JPH0329867A - Observation of voltage distribution image by electron beam apparatus - Google Patents

Observation of voltage distribution image by electron beam apparatus

Info

Publication number
JPH0329867A
JPH0329867A JP1166178A JP16617889A JPH0329867A JP H0329867 A JPH0329867 A JP H0329867A JP 1166178 A JP1166178 A JP 1166178A JP 16617889 A JP16617889 A JP 16617889A JP H0329867 A JPH0329867 A JP H0329867A
Authority
JP
Japan
Prior art keywords
sample
electron beam
detector
voltage distribution
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1166178A
Other languages
Japanese (ja)
Inventor
Yasuo Furukawa
古川 泰男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1166178A priority Critical patent/JPH0329867A/en
Publication of JPH0329867A publication Critical patent/JPH0329867A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To obtain a highly faithful voltage distribution image by respectively irradiating a sample for correcting a lattice-like electrostatic latent image pattern and a sample to be observed with electron beam and comparing the detector outputs of the secondary electrons from both samples and using the comparing result. CONSTITUTION:Electron beam EB is projected on a sample 30 for correcting a lattice-like electrostatic latent image pattern and deflected by a deflector 14 and the entire surface of the sample is subjected to two-dimensional scanning by electron beam and the secondary electron SE generated from the irradiation point with the electron beam is collected by a detector 10 and a peak/bottom non-uniform waveform due to the potential effect of a member is outputted. An A/D converter 16 digitalizes said waveform based on the signal of a controller 28 and the digital data is sampled along with the irradiation point position data to be written in an image memory 20 to be set to correction data. Next, a sample 20 to be observed is subjected to two-dimensional scanning by electron beam in place of the sample 30 and the generated secondary electron is collected by the detector 10 to be written in an image memory 40 in the same way. This digital value is divided by that of the memory 20 while correspondence is taken based on the position data to be written in an image memory 44. By this method, the potential distribution image of the sample 20 can be displayed highly faithfully.

Description

【発明の詳細な説明】 〔発明の概要〕 電子ビーム装置によるLSIチップなどの試料の電位分
布像の観測法に関し、 検出された二次電子信号を補正して、同し電圧の試料面
から出た二次電子信号は可及的に同しになるようにし、
忠実度の高い電圧分布像を提供できるようにすることを
目的とし、 試料面を電子ビームで走査し、該走査で放出される二次
電子を検出器で捕集し、該検出器出力により試料面の電
圧分布像を観測する方法において、格子状の静電潜像パ
ターンを持つ補正用試料を用い、該試料を観測対象試料
に置き換えて電子ビームで走査し、得られた二次電子検
出器出力をメモリに記憶させ、然るのち、観測対象の試
料の面を電子ビームで走査し、得られた二次電子検出器
出力を、前記メモリの読出し出力で割算して、その結果
を電圧分布像観測に用いるよう構戒する。
[Detailed Description of the Invention] [Summary of the Invention] Regarding a method for observing potential distribution images of a sample such as an LSI chip using an electron beam device, the detected secondary electron signal is corrected and emitted from the sample surface at the same voltage. The secondary electron signals are made to be as similar as possible,
The aim is to provide a voltage distribution image with high fidelity.The sample surface is scanned with an electron beam, the secondary electrons emitted during the scanning are collected by a detector, and the output of the detector is used to detect the sample. In a method of observing a voltage distribution image on a surface, a correction sample having a grid-like electrostatic latent image pattern is used, the sample is replaced with the observation target sample, and the resulting secondary electron detector is scanned with an electron beam. The output is stored in a memory, and then the surface of the sample to be observed is scanned with an electron beam, the obtained secondary electron detector output is divided by the readout output of the memory, and the result is calculated as a voltage. It is planned to be used for distribution image observation.

〔産業上の利用分野〕[Industrial application field]

本発明は、電子ビーム装置によるLSIチップなどの試
料の電圧分布像の観測法に関する。
The present invention relates to a method of observing a voltage distribution image of a sample such as an LSI chip using an electron beam device.

走査型電子顕微鏡(SEM)によって試料の電圧分布を
観測する技術が従来から知られている。
2. Description of the Related Art Techniques for observing the voltage distribution of a sample using a scanning electron microscope (SEM) have been known.

