法に準じて測定した。このとき、樹脂組
成はチツソノツクス221/三フツ化ホウ素モノエ
チルアミン/アセトン=100/3/4部とした。
Strand strength and elongation were measured according to the resin-impregnated strand test method described in JIS-R-7601. At this time, the resin composition was Chitsonox 221/boron trifluoride monoethylamine/acetone = 100/3/4 parts.

単繊維の1次破断面観察 先ず、炭素繊維束を予め溶剤等で洗浄する。そ
の繊維束試料から長さが約10cmの繊維集団に取り
出し、適宜開繊して該繊維集団からランダムに単
繊維を抜き取る。この抜き取つた単繊維1を第1
図に示すように、5cmの試料長に正確に対応する
長さに打ち抜いた5cm×1cmの寸法の穴あき台紙
2の上に台紙2の中央線3に沿つて真直ぐにして
接着剤4で張り付け固定し、テストピースを作製
する。
Observation of primary fracture surface of single fiber First, the carbon fiber bundle is washed with a solvent or the like in advance. A fiber group with a length of about 10 cm is extracted from the fiber bundle sample, and the fibers are appropriately opened to randomly extract single fibers from the fiber group. This extracted single fiber 1 is
As shown in the figure, stick it straight along the center line 3 of the mount 2 with adhesive 4 on a perforated mount 2 with dimensions of 5 cm x 1 cm that has been punched out to a length that exactly corresponds to the sample length of 5 cm. Fix it and prepare a test piece.

次に、炭素繊維のような脆性の著しい繊維は空
中で引張破断した場合に、破断時の衝撃によつて
一時破壊のほかに数ケ所で二次破壊が生じ易いの
で、これを避けるために水中での引張破壊試験が
できるように改造した定速緊張型引張試験機を用
いて、前記テストピースを該試験機に取りつけ、
引張歪速度1%/mmで引張破壊試験を行う。
Next, when extremely brittle fibers such as carbon fibers are tensilely fractured in mid-air, the impact at the time of fracture tends to cause secondary fractures in several places in addition to temporary fractures. Using a constant speed tension type tensile testing machine modified to be able to perform a tensile failure test, the test piece is attached to the testing machine,
A tensile fracture test is performed at a tensile strain rate of 1%/mm.

この引張破壊試験を繊維束を構成する総単繊維
本数当り少なくとも1%の単繊維について行い、
引張破壊されたテストピースから単繊維を取出
し、該単繊維の一次破壊面に金コーテイングを施
し、走査型電子顕微鏡を用いて、加速電圧
25KV、倍率10000倍で破壊面を観察し、写真撮
影する。
This tensile fracture test is performed on at least 1% of the single fibers based on the total number of single fibers constituting the fiber bundle,
A single fiber was taken out from the tensile fractured test piece, the primary fracture surface of the single fiber was coated with gold, and using a scanning electron microscope, the accelerating voltage was
Observe and photograph the fractured surface at 25KV and 10,000x magnification.

第2図は炭素繊維の表層筋乱れ欠陥の代表例を
示す電子顕微鏡写真であり、第3図A〜Fはそれ
ぞれ上述のごとくして試験された単繊維の破断面
の各種欠陥の例を示す模式図である。図におい
て、A,BおよびCは表層筋乱れ欠陥、D,Eお
よびFは付着物欠け傷欠陥またはボイド欠陥であ
る。
Figure 2 is an electron micrograph showing a typical example of a surface striation disorder defect in carbon fiber, and Figures 3A to 3F show examples of various defects on the fractured surface of single fibers tested as described above. It is a schematic diagram. In the figure, A, B, and C are surface streak disorder defects, and D, E, and F are deposit chipping defects or void defects.

