JPH03297378A - Automatic reactor - Google Patents

Automatic reactor

Info

Publication number
JPH03297378A
JPH03297378A JP9833590A JP9833590A JPH03297378A JP H03297378 A JPH03297378 A JP H03297378A JP 9833590 A JP9833590 A JP 9833590A JP 9833590 A JP9833590 A JP 9833590A JP H03297378 A JPH03297378 A JP H03297378A
Authority
JP
Japan
Prior art keywords
reaction
heat
heat pipe
heating
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9833590A
Other languages
Japanese (ja)
Inventor
Koichi Tsukitani
築谷 宏一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP9833590A priority Critical patent/JPH03297378A/en
Publication of JPH03297378A publication Critical patent/JPH03297378A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0046Sequential or parallel reactions, e.g. for the synthesis of polypeptides or polynucleotides; Apparatus and devices for combinatorial chemistry or for making molecular arrays

Abstract

PURPOSE:To obtain a constant temperature bath having reduced heat capacity free from unevenness of temperature, rapidly changing temperature in a reactor, by making a reactor housing part composed of a heat insulating material and laying heat pipes between the reactor and a heating and a cooling sources. CONSTITUTION:A constant temperature bath of a reactor 1 consists of a cover part 2 and a main body part 3, the reactor 1 is housed in a recessed part 4 of a heat insulating block 4 constituting the main body part and the reactor is covered with a heat insulating plate 6 constituting the cover part. A heat pipe 5 is arranged between a heating medium flowing in a flow channel 4b for flow of the heating medium made of the heat insulating block and the reactor and a heating pipe 7 is laid between a heating medium flowing in a flow channel 6b for heating medium flow made of a heat insulating plate and the reactor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、温度と反応時間をサイクリックに変化させて
1反応容器に充填したサンプルと酵素の反応を繰り返し
進行・停止させることにより、サンプルの量を増幅させ
る自動反応装置の改良に関し、特に自動反応装置に搭載
される恒温槽の改良に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is capable of producing a sample by cyclically changing the temperature and reaction time to repeatedly progress and stop the reaction between a sample and an enzyme filled in one reaction container. This invention relates to an improvement in an automatic reaction device for amplifying the amount of , and in particular, to an improvement in a thermostatic chamber installed in an automatic reaction device.

C発明の概要j 本発明は、自動反応装置に搭載の恒温槽をフタ部と本体
部の二つに分割し、各部を断熱材で形成し、ヒートパイ
プを反応容器と加熱・冷却源との熱の伝達手段として用
い、ヒートパイプの一端部が反応容器と当接し、他端部
は加熱・冷却源と接する構造とし、恒温槽全体の熱容量
を小さくし、反応容器に充填したサンプルと酵素の温度
を急速(1℃/ s e c以上)に変化させるように
したものである。
C Summary of the Invention j The present invention consists of dividing a constant temperature chamber installed in an automatic reaction device into two parts, a lid part and a main body part, forming each part with a heat insulating material, and connecting a heat pipe between the reaction vessel and the heating/cooling source. Used as a means of heat transfer, one end of the heat pipe is in contact with the reaction vessel, and the other end is in contact with the heating/cooling source, reducing the heat capacity of the entire thermostatic chamber and ensuring that the sample and enzyme filled in the reaction vessel are The temperature is changed rapidly (at least 1°C/sec).

[従来の技術] 従来より、温度と反応時間をサイクリックに変化させて
、反応容器に充填したサンプルと酵素の反応を繰り返し
進行・停止させることにより、サンプルの量を増幅させ
る反応をDNAのクローニング・増幅に利用されている
。前記反応を自動的に行なう自動反応装置の恒温槽の構
造を第2図で説明する。第2図で51はサンプルや酵素
が充填されている反応容器であり、アルミブロック52
に形成された複数の凹部52a内に収納されている。ア
ルミブロック52の底面に密着して加熱用シート状ヒー
タ53を配し、更にその上を断熱材54で覆われている
。またアルミブロック52には冷却液用の流路52bが
形成され、前記流路52bは管継手55により冷凍機(
図示せず)に配管接続されている。反応容器51を加熱
するときはシート状ヒータ53に電流を流してアルミブ
ロック52を加熱する。冷却するときには冷凍機のポン
プにより冷却液をアルミブロック52内に循環させるこ
とにより行ない、アルミブロック52を加熱冷却するこ
とにより、アルミブロック52に形成された複数の凹部
52a内に収納されている反応容器51を加熱冷却する
[Prior art] DNA cloning has traditionally been a reaction in which the amount of a sample is amplified by cyclically changing the temperature and reaction time to repeatedly proceed and stop the reaction between a sample filled in a reaction container and an enzyme. -Used for amplification. The structure of a constant temperature bath of an automatic reaction apparatus for automatically carrying out the above reaction will be explained with reference to FIG. In Figure 2, 51 is a reaction container filled with samples and enzymes, and aluminum block 52
It is housed in a plurality of recesses 52a formed in the. A sheet-shaped heater 53 is disposed in close contact with the bottom surface of the aluminum block 52, and is further covered with a heat insulating material 54. Further, a flow path 52b for cooling liquid is formed in the aluminum block 52, and the flow path 52b is connected to the refrigerator (
(not shown). When heating the reaction container 51, a current is passed through the sheet heater 53 to heat the aluminum block 52. Cooling is carried out by circulating a cooling liquid through the aluminum block 52 using the pump of the refrigerator, and by heating and cooling the aluminum block 52, the reactions stored in the plurality of recesses 52a formed in the aluminum block 52 are cooled. The container 51 is heated and cooled.