この技術はLSIの動作状態を観測するために配線の電
圧分布像を得るためや、静電潜像の観察などに利用され
ている。前者はたとえば古川,稲垣:lSIの非接触診
断技術」電気学会論文誌C,107巻.3号,245J
に、後者はたとえば面谷,田中,星野: 「コロナイオ
ン照射により作威した表面電荷のSEM観察」静電気学
会講演論文集’86. 1 7 9 Jに詳しい。
This technique is used to obtain voltage distribution images of wiring to observe the operating state of LSIs, and to observe electrostatic latent images. The former is, for example, Furukawa, Inagaki: "Non-contact diagnostic technology for ISI", Transactions of the Institute of Electrical Engineers of Japan, Vol. 107. No. 3, 245J
The latter is, for example, Omotani, Tanaka, and Hoshino: "SEM Observation of Surface Charges Created by Corona Ion Irradiation," Proceedings of the Electrostatic Society of Japan '86. 1 7 9 I am familiar with J.

〔従来の技術] 表面の電圧分布像を得る方法としては、先端が微小な金
属針を表面に接触させて電圧を測定する方法があるが、
微細化LSIでこれを行なうと、金属針を内部電極配線
へ接触させにくい、LSIを損傷する恐れがある、容量
を持つから高速の信号は測定しにくい等の問題がある。
[Prior Art] As a method of obtaining a voltage distribution image on a surface, there is a method in which a metal needle with a minute tip is brought into contact with the surface and the voltage is measured.
If this is done with a miniaturized LSI, there are problems such as it is difficult to bring the metal needle into contact with the internal electrode wiring, there is a risk of damaging the LSI, and it is difficult to measure high-speed signals because of the capacitance.

電子ビームによる観測は、動作状態のLSIチップ(試
料)表面を電子ビームで走査し、このとき発生する二次
電子を二次電子検出器に導き、検出器出力でCRTディ
スプレイを輝度変調し、管面に試料面の電位分布像を表
示する、などの方法で行なう。
Observation using an electron beam involves scanning the surface of an LSI chip (sample) in an operating state with an electron beam, guiding the secondary electrons generated at this time to a secondary electron detector, and using the output of the detector to modulate the brightness of a CRT display. This can be done by displaying an image of the potential distribution on the sample surface on the surface.

試料面への電子ビーム照射で二次電子が放出され、二次
電子検出器により検出される二次電子の量は、当該試料
面の電位および試料面上に形威される電界分布の影響を
受ける。一般に電位の低い部分は放出される二次電子が
多く、ディスプレイ上の電圧分布像の当該部分は明るく
見える。逆に、電位の高い部分は放出される二次電子が
少なく、電位分布像の当該部分は暗くなる。この明暗が
試料面の電位分布を示す。電子ビームによれば、高速に
高い分解能で電圧分布を得ることができるので、非常に
有効である。
Secondary electrons are emitted when the sample surface is irradiated with an electron beam, and the amount of secondary electrons detected by the secondary electron detector is influenced by the potential of the sample surface and the electric field distribution formed on the sample surface. receive. Generally, a portion with a low potential has a large number of emitted secondary electrons, and this portion of the voltage distribution image on the display appears bright. Conversely, in a high-potential area, fewer secondary electrons are emitted, and the potential distribution image becomes dark. This brightness indicates the potential distribution on the sample surface. Electron beams are very effective because voltage distributions can be obtained quickly and with high resolution.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、電圧分布を忠実に反映した二次電子信号を得る
ことは一般に容易でない。第4図に示すように、同じ電
圧の配線でも、二次電子信号のレベルが異なるのが一般
的である。この図で10は二次電子SEの検出器、12
は増幅器、l4は電子ビームEBの偏向器、20は試料
(LSIチップ)、■■・・・・・・■は該試料に形威
された配線で、電源22により同じ一定の電圧を与えら
れている。
However, it is generally not easy to obtain a secondary electron signal that faithfully reflects the voltage distribution. As shown in FIG. 4, even if the wiring has the same voltage, the level of the secondary electron signal generally differs. In this figure, 10 is a secondary electron SE detector, 12
is an amplifier, l4 is a deflector for the electron beam EB, 20 is a sample (LSI chip), and ■■...■ is a wiring formed on the sample, which is supplied with the same constant voltage by a power source 22. ing.

