JPH03297041A - Emitter setting method - Google Patents

Emitter setting method

Info

Publication number
JPH03297041A
JPH03297041A JP2099560A JP9956090A JPH03297041A JP H03297041 A JPH03297041 A JP H03297041A JP 2099560 A JP2099560 A JP 2099560A JP 9956090 A JP9956090 A JP 9956090A JP H03297041 A JPH03297041 A JP H03297041A
Authority
JP
Japan
Prior art keywords
emitter
electron
wehnelt
axis
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099560A
Other languages
Japanese (ja)
Inventor
Akira Suzuki
章 鈴木
Nobutoshi Asanuma
浅沼 信俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2099560A priority Critical patent/JPH03297041A/en
Publication of JPH03297041A publication Critical patent/JPH03297041A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To maintain stable emitting condition for a long period of time by a certain amount dislocating the set position of a mono-crystalline emitter of LaB6, etc., of an electron gun in which the <110> crystal azimuth is substantially identical with the axis. CONSTITUTION:When a mono-crystalline emitter of LaB6, etc., with the emitter axis put identical substantially with the <110> crystal azimuth is to be set to electron, the crest of the emitter is set being dislocated in an amount corresponding to 10 thru 30% of the radius of an electron emitting hole within the range + or -30 deg. to the direction right across the ridge of two naturally formed surfaces generated at the apex while pinching the <110> crystal azimuth associate with electron emission with respect to the center of a Wehnelt electron emission hole which emits electrons in confronting an anode. That is, the axis O2-O2 of the mono-crystalline emitter 10 is set a dimension (e) eccentric from the axis O1-O1, or more precisely from the center of the electron emitting hole 21 provided at the Wehnelt 20 undersurface confronting the anode 30. Thereby a mono-beam is obtained which is ensured with stable operation at a low temp.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野] 本発明は、電子顕微鏡や電子ビーム描画装置等の電子銃
のエミッタのセツティング方法に係り、特にLa86等
の単結晶エミッタでかつエミッタの軸心k<110>の
結晶方位に略合致させた単結晶エミッタのセツティング
方法に関するものである。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a method for setting an emitter of an electron gun such as an electron microscope or an electron beam lithography device, and in particular to a method for setting an emitter of an electron gun such as an electron microscope or an electron beam lithography device. The present invention relates to a method for setting a single crystal emitter which is large in size and substantially aligned with the crystal orientation of the emitter axis k<110>.

(従来の技術) LaBs等の単結晶エミッタは、特開昭56−848A
+号公報に示されているように、細心を<too> 、
<IIO>またはく1目〉等の結晶方位に設定すること
に工り十分なエミツシヨンを有する点対称または線対称
のエミツシヨンパターンを得て、これをエミッタ温度や
バイアス電圧の増加に工って1つの円形クロスオーバ偉
として使用してい友。
(Prior art) Single crystal emitters such as LaBs are disclosed in Japanese Patent Application Laid-Open No. 56-848A.
As shown in the + issue, we pay close attention to
A point-symmetric or line-symmetric emitter pattern with sufficient emission can be obtained by setting it in a crystal orientation such as <IIO> or <1>, and this can be modified to increase the emitter temperature and bias voltage. Use it as a circular crossover vehicle.

(発明が解決しょうとする課題) 結晶方位を上記の工うに設定すると、仕事関数の低い面
から比較的低い温度でも十分なエミツシヨンを得ること
ができるが、点対称せたは線対称のマルチビームである
ため、エミッタ温度やバイアス電圧を高くすることに工
って1つのりαスオーバ像にする必要があり、エミッタ
温度の上昇はエミッタの寿命を短かくする欠点がある。
(Problem to be solved by the invention) If the crystal orientation is set in the above manner, sufficient emission can be obtained even at a relatively low temperature due to the surface with a low work function. Therefore, it is necessary to increase the emitter temperature and bias voltage to obtain a single α-sovere image, and an increase in the emitter temperature has the disadvantage of shortening the life of the emitter.

また、上記の工うなマルチビームを無理にモノビームに
する使用方法によると時間と共に各電子放出点のエミブ
シッン比が変化する。例えば、<100>の結晶方位の
ものでは、中央の1点の周囲に4点のエミッタぢンパタ
ーンが得られてい次ものが、中央はほとんどなくなって
しまう等の変化を示し、時間に対する安定性に劣る欠点
を有してい友。
Furthermore, according to the above-mentioned method of forcibly converting a multi-beam into a mono-beam, the emibushin ratio of each electron emission point changes with time. For example, in the case of <100> crystal orientation, an emitter pattern of four points is obtained around one point in the center, and then the emitter pattern at the center is almost completely absent. A friend who has inferior shortcomings.