[発明が解決しようとする課題] しかし、従来の自動反応装置の恒温槽の構造の場合には
冷却液用の流路52bを形成するためアルミブロック5
2のサイズが大きくなり、熱容量も大きくなる、一方加
熱用シート状ヒータ53の発熱量に制限があるために、
アルミブロック52がある程度の温度変化が起きた後で
ないと反応容器内の液の温度が変化を始めないと言うタ
イムラグが大きなものになっていた。また、アルミブロ
ック内に冷却液が残る構造のために、加熱を行なった時
に流路52bの周囲は他の部分に比べて冷却液を加熱す
るのに熱量をとられるため、加熱されるのに時間を要す
る。従ってアルミブロックに温度ムラを生じてしまうと
いう欠点があった。
[Problems to be Solved by the Invention] However, in the case of the conventional constant temperature bath structure of an automatic reaction device, the aluminum block 5 is used to form the flow path 52b for the cooling liquid.
2 becomes larger and the heat capacity also becomes larger.On the other hand, since there is a limit to the amount of heat generated by the heating sheet heater 53,
There was a large time lag in that the temperature of the liquid in the reaction vessel did not begin to change until after the aluminum block 52 had undergone a certain degree of temperature change. In addition, due to the structure in which the cooling liquid remains inside the aluminum block, when heating is performed, the area around the flow path 52b takes more heat to heat the cooling liquid than other parts, so it is difficult to heat the area around the flow path 52b. It takes time. Therefore, there is a drawback that temperature unevenness occurs in the aluminum block.

そこで、本発明は従来のこのような欠点を解決するため
に、反応容器収納部を断熱材で形成し、反応容器と加熱
・冷却源間の熱の伝達手段としてヒートパイプを配する
構造にし、恒温槽の熱容量を小さくすることにより、反
応容器内の温度変化を急速(1℃/ s e c以上)
に行なえると共に温度ムラのない恒温槽を得ることを目
的としている。
Therefore, in order to solve these conventional drawbacks, the present invention has a structure in which the reaction vessel storage part is formed of a heat insulating material, and a heat pipe is arranged as a heat transfer means between the reaction vessel and the heating/cooling source. By reducing the heat capacity of the thermostatic chamber, the temperature inside the reaction vessel can be rapidly changed (more than 1℃/sec).
The objective is to obtain a constant temperature bath that can be used for a long time and has no temperature unevenness.

[課題を解決するための手段] 上記問題点を解決するためには自動反応装置に搭載の恒
温槽の熱容量を小さくすることにより、加熱・冷却源の
熱が速やかに且つ効率良く反応容器に伝達されることに
なる。従って本発明は反応容器収納部を断熱材で形成し
、反応容器と加熱冷却源間の熱の伝達手段としてヒート
パイプを配する構成とすることにより恒温槽の熱容量を
小さくし、反応容器に充填されたサンプルと酵素の温度
を急速(1℃/ s e c以上)かつ均一に変化させ
るようにしたものである。
[Means for solving the problem] In order to solve the above problem, the heat from the heating/cooling source can be quickly and efficiently transferred to the reaction vessel by reducing the heat capacity of the thermostatic chamber installed in the automatic reaction device. will be done. Therefore, the present invention reduces the heat capacity of the thermostatic chamber by forming the reaction container storage part with a heat insulating material and arranging a heat pipe as a heat transfer means between the reaction container and the heating/cooling source. The temperature of the processed sample and the enzyme can be changed rapidly (at least 1°C/sec) and uniformly.

[作用1 上記のように構成された自動反応装置に搭載の恒温槽で
は、加熱・冷却源として熱媒体を流動させてヒートパイ
プの一端部と接触させると、熱は瞬時にヒートパイプの
他端部に伝達される。ヒートパイプの他端部が反応容器
の底部と当接しているので、熱は反応容器を介して反応
容器内のサンプルに伝えられる。この構造の場合の恒温
槽自身の熱容量はヒートパイプの熱容量とほぼ等しい。
[Effect 1] In the constant temperature chamber installed in the automatic reaction device configured as above, when a heat medium is made to flow as a heating/cooling source and brought into contact with one end of the heat pipe, heat is instantly transferred to the other end of the heat pipe. The information will be communicated to the department. Since the other end of the heat pipe is in contact with the bottom of the reaction vessel, heat is transferred through the reaction vessel to the sample within the reaction vessel. In this structure, the heat capacity of the constant temperature oven itself is approximately equal to the heat capacity of the heat pipe.