同じ電圧の配線でも、その二次電子信号は第4図(b)
の如くレベルが異なるのは、二次電子の軌道が種々の電
界の影響を受けるため、検出される二次電子の量が配線
の位置などによって異なってしまうからである。
Even if the wiring has the same voltage, the secondary electron signal is as shown in Figure 4 (b)
The reason why the levels differ is that the trajectory of secondary electrons is affected by various electric fields, and the amount of detected secondary electrons varies depending on the position of the wiring.

本発明はか\る点に着目するもので、検出された二次電
子信号を補正して、同じ電位の試料面から出た二次電子
信号は可及的に同じになるようにし、忠実度の高い電圧
分布像を提供できるようにすることを目的とするもので
ある。
The present invention focuses on this point, and corrects the detected secondary electron signals so that the secondary electron signals emitted from the sample surface of the same potential are as similar as possible, thereby improving the fidelity. The purpose of this is to provide a high voltage distribution image.

〔課題を解決するための手段〕[Means to solve the problem]

第1図に示すように本発明では、格子状の静電潜像パタ
ーンを持つ補正用試料30を用意する。
As shown in FIG. 1, in the present invention, a correction sample 30 having a grid-like electrostatic latent image pattern is prepared.

第1図(a)で斜線部は例えば高電位部分、自部分はそ
の逆の低電位部分である。このような静電潜像パターン
は第1図(b)に示すように、複写機などで使用される
導体32と半導体34を積層させた媒体に、一様帯電、
光像投影で容易に形威できる。
In FIG. 1(a), the shaded area is, for example, a high potential area, and the shaded area is the opposite low potential area. As shown in FIG. 1(b), such an electrostatic latent image pattern is created by uniformly charging a medium in which a conductor 32 and a semiconductor 34 are laminated, which is used in a copying machine or the like.
It can be easily visualized by optical image projection.

この静電潜像を持つ補正用試料をSEMの試料台にセッ
トし、電子ビームで走査して、発生した二次電子を二次
電子検出器で捕集し、該検出器の出力をメモリに記憶す
る。
The correction sample with this electrostatic latent image is set on the SEM sample stage, scanned with an electron beam, the generated secondary electrons are collected by a secondary electron detector, and the output of the detector is stored in memory. Remember.

その後、SEMの試料台に観測対象の試料をセットし、
電子ビームで走査して、発生した二次電子を二次電子検
出器で捕集し、該検出器の出力を、上記メモリの読出し
出力で割算して正規化し、その結果を電圧分布像観測に
用いるようにする。
After that, set the sample to be observed on the SEM sample stage,
Scanning is performed with an electron beam, the generated secondary electrons are collected by a secondary electron detector, the output of the detector is divided by the readout output of the memory, normalized, and the result is used for voltage distribution image observation. It should be used for

〔作用〕[Effect]

第l図(a)の静電潜像を持つ補正用試料を電子ビーム
で走査すると、例えば第1図(a)のA−A線部分を走
査すると、二次電子検出器の出力は第1図(C)の如く
なるべきであるが、実際は第1図(d)のようになる。
When a correction sample having an electrostatic latent image as shown in Fig. 1(a) is scanned with an electron beam, for example, when scanning the line A-A in Fig. 1(a), the output of the secondary electron detector is It should look like Figure 1(C), but it actually looks like Figure 1(d).

即ち試料の高電圧部分(斜線部)、低電圧部分(白部分
)による検出出力の高、低の他に、該部分の位置による
高、低が加わる。
That is, in addition to the high and low detection outputs due to the high voltage portions (hatched portions) and low voltage portions (white portions) of the sample, the high and low values depending on the positions of these portions are added.