本発明の目的は、細心を<110>の結晶方位に略合致
させる工うにした単結晶エミッタを用いながら、仕事関
係の低い1つの特定の結晶面がらの電子放出をエリ強く
うながし、他の同じ仕事関係の結晶面からの電子放出を
押え、エリ低温で安定なモノビーム金得ることのできる
エミッタのセブティング方法を提供するにある。
The purpose of the present invention is to strongly encourage electron emission from one specific crystal plane with a low work relationship, while using a single crystal emitter that is meticulously designed to approximately match the <110> crystal orientation. The object of the present invention is to provide an emitter separation method capable of suppressing electron emission from work-related crystal planes and obtaining stable monobeam gold at low temperatures.

〔発明の講成〕[Invention lecture]

(課題を解決する几めの手段) 上記目的を達成するための本発明は、LaB6等の単結
晶エミッタでありがっ該エミッタの軸心を<110>の
結晶方位に略合致させた単結晶エミッタを電子銃にセッ
トするに際し、単結晶エミッタの頂部を、陽極に対向し
て電子を放出するウェネルトの電子放出穴の中心に対し
、電子の放出に伴って<110>の結晶方位を挾んで前
記頂部に形成される2つの自然形成面の稜線と直交する
方向に対して±300の範囲内でがっ電子放出穴の半径
の0ないし30%に相当する量ずらしてセットするもの
である。
(Elaborate Means for Solving the Problems) The present invention for achieving the above object uses a single crystal emitter such as LaB6, and the axis of the emitter is made to substantially coincide with the <110> crystal orientation. When setting the emitter in the electron gun, place the top of the single crystal emitter between the center of the Wehnelt electron emission hole that emits electrons facing the anode, and hold the <110> crystal orientation as the electrons are emitted. The two naturally formed surfaces formed on the top are set to be shifted within a range of ±300 by an amount corresponding to 0 to 30% of the radius of the electron emission hole in a direction perpendicular to the ridgeline.

なお、単結晶エミッタの細心に対して<110>の結晶
方位が傾いているときは、この傾きにLり2つの自然形
成面のうちウェネルトの電子放出穴の開口面となす角度
が小さくなる側の自然形成面上にウェネルトの中心が位
置する方向へずらせてセットすることが好ましい〇 (作用) 自然形成面は仕事関数が低い部分に電子の放出に伴って
形成されるものであり、その発生位置は単結晶エミッタ
の結晶方位から知ることができる。
In addition, when the <110> crystal orientation is tilted with respect to the fineness of the single crystal emitter, the side that forms the smaller angle with the opening plane of Wehnelt's electron emission hole of the two naturally formed planes is It is preferable to set the center of Wehnelt in the direction where it is located on the naturally formed surface of The position can be determined from the crystal orientation of the single crystal emitter.

この工うに自然形成面の発生位置が既知の単結晶エミッ
タを上記の工うにセットすると、2つの自然形成面部分
のうちウェネルトの電子放出穴の中心側に位置する万は
バイアス電圧による電子放出抑制効果が低く、他方は該
抑制効果が強く働くため、実質的に中心側に位置する自
然形成面部分からビームを放出する。
In this method, when a single crystal emitter whose naturally formed surface is known to occur is set in the above method, the one located on the center side of Wehnelt's electron emission hole among the two naturally formed surfaces is suppressed from emitting electrons by bias voltage. On the other hand, since the suppressing effect is strong, the beam is emitted from the naturally formed surface portion located substantially on the center side.

なお、単結晶エミッタの細心に対する結晶方位が若干傾
いている場合には、その傾きに応じて上記の方向へずら
せば、ウェネルトの中心側に位置する自然形成面部分か
らのビーム発生が工り確実に行なわれる。
If the crystal orientation of the single crystal emitter is slightly tilted, shifting it in the above direction according to the tilt will ensure that the beam is generated from the naturally formed surface located toward the center of the Wehnelt. It will be held in

(*前例] 以下本発明の実施例を第1図ないし第5図に工り説明す
る。第1図において、10はLaB+sの単結晶エミッ
タ、20はウェネルト、30は陽極である。単結晶エミ
ッタ1oは、<110>の結晶方位A−Aが単結晶エミ
ッタ1oの幾何学的細心02−02と略合致しているも
ので、先端部が円錐状に形成され、最先端は半径「が数
μmの球面状に形成されている。
(*Precedent) An embodiment of the present invention will be explained below with reference to FIGS. 1 to 5. In FIG. 1, 10 is a LaB+s single crystal emitter, 20 is a Wehnelt, and 30 is an anode.Single crystal emitter 1o, the <110> crystal orientation A-A approximately matches the geometrical fineness 02-02 of the single crystal emitter 1o, and the tip is formed into a conical shape, and the tip has a radius of several It is formed into a spherical shape of μm.