しかしヒートパイプは薄肉のバイブなのでその熱容量は
非常に小さい、また比熱の大きな熱媒体を用いれば熱媒
体が流動中に反応容器等に奪われる熱量の影響による熱
媒体の温度低下は少なくてすむ。従って加熱・冷却に必
要な熱容量は反応容器とサンプルの熱容量と同等程度で
あるので反応容器に充填されたサンプルと酵素の温度を
急速(l”C/ s e c以上)に且つ均一に変化さ
せることができるようにしたものである。
However, since a heat pipe is a thin-walled vibrator, its heat capacity is very small, and if a heat medium with a large specific heat is used, the temperature drop of the heat medium due to the amount of heat taken away by the reaction vessel etc. while the heat medium is flowing can be minimized. Therefore, the heat capacity required for heating and cooling is about the same as that of the reaction vessel and sample, so the temperature of the sample and enzyme filled in the reaction vessel can be changed rapidly (more than 1"C/sec) and uniformly. It has been made possible to do so.

[実施例] 以下、本発明の実施例1を図面にもとづいて説明する。[Example] Embodiment 1 A first embodiment of the present invention will be described below based on the drawings.

第1図、第3図、第4図において、1はサンプルや酵素
等が充填されている反応容器であり、恒温槽はフタ部2
と本体部3とからなり、4は本体部3を構成する断熱材
料からなる断熱ブロックであり、断熱ブロック4には反
応容器lを収納する複数の凹部4aが形成されている。
In Figures 1, 3, and 4, 1 is a reaction container filled with samples, enzymes, etc., and the thermostat is a lid part 2.
and a main body part 3, 4 is a heat insulating block made of a heat insulating material constituting the main body part 3, and the heat insulating block 4 is formed with a plurality of recesses 4a for accommodating the reaction vessels l.

5は反応容器lと断熱ブロック4に形成された熱媒体流
動用流路4bを流動する熱媒体との間の熱伝達をする下
ヒートパイプであり、凹部4aと流路4bを貫通する穴
に配され、上端部は反応容器1の底部と当接し、下端部
は流路4b内に突設するように配されている。6はフタ
部2を構成する断熱材料からなる断熱プレートであり、
断熱プレート6は複数の反応容器1を覆う位置に配され
、また反応容器lのフタ部の逃げが形成されている。7
は反応容器1と断熱プレート6に形成された熱媒体流動
用流路6bを流動する熱媒体との間の熱伝達をする上ヒ
ートパイプであり、反応容器1のフタの逃げ部と流路6
bを貫通する穴に配され、下端部は反応容器1のフタと
当接し、上端部は流路6b内に突設するように配されて
いる。8はフタ部2に熱媒体を流動させるための管継手
であり、断熱プレート6と螺合されている。9は本体部
3に熱媒体を流動させるための管継手であり、断熱ブロ
ック4と螺合されている。管継手8は制御バルブloa
のアウト側と断熱チューブ11で接続され、制御バルブ
loaのイン側は同じく断熱チューブ11で加熱ユニッ
ト12と冷却ユニット13のアウト側に接続されている
。管継手9は断熱チューブ11で熱媒体流動用ポンプ1
4のイン側と接続されている。熱媒体流動用ポンプ14
のアウト側は制御バルブ10bのイン側と接続され、加
熱ユニット12と冷却ユニット13のイン側が制御バル
ブlobのアウト側と接続されている。
5 is a lower heat pipe that transfers heat between the reaction vessel l and the heat medium flowing through the heat medium flow channel 4b formed in the heat insulating block 4; The upper end is in contact with the bottom of the reaction vessel 1, and the lower end is arranged to protrude into the flow path 4b. 6 is a heat insulating plate made of a heat insulating material constituting the lid portion 2;
The heat insulating plate 6 is placed in a position to cover the plurality of reaction vessels 1, and a recess for the lid of the reaction vessel 1 is formed. 7
is an upper heat pipe that transfers heat between the reaction vessel 1 and the heat medium flowing through the heat medium flow channel 6b formed in the heat insulating plate 6;
b, its lower end abuts against the lid of the reaction vessel 1, and its upper end projects into the channel 6b. Reference numeral 8 denotes a pipe joint for flowing the heat medium into the lid portion 2, and is screwed onto the heat insulating plate 6. Reference numeral 9 denotes a pipe joint for flowing a heat medium into the main body portion 3, and is screwed together with the heat insulating block 4. Pipe fitting 8 is control valve loa
The in side of the control valve loa is connected to the outside side of the heating unit 12 and the cooling unit 13 through the insulation tube 11. The pipe joint 9 is a heat-insulating tube 11 that connects the pump 1 for heat medium flow.
Connected to the inside side of 4. Heat medium flow pump 14
The outside of the control valve lob is connected to the inside of the control valve 10b, and the inside of the heating unit 12 and the cooling unit 13 are connected to the outside of the control valve lob.