位置による高、低は、SEMの構造、二次電子検出器の
取付位置などによって定まる固有のもので、従って観測
対象の試料を試料台にのせ、電子ビームで走査したとき
も、二次電子検出器出力に入ってくるものである。そこ
で、補正用試料30を電子ビーム走査したときの二次電
子検出器出力をメモリに記憶しておき、観測用試料を電
子ビーム走査して得られる二次電子検出器出力を該メモ
リの読出し出力で割算すれば、位置による検出出力の変
動は補正され、第1図で言えば(d)を(C)に修正す
ることが可能になり、これにより試料面の正しい電圧分
布像を得ることができる。
The height and low depending on the position are unique and determined by the structure of the SEM, the mounting position of the secondary electron detector, etc. Therefore, even when the sample to be observed is placed on the sample stage and scanned with an electron beam, the secondary electrons cannot be detected. This is what comes into the device output. Therefore, the secondary electron detector output when the correction sample 30 is scanned with an electron beam is stored in a memory, and the secondary electron detector output obtained when the observation sample is scanned with an electron beam is read out from the memory. By dividing by I can do it.

〔実施例〕〔Example〕

第2図に電圧分布の補正信号を得る手段を、また第3図
に得られた補正信号で補正して忠実度の高い電圧分布像
を得る手段を示す。
FIG. 2 shows a means for obtaining a voltage distribution correction signal, and FIG. 3 shows a means for correcting with the obtained correction signal to obtain a voltage distribution image with high fidelity.

先ず第2図で、30は第1図に示した格子状の静電潜像
パターンを持つ補正用試料である。試料30の半導体3
4としてはセレン(Se)などが一般に用いられ、一様
帯電はコロナ放電によるのが普通である。試料30に細
く絞った電子ビームEBを投射し、偏向器14により偏
向して試料30の全面を電子ビームで二次元スキャンす
る。この走査データ(X,Y偏向データ)はデータ発生
回路26が発生し、該回路の発生データをD/A変換器
24でアナログ信号に変え、増幅器(ドライバ)22を
介してX,Y偏向器14に加える。
First, in FIG. 2, numeral 30 is a correction sample having the grid-like electrostatic latent image pattern shown in FIG. Semiconductor 3 of sample 30
Selenium (Se) or the like is generally used as the material 4, and uniform charging is normally achieved by corona discharge. A narrowly focused electron beam EB is projected onto the sample 30 and deflected by a deflector 14 to two-dimensionally scan the entire surface of the sample 30 with the electron beam. This scanning data (X, Y deflection data) is generated by a data generation circuit 26, the data generated by the circuit is converted into an analog signal by a D/A converter 24, and then sent to the X, Y deflection data via an amplifier (driver) 22. Add to 14.

電子ビームEBが試料30を照射するとその照射点から
二次電子SEが発生する。発生する二次電子SEは照射
点の電位が高いと少なく、低いと多く、そして電位が高
い部分からの二次電子は低いエネルギを持ち、低い部分
からのそれは高いエネルギのものを含んでおり、この事
はエネルギ分析器を介在させることで可或り高精度な(
誤差1%以下など)電圧測定を可能にする。検出器IO
はか\る二次電子SEを捕集し、電圧出力を生しる。こ
の検出器出力は第l図(d)の如きものである。
When the sample 30 is irradiated with the electron beam EB, secondary electrons SE are generated from the irradiation point. The generated secondary electrons SE are small when the potential of the irradiation point is high, and large when the potential is low, and secondary electrons from areas with high potential have low energy, and those from low areas include those with high energy. This can be solved with a high degree of accuracy by using an energy analyzer (
Enables voltage measurement (with an error of 1% or less, etc.). Detector IO
It collects the ephemeral secondary electrons SE and generates a voltage output. The output of this detector is as shown in FIG. 1(d).

即ち一様帯電させ、縞模様になるように電荷を抜いたも
のであるから本来は第1図(C)の出力になるはずであ
るが、試料30上の各種部材の電位の影響、二次電子検
出器の取付け位置などが原因で検出出力の波形のピーク
、ボI・ムが不均一になる。
In other words, since it is uniformly charged and the charge is removed to form a striped pattern, the output should originally be as shown in Figure 1 (C), but due to the influence of the potential of various parts on the sample 30, secondary The peak of the waveform of the detection output and the volume may become uneven due to the mounting position of the electronic detector.