実施例 1 アクリロニトリル(AN)99.5重量%、イタコ
ン酸0.5重量%からなるAN系共重合体の21重量%
ジメチルスルホキシド(DMSO)溶液を紡糸原
液として0.06mmφ、6000ホールの口金を用いて実
質ドラフト4.2でDMSO55%水溶液(60℃)中に
吐出し、3倍に延伸、水洗し、シリコーン系油剤
を付着させたのち130℃の加熱ロール上で乾燥緻
密化した。上記凝固延伸および水洗の各工程には
糸条ガイドとして200mmφの回転ロールを使用し、
走行糸条がガイド上で擦過されることなく、また
全く糸条には押圧を加えなかつたがシリコーン系
油剤処理は油剤浴浸漬後圧力1.0Kg/cm2に制御し
たニツプローラ間を通して絞液し、付着量を2.5
%にした。
Example 1 21% by weight of AN copolymer consisting of 99.5% by weight of acrylonitrile (AN) and 0.5% by weight of itaconic acid
A dimethyl sulfoxide (DMSO) solution was used as a spinning stock solution and was discharged into a 55% DMSO aqueous solution (60°C) using a 0.06mmφ, 6000-hole spinneret at an actual draft of 4.2, stretched 3 times, washed with water, and coated with a silicone oil. It was then dried and densified on a heating roll at 130°C. A rotating roll of 200mmφ is used as a yarn guide in each of the above steps of coagulation drawing and water washing.
Although the running yarn was not rubbed on the guide and no pressure was applied to the yarn at all, the silicone oil treatment was carried out by squeezing the liquid through Nitz rollers controlled at a pressure of 1.0 kg/cm 2 after immersion in the oil bath. Adhesion amount 2.5
%.

次いで、乾燥糸条を130℃の加圧スチーム中で
4倍に延伸し、全延伸倍率12倍、強度6.5g/d、
伸度11.0%の6000D−6000filの繊維束を作製し
た。
Next, the dried yarn was stretched 4 times in pressurized steam at 130°C, with a total stretching ratio of 12 times, a strength of 6.5 g/d,
A fiber bundle of 6000D-6000fil with an elongation of 11.0% was produced.

該繊維束の油分付着量は1.5%であつた。得ら
れた6000D−6000filの繊維束にリング状のノズル
を用い圧力0.5Kg/cm2のエア開繊処理を施した後、
雰囲気温度がそれぞれ250℃、260℃の熱風循環方
式の加熱炉中に実質的に定長状態で順次通過させ
て酸化処理を行なつた。
The amount of oil adhering to the fiber bundle was 1.5%. After applying air opening treatment to the obtained 6000D-6000fil fiber bundle using a ring-shaped nozzle at a pressure of 0.5Kg/ cm2 ,
The oxidation treatment was carried out by sequentially passing the material in a substantially constant length state through a hot air circulation type heating furnace with an ambient temperature of 250°C and 260°C, respectively.

次いで、得られた酸化繊維束を2%の収縮を与
えながら1300℃の窒素雰囲気中に1000〜1200℃の
温度域における昇温速度が800℃/分となるよう
に加熱して炭素繊維束とした。
Next, the obtained oxidized fiber bundle was heated in a nitrogen atmosphere at 1300°C while giving 2% shrinkage so that the heating rate in the temperature range of 1000 to 1200°C was 800°C/min to form a carbon fiber bundle. did.

得られた炭素繊維束について、単繊維の引張破
断試験を行い、走査型電子顕微鏡で1次破断面の
観察を行つた結果、第3図A〜Cに示した表層筋
乱れが認められたが、その頻度は20%と少なかつ
た。
The obtained carbon fiber bundle was subjected to a single fiber tensile fracture test, and the primary fracture surface was observed using a scanning electron microscope. , the frequency was as low as 20%.

またこの炭素繊維の平均単繊維強度は370Kg/
mm2、同伸度は1.53%であり(いずれもn=60の平
均値)、またこの炭素繊維束のストランド強度は
440Kg/mm2、同伸度は1.80%、同ヤング率24.4t/
mm2と非常に高い値を示した。
In addition, the average single fiber strength of this carbon fiber is 370Kg/
mm 2 , the elongation is 1.53% (both are average values of n = 60), and the strand strength of this carbon fiber bundle is
440Kg/mm 2 , elongation is 1.80%, Young's modulus is 24.4t/
It showed a very high value of mm 2 .

比較例 1 実施例1において、紡糸原液を実質ドラフト
5.5と高くしてDMSO溶液中に吐出し、凝固、延
伸、水洗工程に糸条ガイドとしてφの固定ガイド
を用い、水洗工程で水切のため2.0Kg/cm2圧のニ
ツプローラをかけた他は、全く同様の方法により
アクリル繊維を製糸し、しかる後、実施例1と同
様の方法で焼成して炭素繊維束を得た。
Comparative Example 1 In Example 1, the spinning dope was essentially drafted.
5.5 and discharged into the DMSO solution, a fixed guide of φ was used as a yarn guide during the coagulation, stretching, and washing steps, and a nip roller with a pressure of 2.0 kg/cm 2 was applied to drain the water during the washing step. Acrylic fibers were spun in exactly the same manner and then fired in the same manner as in Example 1 to obtain carbon fiber bundles.