反応容器1を急速加熱するときは、制御バルブ10bが
加熱側に切り換わり、熱媒体流動用ポンプ14が作動開
始して、熱媒体が加熱ユニット12に流れ込み、熱媒体
が加熱ユニット12の中を循環する間に加熱されて、制
御バルブ10aを経由して恒温槽に流入する。この時に
フタ部2と本体部3のどちらを先に加熱を開始するかに
より制御バルブ10aを切り換える。恒温槽に流入した
熱媒体は流路4bと6bを流動すると、流路4bと6b
内に突設されているヒートパイプ5と7の端部と接して
伝熱を行ない、反応容器1と熱媒体間で熱交換が行なわ
れ、反応容器lを急速加熱する。また冷却するときも同
様にして熱媒体が冷却ユニット13を流動する間に冷却
され、冷却された熱媒体が流路4b、6bを流動する時
にヒートパイプ5と7を介して反応容器1と熱交換を行
ない、反応容器lを急速冷却する。加熱冷却する時には
反応容器lの上部が下部より温度が低いと蒸発した液が
反応容器1の上部に結露し、反応が十分に行なわれない
と言う問題が発生するので、フ夕部2が本体部3よりも
わずかに温度が高くなるように制御バルブ10aを制御
する。このように本発明の実施例の恒温槽では恒温槽の
熱容量はヒトパイプの有する熱容量となるが、ヒートパ
イプは銅や銀製の薄肉のパイプ状なので、有する熱容量
は非常に小さい。従って熱媒体の有する熱容量が反応容
器にほぼ100%伝えられ、反応容器内のサンプルは急
速に加熱・冷却される。本構造の場合では、加熱・冷却
源に熱媒体を用いているので熱容量が大きく、温度変化
の範囲を広く取れる。
When rapidly heating the reaction vessel 1, the control valve 10b is switched to the heating side, the heat medium flow pump 14 starts operating, the heat medium flows into the heating unit 12, and the heat medium flows through the heating unit 12. It is heated during circulation and flows into the constant temperature bath via the control valve 10a. At this time, the control valve 10a is switched depending on which of the lid part 2 and the main body part 3 is to be heated first. When the heat medium that has flowed into the thermostatic chamber flows through channels 4b and 6b, it flows through channels 4b and 6b.
Heat is transferred by contacting the ends of the heat pipes 5 and 7 protruding inside, and heat exchange occurs between the reaction vessel 1 and the heat medium, rapidly heating the reaction vessel 1. Also, when cooling, the heat medium is similarly cooled while flowing through the cooling unit 13, and when the cooled heat medium flows through the flow paths 4b and 6b, it is connected to the reaction vessel 1 via the heat pipes 5 and 7. Exchange is performed and reaction vessel 1 is rapidly cooled. During heating and cooling, if the temperature of the upper part of the reaction vessel 1 is lower than that of the lower part, the evaporated liquid will condense on the upper part of the reaction vessel 1, causing a problem that the reaction will not be carried out sufficiently. Control valve 10a is controlled so that the temperature is slightly higher than that in section 3. As described above, in the thermostatic oven of the embodiment of the present invention, the heat capacity of the thermostatic oven is the heat capacity of the human pipe, but since the heat pipe is a thin-walled pipe made of copper or silver, the heat capacity it has is very small. Therefore, almost 100% of the heat capacity of the heat medium is transferred to the reaction vessel, and the sample within the reaction vessel is rapidly heated and cooled. In the case of this structure, since a heat medium is used as the heating/cooling source, the heat capacity is large and the range of temperature change can be widened.