増幅器12はこれを増幅し、A/D変換器16はデジタ
ルに変化する。A/D変換ではザンプリングと、それで
取得した各サンプル(アナログ)のデジタル値への変換
を行なうが、該サンプリングはコントローラ28からの
信号に従って行なう。
The amplifier 12 amplifies this, and the A/D converter 16 converts it to digital. In the A/D conversion, sampling and conversion of each obtained sample (analog) into a digital value are performed, and the sampling is performed according to a signal from the controller 28.

コントローラ28はデータ発生回路26が出力する偏向
データを取込み、これは電子ビームEBの試料30上へ
の照射点座標に対応ずるから、これを第1図(d)の位
置データとし、これでA/D変換器16にサンプリング
させ、そのA/D変換値と該位置データを画像メモリ2
0に書き込み、補正データとする。
The controller 28 takes in the deflection data output by the data generation circuit 26, and since this corresponds to the coordinates of the irradiation point of the electron beam EB on the sample 30, it is used as the position data shown in FIG. /D converter 16 to sample, and the A/D converted value and the position data are stored in the image memory 2.
Write it to 0 and use it as correction data.

内挿処理回路18はA/D変換器16の出力を内挿処理
して第l図(d)の点線の如くする(包路線を作る)。
The interpolation processing circuit 18 performs interpolation processing on the output of the A/D converter 16 to form a dotted line in FIG. 1(d) (creating an envelope line).

即ち、補正データとして必要なのは、格子状電圧分布を
表わす信号或分ではなく、それを高/低に振らせている
変動威分であり、これは第1図(d)の包路線である。
That is, what is needed as correction data is not a signal representing the grid-like voltage distribution, but a fluctuation component that causes it to swing high/low, and this is the envelope shown in FIG. 1(d).

なお、A/D変換器l6でのサンプリングを第l図(d
)の波形の各ピーク点だけで行ない(各ボトム点だけで
行なっても同様であるが)、そのピーク値とピーク点座
標を画像メモリ20に書き込んで袖正データとする場合
は、内挿処理は必要でない。この場合は、各サンプリン
グ点の間についてはその前/後の補正データを用いる、
メモリから読出した補正データを内挿して使用する、等
となる。格子状電位分布パターンの格子間隔の大/小は
、所要補正精度に合わせて決定する。補正用試料30の
大きさは、観測用試料例えばLSIチップの大きさに合
わせる、電子ビームの走査範囲に合わせる、等とする。
Note that the sampling at the A/D converter l6 is shown in Figure l (d
) for each peak point of the waveform (although it is the same even if it is performed only for each bottom point), and if the peak value and peak point coordinates are written to the image memory 20 and used as sleeve correction data, interpolation processing is performed. is not necessary. In this case, between each sampling point, use the correction data before/after that point.
For example, correction data read from memory is interpolated and used. The size of the lattice spacing of the lattice potential distribution pattern is determined according to the required correction accuracy. The size of the correction sample 30 is set to match the size of the observation sample, for example, an LSI chip, or to match the scanning range of the electron beam.

補正データはSEMに固有のものであるから、一度採取
すればよい。唯、観測対象試料の電圧分布パターンの精
/粗等に合わせて補正用試料の潜像パターンの精/粗を
変え、採取し直してもよい。
Since the correction data is unique to the SEM, it only needs to be collected once. However, the fineness/coarseness of the latent image pattern of the correction sample may be changed in accordance with the fineness/coarseness of the voltage distribution pattern of the observation target sample, and the sample may be re-sampled.