この単繊維の引張破断試験による1次破断面を
実施例1と同様に観察したところ、表層筋乱れ欠
陥が多く見られ、その頻度は37%であつた。
When the primary fracture surface of this single fiber was observed in the tensile fracture test in the same manner as in Example 1, many surface muscle disorder defects were observed, with a frequency of 37%.

この炭素繊維束の平均単繊維強度は283Kg/mm2
同伸度は1.16%であり(いずれもn=60の平均
値)、またストランド強度は340Kg/mm2、同伸度は
1.38%、同ヤング率は24.5t/mm2であつた。
The average single fiber strength of this carbon fiber bundle is 283Kg/mm 2 ,
The elongation is 1.16% (both are average values of n=60), the strand strength is 340Kg/mm 2 , and the elongation is
The Young's modulus was 24.5t/ mm2 .

[発明の効果] 本発明によれば、炭素繊維における破断面の表
層筋乱れ欠陥が、炭素繊維束を構成する全単繊維
本数の約30%以下に減少した。このため炭素繊維
の平均単繊維強度が350Kg/mm2以上、同伸度が1.4
%以上となり、また炭素繊維のコンポジツト特性
をよく反映するといわれているストランド物性、
すなわち、ストランド強度が420Kg/mm2以上、同
伸度が1.7%以上になるという、顕著な効果を奏
するのである。
[Effects of the Invention] According to the present invention, the surface striation disorder defect on the fracture surface of carbon fibers was reduced to about 30% or less of the total number of single fibers constituting a carbon fiber bundle. Therefore, the average single fiber strength of carbon fiber is 350Kg/mm2 or more, and the elongation is 1.4
% or more, and the strand physical properties are said to reflect well the composite properties of carbon fiber.
In other words, the strand strength is 420 kg/mm 2 or more and the elongation is 1.7% or more, which is a remarkable effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素繊維束の引張破壊試験用テストピ
ースを示す概略図、第2図は引張破壊試験された
単繊維の破断面の表層筋乱れ欠陥の1例を示す電
子顕微鏡写真、第3図は表層筋乱れ、付着物、欠
け傷およびボイド欠陥の例を示す模式図である。 1……単繊維、2……穴あき台紙、3……穴あ
き台紙における中央線、4……接着剤、A,B,
C……表層筋乱れ欠陥、D……付着物、E……欠
け傷、F……ボイド。
Figure 1 is a schematic diagram showing a test piece for a tensile fracture test of a carbon fiber bundle, Figure 2 is an electron micrograph showing an example of surface striation disorder defects on the fracture surface of a single fiber subjected to a tensile fracture test, and Figure 3 FIG. 2 is a schematic diagram showing examples of surface streak disturbances, deposits, chips, and void defects. 1... Monofilament, 2... Perforated mount, 3... Center line in perforated mount, 4... Adhesive, A, B,
C... Surface muscle disorder defect, D... Deposit, E... Chip, F... Void.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリロニトリル系重合体溶液を実質ドラフ
ト5.0以下で凝固浴中に吐出し、得られた湿潤糸
条を乾燥あるいは乾燥緻密化されるまでの工程に
おいて、ニツプローラ等による圧力を1.5Kg/cm2
以下に維持すると共に、回転ガイドローラを用い
て水洗、延伸等の工程を通過させた後、シリコン
系油剤処理を施し、次に乾燥して炭素繊維前駆体
繊維を作製し、しかる後該糸条を焼成することを
特徴とする改良された力学的性質を有する炭素繊
維束の製造法。
1. The acrylonitrile polymer solution is discharged into a coagulation bath at a draft of 5.0 or less, and during the process of drying or drying and densifying the obtained wet yarn, a pressure of 1.5 Kg/cm 2 is applied using a Nitsu roller, etc.
The yarn is maintained at A method for producing a carbon fiber bundle having improved mechanical properties, the method comprising firing a carbon fiber bundle.
JP9775582A 1982-06-09 1982-06-09 Carbon fiber bundle having improved mechanical property and production thereof Granted JPS58214533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9775582A JPS58214533A (en) 1982-06-09 1982-06-09 Carbon fiber bundle having improved mechanical property and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9775582A JPS58214533A (en) 1982-06-09 1982-06-09 Carbon fiber bundle having improved mechanical property and production thereof

Publications (2)