実施例2について第5図で説明する。第5図は反応容器
1の収納部の拡大図であり、20はサンプルや酵素等の
反応液であり、反応容器lに充填されている。22は恒
温槽のフタ部であり、26はフタ部22を構成する断熱
材料からなる断熱プレートであり、断熱プレート26に
は反応容器1を覆う位置に配されている。7は反応容器
1と断熱プレート26に形成された熱媒体流動用流路2
6bを流動する熱媒体との間の熱伝達をする上ヒートパ
イプであり、断熱プレート26に形成された貫通穴に配
され、下端部は反応容器1のフタと当接し、上端部は流
路26b内に突設するように配されている。29は加熱
用シート状ヒータであり、断熱材からなるプレート31
と断熱プレート26の間に積層されている。ヒータ29
に形成した舌部29aがヒートパイプ7の側面に接触し
ている。24は恒温槽の本体部23を構成する断熱材料
からなる断熱ブロックであり、断熱ブロック24には反
応容器1を収納する複数の貫通穴24aが形成されてい
る。5は反応容器lと断熱材からなるプレート30に形
成された熱媒体流動用流路30aを流動する熱媒体との
間の熱伝達をする下ヒートパイプであり、プレート3o
に形成された貫通穴に配され、上端部は反応容器Iの底
部と当接し、下部は流路30a内に突設するように配さ
れている。28は加熱用シート状ヒータで、断熱ブロッ
ク24とプレート30の間に積層されている。ヒータ2
8に形成した舌部28aがヒートパイプ5の側面に接触
している。冷却は冷却された熱媒体を流路30a、26
bに流動させて行ない、加熱はシート状ヒータ28.2
9に通電することで行なう。そして加熱・冷却源と反応
容器1間の熱伝達手段としてヒートパイプ5.7を用い
る。本構造の場合には、加熱源にシート状ヒータを用い
ているので実施例1よりも加熱ユニットやポンプが1台
不用になるので装置が小型化でき、電流の制御で温度制
御が行なえるので温度精度も良くなる。
Example 2 will be explained with reference to FIG. FIG. 5 is an enlarged view of the storage section of the reaction container 1, and 20 is a reaction liquid such as a sample or an enzyme, which is filled in the reaction container 1. As shown in FIG. Reference numeral 22 denotes a lid portion of the thermostatic chamber, and 26 denotes a heat insulating plate made of a heat insulating material constituting the lid portion 22. The heat insulating plate 26 is disposed at a position to cover the reaction vessel 1. 7 is a flow path 2 for heat medium flow formed in the reaction vessel 1 and the heat insulating plate 26
6b is an upper heat pipe that transfers heat with the flowing heat medium, and is disposed in a through hole formed in the heat insulating plate 26, the lower end is in contact with the lid of the reaction vessel 1, and the upper end is connected to the flow path. It is arranged so as to protrude within 26b. 29 is a sheet-like heater for heating, and a plate 31 made of a heat insulating material
and a heat insulating plate 26. Heater 29
A tongue portion 29a formed in is in contact with the side surface of the heat pipe 7. Reference numeral 24 denotes a heat insulating block made of a heat insulating material constituting the main body 23 of the thermostatic chamber, and the heat insulating block 24 is formed with a plurality of through holes 24a for accommodating the reaction vessels 1. 5 is a lower heat pipe that transfers heat between the reaction vessel l and the heat medium flowing through the heat medium flow channel 30a formed in the plate 30 made of a heat insulating material;
The upper end portion is in contact with the bottom of the reaction vessel I, and the lower portion is arranged to protrude into the flow path 30a. A sheet-like heater 28 is laminated between the heat insulating block 24 and the plate 30. Heater 2
The tongue portion 28a formed at 8 is in contact with the side surface of the heat pipe 5. For cooling, the cooled heat medium is passed through the channels 30a and 26.
b, and heating is performed using a sheet heater 28.2.
This is done by energizing 9. A heat pipe 5.7 is used as a heat transfer means between the heating/cooling source and the reaction vessel 1. In the case of this structure, since a sheet heater is used as the heating source, one heating unit and pump are not required compared to the first embodiment, so the device can be made smaller, and the temperature can be controlled by controlling the current. Temperature accuracy also improves.

実施例3について第6図で説明する。第6図は反応容器
1の収納部の拡大図であり、60はサンプルや酵素等の
反応液であり、反応容器lに充填されている。62は恒
温槽のフタ部であり、66はフタ部62を構成する断熱
材料からなる断熱プレートであり、断熱プレート66に
は反応容器1を覆う位置に配され、7は反応容器lと加
熱・冷却源間の熱伝達をする上ヒートパイプであり1反
応容器1の断熱プレート66に形成された貫通穴に配さ
れ、下端部は反応容器1のフタと当接し、上端部は断熱
プレート66の上面から突設されている。73はベルチ
ェ素子により冷却される冷却プレートであり、上下に可
動状態で取り付けられている。64は恒温槽の本体部6
3を構成する断熱材料からなる断熱ブロックであり、断
熱ブロック64には反応容器1を収納する複数の貫通穴
64aが形成されている。5は反応容器1と加熱・冷却
源との間の熱伝達をする下ヒートパイプであり、プレー
ト70を貫通する穴に配され、上端部は反応容器lの底
部と当接し、下部はプレート70の下面から突設するよ
うに配されている。加熱用シート状ヒータ68.69は
実施例2と同じ構造で取り付けられている。冷却はベル
チェ素子を用いて冷却プレート72.73を冷却し、冷
却プレート72.73は各々がヒートパイプ5.7の端
部と当接する位置まで移動する0反応容器1はヒートパ
イプ5.7を介して冷却プレート72.73により冷却
されることになる。加熱はシート状ヒータ68.69に
通電すると発熱を行ない、熱量はシート状ヒータ68.
69がヒートパイプ5.7と接触しているので、ヒート
パイプ5.7を介して反応容器1に伝えられる。加熱時
には冷却プレート72.73はヒートパイプ5.7の端
部と離れる位置に移動する。本構造の場合には、加熱源
にシート状ヒータを用いているので実施例1よりも加熱
・冷却ユニットやポンプが不用になるので装置が小型化
でき、電流の制御で温度制御が行なえるので温度精度も
良くなる。
Example 3 will be explained with reference to FIG. FIG. 6 is an enlarged view of the storage section of the reaction container 1, and 60 is a reaction liquid such as a sample or an enzyme, which is filled in the reaction container 1. As shown in FIG. 62 is a lid of the thermostatic chamber; 66 is a heat insulating plate made of a heat insulating material constituting the lid 62; the heat insulating plate 66 is placed in a position to cover the reaction vessel 1; This is an upper heat pipe that transfers heat between the cooling sources, and is disposed in a through hole formed in the heat insulating plate 66 of the reaction vessel 1. The lower end is in contact with the lid of the reaction vessel 1, and the upper end is in contact with the heat insulating plate 66. It protrudes from the top. Reference numeral 73 denotes a cooling plate cooled by a Bertier element, which is attached so as to be movable up and down. 64 is the main body part 6 of the constant temperature bath.
The heat insulating block 64 is made of a heat insulating material and is formed with a plurality of through holes 64a for accommodating the reaction vessels 1. A lower heat pipe 5 transfers heat between the reaction vessel 1 and the heating/cooling source, and is disposed in a hole penetrating the plate 70, the upper end of which is in contact with the bottom of the reaction vessel 1, and the lower part of which is connected to the plate 70. It is arranged so as to protrude from the bottom surface of the. The sheet-like heaters 68 and 69 are installed in the same structure as in the second embodiment. For cooling, the cooling plates 72.73 are cooled using Bertier elements, and the cooling plates 72.73 each move to a position where they abut the ends of the heat pipes 5.7. It will be cooled by cooling plates 72 and 73 via the cooling plates 72 and 73. Heating is performed by applying electricity to the sheet heaters 68 and 69, and the amount of heat is determined by the sheet heaters 68 and 69.
Since the heat pipe 69 is in contact with the heat pipe 5.7, the heat is transmitted to the reaction vessel 1 via the heat pipe 5.7. During heating, the cooling plates 72.73 move away from the ends of the heat pipes 5.7. In the case of this structure, since a sheet-shaped heater is used as the heating source, a heating/cooling unit and a pump are not required compared to Embodiment 1, so the device can be made smaller, and the temperature can be controlled by controlling the current. Temperature accuracy also improves.