第3図ではSEMの試料台には補正用試料309 10 の代りに観測用試料20を載せ、電子ビームで二次元ス
キャンする。発生した二次電子は検出器10で捕集し、
増幅器l2で増幅し、A/D変換器16でA/D変換し
、一旦画像メモリ40に書込む。この場合も各サンプル
のデジタル値をその位置データと共に書き込む。次はこ
の画像メモリ40と補正データを格納している画像メモ
リ20を読出し、位置データで対応をとりながら、画像
メモリ40からの各サンプルのデジタル値を画像メモリ
20からのそれで割算する。回路42がこの割算をする
回路である。図ではこれはハードウエアイメージを示し
ているが、ソフトウエアでもよい。またメモリ20.4
0では位置データはメモリアドレスとし、そのメモリア
ドレスにサンプルのデジタル値を書き込んでおくと、上
記位置データでの対応を簡単にとることができる。
In FIG. 3, the observation sample 20 is placed on the SEM sample stage instead of the correction sample 309 10 and two-dimensionally scanned with an electron beam. The generated secondary electrons are collected by a detector 10,
The signal is amplified by the amplifier l2, A/D converted by the A/D converter 16, and temporarily written into the image memory 40. Again, the digital value of each sample is written along with its position data. Next, this image memory 40 and the image memory 20 storing the correction data are read out, and the digital value of each sample from the image memory 40 is divided by the digital value of each sample from the image memory 20 while making correspondence with the position data. A circuit 42 is a circuit that performs this division. In the figure, this is a hardware image, but it may also be software. Also memory 20.4
0, the position data is a memory address, and if a sample digital value is written in that memory address, correspondence with the above position data can be easily taken.

割算結果は画像メモリ44に書込み、これを繰り返し読
出してCRTディスプレイ46に表示させると、試料2
0の電位分布像が、各種部材の電位による影響などが除
かれた状態で高忠実度で表示される。
The division result is written to the image memory 44, and when it is repeatedly read out and displayed on the CRT display 46, the sample 2
A potential distribution image of 0 is displayed with high fidelity with the effects of potentials of various members removed.

観測試料20はLSIチップでもまた静電潜像を記憶し
ている試料でもよい。静電潜像を記憶している試料には
、X線顕微鏡試料がある。この試料も第1図(b)のよ
うに導体32と半盪体34の積層体で、一様帯電させた
のち、観測対象を通してX線照射すると、該観測対象の
構造(X線透過度分布)を表わす静電潜像が得られる。
The observation sample 20 may be an LSI chip or a sample storing an electrostatic latent image. Samples that store electrostatic latent images include X-ray microscope samples. This sample is also a laminate of a conductor 32 and a semi-circular body 34 as shown in Figure 1(b), and after being uniformly charged, when X-rays are irradiated through the observation object, the structure of the observation object (X-ray transmittance distribution ) is obtained.

これを上記のように電子ビームEBで走査してディスプ
レイ466こ表示すると、観測対象の構造が目視観察で
きる。
When this is scanned by the electron beam EB and displayed on the display 466 as described above, the structure to be observed can be visually observed.

得られた電圧分布像はディスプレイに表示するだけでな
く、ハードコピーにする、論理/演算処理する、等に供
することができる。
The obtained voltage distribution image can not only be displayed on a display, but also be made into a hard copy, subjected to logical/arithmetic processing, and the like.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、電子ビームによっ
て、LSIの内部配線や、静電潜像の電圧分布を忠実度
高く観察することができるので、電子ビームによるLS
I診断や表面の電圧分布測11 12 定に非常に有効となる。
As explained above, according to the present invention, the internal wiring of an LSI and the voltage distribution of an electrostatic latent image can be observed with high fidelity using an electron beam.
This is very effective for I diagnosis and surface voltage distribution measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の原理説明図、 第2図および第3図は本発明の実施例を示すブロック図
、 第4図は従来の電圧分布像取得法の説明図である。 第1図で30は補正用試料、第2図でEBは電子ビーム
、SEは二次電子、20は補正データを格納する画像メ
モリ、第3図で42は割算回路である。
FIG. 1 is an explanatory diagram of the principle of the present invention, FIGS. 2 and 3 are block diagrams showing embodiments of the present invention, and FIG. 4 is an explanatory diagram of a conventional voltage distribution image acquisition method. In FIG. 1, 30 is a sample for correction, in FIG. 2, EB is an electron beam, SE is a secondary electron, 20 is an image memory for storing correction data, and in FIG. 3, 42 is a dividing circuit.