通常、単結晶エミッタio、ウェネルト2oお工び陽極
3oは同一軸心01−01上に配列されるものであるが
、本発明は単結晶エミッタ1oの軸心02 0z’ii
−上記軸心。□−0□、正確にはウェネルト20の陽極
3oに対向する下面側の電子放出穴21の中心に対し、
寸法e偏心させてセットする。
Normally, the single crystal emitter io, Wehnelt 2o and the anode 3o are arranged on the same axis 01-01, but in the present invention, the axis 02-0z'ii of the single-crystal emitter 1o
-Above axis center. □-0□, to be more precise, relative to the center of the electron emission hole 21 on the lower surface side facing the anode 3o of the Wehnelt 20,
Dimension e: Set eccentrically.

偏心量eと偏心の方向について説明すると、第2図に示
すように、単結晶エミッタ1oを電子放出穴21の中心
に合致させてセットして使用し九とき、単結晶エミッタ
−10の頂部に電子の放出に伴ってその放出部に自然形
成面+12.llbが形成される。自然形成面11a、
Ilbは、<110>の結晶方位A−Aが単結晶エミッ
タ1oの細心02−02に合致しているときには、仕事
関数の関係がら第2図に示すように、<110>の結晶
方位を挟置で形成され、単結晶エミッタ10の結晶方位
から決まる所定位置に現われる。
To explain the amount of eccentricity e and the direction of eccentricity, as shown in FIG. As electrons are emitted, a naturally formed surface +12. llb is formed. Naturally formed surface 11a,
When the <110> crystal orientation A-A matches the fineness 02-02 of the single crystal emitter 1o, Ilb has the <110> crystal orientation sandwiched between them as shown in Figure 2 due to the work function relationship. The emitter 10 is formed at a predetermined position and appears at a predetermined position determined by the crystal orientation of the single crystal emitter 10.

しかして、まず偏心の方向は、第3図に示す工うに、中
心U12>ら自然形成面+13.llbの稜線12と直
交する方向B−Bが最適であり、この方向に対して±3
00の範囲において好結果が得られる。ま九、偏心量e
は、電子放出穴21の半径R。
First, the direction of the eccentricity is as shown in FIG. 3, from the center U12>to the naturally formed surface +13. The direction B-B perpendicular to the ridge line 12 of llb is optimal, and ±3 to this direction.
Good results are obtained in the range of 0.00. 9. Eccentricity e
is the radius R of the electron emission hole 21.

に対し10ないし30チすなわち0.1 R1(=Rz
)ないし0.3 R1(=R3)の範囲が好ましい。す
なわち、単結晶エミッタ10の頂点が第3図に斜線で示
す範囲Cの中に位置する↓うにセットすることが好まし
い。
10 to 30 chi, or 0.1 R1 (=Rz
) to 0.3 R1 (=R3) is preferred. That is, it is preferable to set the single crystal emitter 10 so that its apex is located within the shaded area C in FIG.

この工うに単結晶エミッタ10の頂点をウェネルト20
の電子放出穴21の中心O1に対しでずらせると、中心
O1に合致している場合には第2図に示したように2つ
の自然形成面+1a、Ilbを住じつつ両面からそれぞ
れ電子を放出し2本のビームを生ずるのに対し、第4図
お工び第5図において中心01に近い自然形成面11H
に対応する部分からエリ強く電子を放出し、実質的にモ
ノビームとなる。
In this process, the apex of the single crystal emitter 10 is
If it is shifted from the center O1 of the electron emission hole 21 of In contrast, the naturally formed surface 11H near the center 01 in Fig. 4 and Fig. 5 emits two beams.
It emits electrons strongly from the part corresponding to the beam, essentially becoming a mono beam.

これは、2つの自然形成面+18.llbに対応する部
分のうち、ウェネルト20の電子放出穴2の中心O1側
に位置する方の自然形成面118に対応する部分はバイ
アス電圧による電子数量抑制効果が低く、他方の自然形
成面11bに対応する部分は該抑制効果が強く働く九め
である。
This is 2 naturally formed surfaces + 18. Among the parts corresponding to llb, the part corresponding to the naturally formed surface 118 located on the center O1 side of the electron emission hole 2 of the Wehnelt 20 has a low electron quantity suppression effect due to the bias voltage, and the other naturally formed surface 11b The corresponding part is the ninth part where the suppressing effect is strong.