次に実施例4について第7図で説明する。第7図は反応
容器lの収納部の拡大図であり、実施例1.2.3と同
し構造を有していて、反応容器lの側面を覆う形で金属
製のバイブ82が配され、下端部が熱伝達用ヒートパイ
プ5の上端部と接触している6熱はヒートパイプ5から
バイブ82を経由して、反応容器1全体に伝えられる。
Next, Example 4 will be explained with reference to FIG. FIG. 7 is an enlarged view of the storage section of the reaction vessel 1, which has the same structure as Example 1.2.3, and a metal vibrator 82 is arranged to cover the side surface of the reaction vessel 1. , the lower end of which is in contact with the upper end of the heat transfer heat pipe 5 is transmitted from the heat pipe 5 to the entire reaction vessel 1 via the vibrator 82 .

本構造の場合には、反応容器全体を加熱・冷却できるの
で、反応容器の液量が多い場合でも急速な加熱・冷却が
できる。
In the case of this structure, since the entire reaction vessel can be heated and cooled, rapid heating and cooling can be performed even when the amount of liquid in the reaction vessel is large.

〔発明の効果〕〔Effect of the invention〕

以上述べた通り本発明によれば、自動反応装置の恒温槽
の熱容量を小さくすることにより、恒温槽自身を加熱・
冷却する熱容量が小さくてすみ熱媒体の有する熱容量を
サンプルの温度変化に効率良く利用でき、サンプルの温
度を急速に変化させることができると同時に、恒温槽内
を均一な温度にできる。従って、反応容器に充填された
サンプルと酵素の温度を急速(l″C/secC/se
c以上に変化させることができる自動反応装置を提供す
ることができる。
As described above, according to the present invention, by reducing the heat capacity of the thermostatic chamber of an automatic reaction device, the thermostatic chamber itself can be heated and
Since the heat capacity for cooling is small, the heat capacity of the heating medium can be efficiently used to change the temperature of the sample, and at the same time, the temperature of the sample can be changed rapidly, and at the same time, the temperature inside the thermostatic chamber can be kept uniform. Therefore, the temperature of the sample and enzyme filled in the reaction vessel can be adjusted rapidly (l″C/secC/sec
It is possible to provide an automatic reaction device that can change the temperature by more than c.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明実施例1の正断面図、第2図は従来例の
断面図、第3図は本発明実施例1の恒温槽本体部の平面
図、第4図は本発明実施例1の配管図である。第5図は
本発明の別の実施例2の反応容器収納部の拡大正断面図
、第6図は本発明の別の実施例3の反応容器収納部の拡
大正断面図、第7図は本発明の別の実施例4の反応容器
収納部の拡大正断面図である。 1・・・・・・反応容器 3 ・ 4 ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8、9 10 ・ ・ 11 ・ ・ l 2 ・ ・ l 3 ・ 14 ・  4 28、 6b 0a 64 ・ 68. 72、 フタ部 本体部 断熱ブロック 下ヒートパイプ 断熱プレート 上ヒートパイプ 管継手 制御バルブ 断熱チューブ 加熱ユニット 冷却ユニット 熱媒体流動用ポンプ 断熱ブロック シート状ヒータ 熱媒体の流路 熱媒体の流路 断熱ブロック シート状ヒータ 冷却プレート 18 b 1 第 1 図 第2図 第 3 閉 +o(1 3 第 図 第 図 第 闇
Fig. 1 is a front sectional view of Embodiment 1 of the present invention, Fig. 2 is a sectional view of the conventional example, Fig. 3 is a plan view of the thermostatic chamber main body of Embodiment 1 of the present invention, and Fig. 4 is an embodiment of the present invention. 1 is a piping diagram. FIG. 5 is an enlarged front cross-sectional view of a reaction container storage section according to another embodiment 2 of the present invention, FIG. 6 is an enlarged front cross-sectional view of a reaction container storage section according to another embodiment 3 of the present invention, and FIG. FIG. 6 is an enlarged front cross-sectional view of a reaction container storage section according to another example 4 of the present invention. 1... Reaction container 3 ・ 4 ・ 5 ・ ・ 6 ・ ・ 7 ・ ・ 8, 9 10 ・ ・ 11 ・ ・ l 2 ・ ・ l 3 ・ 14 ・ 4 28, 6b 0a 64 ・ 68. 72. Lid Main Body Insulation Block Lower Heat Pipe Insulation Plate Upper Heat Pipe Joint Control Valve Insulation Tube Heating Unit Cooling Unit Heat Medium Flow Pump Insulation Block Sheet Heater Heat Medium Flow Path Heat Medium Flow Insulation Block Sheet Heater cooling plate 18 b 1 Fig. 2 Fig. 3 Close + o (1 3 Fig. Fig. Fig. Dark