Publication Number Publication Date
JPS58214533A JPS58214533A (en) 1983-12-13
JPH0329888B2 true JPH0329888B2 (en) 1991-04-25

Family

ID=14200691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9775582A Granted JPS58214533A (en) 1982-06-09 1982-06-09 Carbon fiber bundle having improved mechanical property and production thereof

Country Status (1)

Country Link
JP (1) JPS58214533A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185813A (en) * 1984-03-01 1985-09-21 Nikkiso Co Ltd Spinning of acrylic fiber for making carbon fiber
JPS6197422A (en) * 1984-10-16 1986-05-15 Nikkiso Co Ltd High-strength carbon fiber and its production
JP2018141251A (en) * 2017-02-28 2018-09-13 東レ株式会社 Carbon fiber bundle and method for producing the same
CN110230130B (en) * 2019-07-02 2021-09-28 威海拓展纤维有限公司 Preparation method of high-strength medium-modulus carbon fiber precursor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024534A (en) * 1973-07-05 1975-03-15
JPS5031128A (en) * 1973-07-23 1975-03-27
JPS5119817A (en) * 1974-08-05 1976-02-17 Japan Exlan Co Ltd SHINKINARUHYOMENTOKUSEIOJUSURU TANSOSENI OYOBI SONOSEIZOHOHO
JPS52114726A (en) * 1976-03-19 1977-09-26 Toray Ind Inc High strength carbon fiber and its production
JPS55142719A (en) * 1979-04-26 1980-11-07 Sumitomo Chem Co Ltd Production of carbon fiber having improved properties
JPS5650009A (en) * 1979-10-01 1981-05-07 Tetsuo Takano Silver ceramic electric contact material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5024534A (en) * 1973-07-05 1975-03-15
JPS5031128A (en) * 1973-07-23 1975-03-27
JPS5119817A (en) * 1974-08-05 1976-02-17 Japan Exlan Co Ltd SHINKINARUHYOMENTOKUSEIOJUSURU TANSOSENI OYOBI SONOSEIZOHOHO
JPS52114726A (en) * 1976-03-19 1977-09-26 Toray Ind Inc High strength carbon fiber and its production
JPS55142719A (en) * 1979-04-26 1980-11-07 Sumitomo Chem Co Ltd Production of carbon fiber having improved properties
JPS5650009A (en) * 1979-10-01 1981-05-07 Tetsuo Takano Silver ceramic electric contact material

Also Published As

Publication number Publication date
JPS58214533A (en) 1983-12-13

Similar Documents

Publication Publication Date Title
US8236273B2 (en) Method of producing pre-oxidation fiber and carbon fiber
JP6950526B2 (en) Carbon fiber bundle and its manufacturing method
JP6020201B2 (en) Carbon fiber bundle and method for producing the same
JP2006299439A (en) Carbon fiber, method for producing the same, acrylonitrile precursor fiber and method for producing the same
JP4359999B2 (en) Method for producing polyphenylene sulfide fiber
KR950010291B1 (en) Stitching thread of carbon fiber
JPH0329888B2 (en)
JPH0345708A (en) Forming method for melt spinning acrylic fiber adapted for heat conversion to high strength carbon fiber
JPH0329890B2 (en)
CN110373729A (en) As-spun fibre, polyacrylonitrile fibre, polyacrylonitrile-based carbon fibre and preparation method
JP7447788B2 (en) Carbon fiber bundle and its manufacturing method
JP2008240203A (en) Steam drawing apparatus and method for producing precursor yarn for carbon fiber
CN114457444B (en) Preparation method of high-strength polyacrylonitrile fiber
JP2017137614A (en) Carbon fiber bundle and manufacturing method thereof
JPS58214534A (en) Carbon fiber bundle having high strength and elongation and production thereof
WO2019146487A1 (en) Flame-retardant fiber bundle and method for manufacturing carbon fiber bundle
JP6359860B2 (en) Carbon fiber precursor fiber and method for producing carbon fiber precursor fiber
JPH0323651B2 (en)
WO2023140212A1 (en) Carbon fiber bundle
JP2555826B2 (en) Acrylic yarn manufacturing method for carbon fiber precursor
JPH0329885B2 (en)
JP6547924B1 (en) Method of manufacturing flameproofed fiber bundle and carbon fiber bundle
JP2004060126A (en) Carbon fiber and method for producing the same
JP2001049524A (en) Production of acrylic fiber
JP6953741B2 (en) Polyethylene fibers, textile products, and methods for manufacturing polyethylene fibers