Claims (1)

【特許請求の範囲】 1、試料面を電子ビームで走査し、該走査で放出される
二次電子を検出器で捕集し、該検出器出力により試料面
の電圧分布像を観測する方法において、 格子状の静電潜像パターンを持つ補正用試料を用い、該
試料を観測対象試料に置き換えて電子ビームで走査し、
得られた二次電子検出器出力をメモリに記憶させ、然る
のち、 観測対象の試料の面を電子ビームで走査し、得られた二
次電子検出器出力を、前記メモリの読出し出力で割算し
て、その結果を電圧分布像観測に用いることを特徴とす
る電子ビーム装置による電圧分布像の観測法。
[Claims] 1. A method in which a sample surface is scanned with an electron beam, secondary electrons emitted during the scanning are collected by a detector, and a voltage distribution image on the sample surface is observed from the output of the detector. , using a correction sample with a grid-like electrostatic latent image pattern, replacing the sample with the observation target sample and scanning with an electron beam;
The obtained secondary electron detector output is stored in a memory, and then the surface of the sample to be observed is scanned with an electron beam, and the obtained secondary electron detector output is divided by the readout output of the memory. A method for observing voltage distribution images using an electron beam device, characterized in that the results are calculated and the results are used for observing voltage distribution images.
JP1166178A 1989-06-28 1989-06-28 Observation of voltage distribution image by electron beam apparatus Pending JPH0329867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166178A JPH0329867A (en) 1989-06-28 1989-06-28 Observation of voltage distribution image by electron beam apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166178A JPH0329867A (en) 1989-06-28 1989-06-28 Observation of voltage distribution image by electron beam apparatus

Publications (1)

Publication Number Publication Date
JPH0329867A true JPH0329867A (en) 1991-02-07

Family

ID=15826525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166178A Pending JPH0329867A (en) 1989-06-28 1989-06-28 Observation of voltage distribution image by electron beam apparatus

Country Status (1)

Country Link
JP (1) JPH0329867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344436A (en) * 2005-06-08 2006-12-21 Ricoh Co Ltd Surface potential distribution measuring method and surface potential distribution measuring device
CN102141584A (en) * 2010-01-29 2011-08-03 徐启峰 Digital electronic fluorescent scanning voltage sensor
US8143603B2 (en) 2008-02-28 2012-03-27 Ricoh Company, Ltd. Electrostatic latent image measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006344436A (en) * 2005-06-08 2006-12-21 Ricoh Co Ltd Surface potential distribution measuring method and surface potential distribution measuring device
JP4702880B2 (en) * 2005-06-08 2011-06-15 株式会社リコー Surface potential distribution measuring method and surface potential distribution measuring apparatus
US8143603B2 (en) 2008-02-28 2012-03-27 Ricoh Company, Ltd. Electrostatic latent image measuring device
CN102141584A (en) * 2010-01-29 2011-08-03 徐启峰 Digital electronic fluorescent scanning voltage sensor

Similar Documents

Publication Publication Date Title
US3678384A (en) Electron beam apparatus
JPH0646550B2 (en) Electronic beam fixed position irradiation control method and electronic beam fixed position irradiation control device
JP2006286578A (en) Charged particle beam device
US8086022B2 (en) Electron beam inspection system and an image generation method for an electron beam inspection system
JP3509348B2 (en) Electron microscope for length measurement
US4939759A (en) Method of producing an X-ray image by means of a photoconductor, and device for performing the method
CA1048163A (en) Process and apparatus for the elementary and chemical analysis of a sample by spectrum analysis of the energy of the secondary electrons
JPS5932145A (en) Potential detector
JPH042955A (en) Surface analyzer
JPH0329867A (en) Observation of voltage distribution image by electron beam apparatus
JP3420037B2 (en) Dimension measuring device and dimension measuring method
JPS5853504B2 (en) Test methods for integrated circuit devices
JPS6256807A (en) Electron beam length measuring instrument
JPS6089050A (en) Strobo scanning electron microscope
JP2000133193A (en) Charged particle beam irradiating device
JP2571110B2 (en) Pattern dimension measuring method and apparatus using charged beam
JPS61156627A (en) Sample voltage measuring apparatus
JP2986995B2 (en) Secondary electron image deformation correction device
JPH03254053A (en) Correction method for primary electron landing error
JPH0430489Y2 (en)
TW202403816A (en) Charged particle beam apparatus
JP2671117B2 (en) Element mapping device
JPH0797092B2 (en) X-ray photoelectron analyzer
JPH0417250A (en) Electron beam device
JP3259762B2 (en) LSI potential distribution image acquisition method