Claims (5)

【特許請求の範囲】[Claims] (1)少なくとも加熱源、冷却源と反応容器収納部を有
し、予め設定されたプログラムに従って加熱・冷却源に
より恒温槽内の温度を変化させて、複数の反応容器各々
に充填したサンプルと酵素の反応を進行、停止させる自
動反応装置において、フタ部と本体部の二つの部分より
構成され、断熱材からなる反応容器収納部を有し、フタ
部と本体部共に反応容器収納数と同数のヒートパイプを
加熱・冷却源と反応容器間の熱伝達手段として用い、複
数の反応容器を上下両方向から同時に加熱・冷却をする
恒温槽を形成したことを特徴とする自動反応装置。
(1) It has at least a heating source, a cooling source, and a reaction container storage section, and the temperature in the thermostat is changed by the heating and cooling sources according to a preset program, and the sample and enzyme are filled into each of multiple reaction containers. An automatic reaction device for proceeding and stopping a reaction, which is composed of two parts, a lid part and a main body part, and has a reaction container storage part made of a heat insulating material, and both the lid part and the main body part have the same number of reaction containers as the number of reaction containers stored. An automatic reaction device characterized in that a heat pipe is used as a heat transfer means between a heating/cooling source and a reaction container to form a constant temperature bath that simultaneously heats and cools a plurality of reaction containers from both the upper and lower directions.
(2)反応容器を収納する部材に反応容器を収納する複
数の凹部を形成し、凹部を形成した面と反対側の面に加
熱・冷却用の熱媒体を流動させる流路を形成し、また前
記凹部と流路を接続する貫通穴を設け、貫通穴に一端部
が反応容器と当接し、他端部が熱媒体の流路内に突設す
るようにヒートパイプを配した恒温槽を搭載したことを
特徴とする第1項に記載の自動反応装置。
(2) Forming a plurality of recesses for accommodating the reaction vessels in a member for accommodating the reaction vessels, and forming channels for flowing a heat medium for heating and cooling on the surface opposite to the surface on which the recesses are formed; A through hole is provided to connect the recess and the flow path, and a constant temperature chamber is installed in the through hole in which a heat pipe is arranged so that one end is in contact with the reaction vessel and the other end is protruded into the flow path of the heat medium. 2. The automatic reaction device according to item 1, characterized in that:
(3)反応容器を収納する部材に反応容器を収納する複
数の凹部を形成し、凹部を形成した面と反対側の面に冷
却用の熱媒体を流動させる流路を形成し、また前記凹部
と流路を接続する貫通穴を設け、前記貫通穴に一端部が
反応容器と当接し、他端部が熱媒体の流路内に突設する
ようにヒートパイプを配し、また加熱源としてシート状
ヒータを用いて、前記シート状ヒータの一部がヒートパ
イプと接触するように配設したことを特徴とする第1項
に記載の自動反応装置。
(3) A plurality of recesses for accommodating the reaction vessels are formed in a member for accommodating the reaction vessels, a flow path for flowing a cooling heat medium is formed on a surface opposite to the surface on which the recesses are formed, and the recesses A heat pipe is provided in the through hole so that one end is in contact with the reaction vessel and the other end is protruded into the heat medium flow path, and a heat pipe is provided as a heat source. 2. The automatic reaction device according to claim 1, wherein a sheet-like heater is used, and a part of the sheet-like heater is arranged so as to be in contact with a heat pipe.
(4)反応容器を収納する部材に反応容器を収納する複
数の凹部を形成し、凹部の底部から反対側の面まで貫通
穴を設け、前記貫通穴に一端部が反応容器と当接し、他
端部が突設するようにヒートパイプを配し、前記突設し
たヒートパイプの一端と圧接したり離れたりできるよう
にペルチェ素子により冷却される冷却プレートが可動状
態に配設され、また加熱源としてシート状ヒータを用い
、前記シート状ヒータの一部がヒートパイプと接触する
ように配設したことを特徴とする第1項に記載の自動反
応装置。
(4) Forming a plurality of recesses for accommodating the reaction vessels in a member for accommodating the reaction vessels, providing through holes from the bottom of the recesses to the opposite surface, one end abutting the reaction vessels in the through holes, and the other. A heat pipe is disposed so that its end protrudes, and a cooling plate cooled by a Peltier element is disposed in a movable state so as to be able to come into pressure contact with or separate from one end of the protruding heat pipe, and a heating source 2. The automatic reaction device according to claim 1, wherein a sheet-like heater is used as the heat pipe, and a part of the sheet-like heater is arranged so as to be in contact with a heat pipe.
(5)反応容器を収納する部材に反応容器を収納する複
数の凹部を形成し、前記各凹部の内壁部に熱伝導率の良
好な材料のパイプを配し、前記パイプがヒートパイプの
一部分と接触するようにしたことを特徴とする第1項に
記載の自動反応装置。
(5) A plurality of recesses for accommodating the reaction vessels are formed in a member for accommodating the reaction vessels, and a pipe made of a material with good thermal conductivity is arranged on the inner wall of each recess, and the pipe is a part of a heat pipe. 2. The automatic reaction device according to item 1, wherein the automatic reaction device is adapted to be in contact with each other.
JP9833590A 1990-04-13 1990-04-13 Automatic reactor Pending JPH03297378A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9833590A JPH03297378A (en) 1990-04-13 1990-04-13 Automatic reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9833590A JPH03297378A (en) 1990-04-13 1990-04-13 Automatic reactor

Publications (1)

Publication Number Publication Date
JPH03297378A true JPH03297378A (en) 1991-12-27

Family

ID=14217035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9833590A Pending JPH03297378A (en) 1990-04-13 1990-04-13 Automatic reactor

Country Status (1)

Country Link
JP (1) JPH03297378A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006075695A (en) * 2004-09-08 2006-03-23 Shibata Kagaku Kk Connection adapter
JP2007503217A (en) * 2003-05-23 2007-02-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド Localized temperature control for spatial arrangement of reaction medium
JP2009525847A (en) * 2006-02-07 2009-07-16 ベックマン コールター, インコーポレイテッド Method and apparatus for controlling reaction temperature in a biochemical instrument
CN105128345A (en) * 2015-08-10 2015-12-09 苏州晋翌生物医学仪器有限公司 Microporous container and manufacture method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007503217A (en) * 2003-05-23 2007-02-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド Localized temperature control for spatial arrangement of reaction medium
JP4705035B2 (en) * 2003-05-23 2011-06-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド Localized temperature control for spatial arrangement of reaction medium
US9623414B2 (en) 2003-05-23 2017-04-18 Bio-Rad Laboratories, Inc. Localized temperature control for spatial arrays of reaction media
JP2006075695A (en) * 2004-09-08 2006-03-23 Shibata Kagaku Kk Connection adapter
JP2009525847A (en) * 2006-02-07 2009-07-16 ベックマン コールター, インコーポレイテッド Method and apparatus for controlling reaction temperature in a biochemical instrument
CN105128345A (en) * 2015-08-10 2015-12-09 苏州晋翌生物医学仪器有限公司 Microporous container and manufacture method thereof

Similar Documents

Publication Publication Date Title
US4950608A (en) Temperature regulating container
KR100696138B1 (en) Device for carrying out chemical or biological reactions
US5802856A (en) Multizone bake/chill thermal cycling module
US6018616A (en) Thermal cycling module and process using radiant heat
US20110207632A1 (en) Temperature control device with a flexible temperature control surface
EP0545736A2 (en) Method and apparatus for temperature control of multiple samples
US4955361A (en) Hot plate
JPH03503445A (en) Method and device for rapid adjustment of wall temperature
EP2137319A1 (en) Adaptive thermal block temperature control method and system
TW201809284A (en) Compact thermal cycling device and system comprising said thermal cycling device
CN104267766B (en) Real-time temperature-control micro sample room
JPH03297378A (en) Automatic reactor
CN206624885U (en) The module mechanism of PCR gene amplification instrument
JPH11201582A (en) Precision fluid temperature-controller
CN112827524A (en) Thermal cycling device
JPH03297377A (en) Automatic reactor
JPH07274938A (en) Temperature control device for observing cell and biological ingredient
JP2003024063A (en) Method for continuously amplifying dna and device for the same
US7431891B2 (en) Device for controlling the temperature of chemical microreactors
JP3982071B2 (en) Column thermostat
EP1566598A1 (en) Instant electric water heater
KR20190030070A (en) A temperature control apparatus for a fluid using thermoelectric element
JP3507841B2 (en) Steam or hot water heating device
KR100367298B1 (en) Life prediction apparatus of thermoelectric device for generator
JP7150138B2 (en) Liquid transfer cartridge for temperature controller