なお、単結晶エミッタ10の<110>の結晶方位A−
Aは、第1図に示すように、単結晶エミッタ1oの軸心
02−02に対し若干傾いていることがある。この場合
には、第4図に示す工うに、電子放出穴2Iの開口面2
1aとなす角度αl、α2のうち小さい角度α1側の自
然形成面+18eウエネルト20の中心O1上に位置さ
せるように定めれば、中心O1側にあって電子を放出す
る側の自然形成面112 giQ t−電子放出穴21
の開口面21aに近付け、他側の自然形成面11b側を
開口面213から遠ざけることができ、工す確実にモノ
ビームを得ることができる。
Note that the <110> crystal orientation A- of the single crystal emitter 10
As shown in FIG. 1, A may be slightly inclined with respect to the axis 02-02 of the single crystal emitter 1o. In this case, as shown in FIG.
1a, the naturally formed surface on the smaller angle α1 side of α1 and α2+18e If it is determined to be located on the center O1 of Wehnelt 20, the naturally formed surface 112 on the side that is on the center O1 side and emits electrons giQ t-electron emission hole 21
213, and the other naturally formed surface 11b can be moved away from the aperture surface 213, so that a monobeam can be reliably obtained.

〔発明の効果〕〔Effect of the invention〕

以上述べ比重うに本発明に工れば、<110>の結晶方
位が細心と略合致しているLaBa等の単結晶エミッタ
を用いる電子銃において、該単結晶エミッタのセット位
置を若干ずらせるだけで長時間にわ几って安定し九エミ
ブション状態を維持することができる。
If the present invention is implemented in the manner described above, in an electron gun using a single crystal emitter such as LaBa whose <110> crystal orientation closely and almost coincides, it is possible to simply slightly shift the set position of the single crystal emitter. It can maintain a stable state for a long time.

【図面の簡単な説明】 第1図は本発明の実施例を示す要部断面図、第2図はウ
ェネルトの電子放出穴と単結晶エミッタの軸心を合致さ
せ几ときの自然形成面の発生状態を示す図、第3図はウ
ェネルトの電子放出穴に対する単結晶エミッタの本発明
に↓るセット位置を説明する九めの図、第4図は第1図
の実施例が使用に工って自然形成面を生じてき次状態を
示す部分断面図、第5図は第4図を下から見九図である
。 O・・・単結晶エミッタ、 A−A・・・<110>の結晶方位、 +12.Ilb・・・自然形成面、  12・・・稜線
、20・・・ウェネルト、 21・・・電子放出穴、3
0・・・陽極。 呂願人 東芝機械株式会社 第 ■ 図 第 図 第3 図
[Brief Description of the Drawings] Figure 1 is a sectional view of the main part showing an embodiment of the present invention, and Figure 2 is the generation of a naturally formed surface when Wehnelt's electron emission hole and the axis of the single crystal emitter are aligned. Figure 3 is a ninth diagram illustrating the set position of the single crystal emitter in accordance with the present invention with respect to Wehnelt's electron emission hole, and Figure 4 is a diagram showing the state in which the embodiment of Figure 1 is used. FIG. 5 is a partial sectional view showing a state in which a naturally formed surface is generated, and FIG. 5 is a ninth view of FIG. 4 viewed from below. O...single crystal emitter, A-A...<110> crystal orientation, +12. Ilb... Naturally formed surface, 12... Ridge line, 20... Wehnelt, 21... Electron emission hole, 3
0... Anode. Toshiba Machine Co., Ltd. Figure 3 Figure 3

Claims (1)

【特許請求の範囲】 1、LaB_6等の単結晶エミッタでありかつ該エミッ
タの軸心を<110>の結晶方位に略合致させた単結晶
エミッタを電子銃にセットするに際し、前記単結晶エミ
ッタの頂部を、陽極に対向して電子を放出するウエネル
トの電子放出穴の中心に対し、電子の放出に伴って前記
<110>の結晶方位を挾んで前記頂部に形成される2
つの自然形成面の稜線と直交する方向に対して±30°
の範囲内でかつ前記電子放出穴の半径の10ないし30
%に相当する量ずらしてセットすることを特徴とするエ
ミッタのセッティング方法。 2、前記単結晶エミッタの軸心に対して<110>の結
晶方位が傾いているとき、該傾きにより前記2つの自然
形成面のうち前記ウエネルトの電子放出穴の開口面とな
す角度が小さくなる側の自然形成面上にウエネルトの中
心が位置する方向へずらせてセットすることを特徴とす
る請求項1記載のエミッタのセッティング方法。
[Claims] 1. When setting a single-crystal emitter such as LaB_6 whose axis is approximately aligned with the <110> crystal orientation into an electron gun, the single-crystal emitter is The top part is opposed to the anode and the center of Wehnelt's electron emission hole which emits electrons is formed at the top part by sandwiching the <110> crystal orientation as electrons are emitted.
±30° to the direction perpendicular to the ridgeline of the two naturally formed surfaces
and 10 to 30 of the radius of the electron emission hole.
An emitter setting method characterized by shifting the emitter by an amount equivalent to %. 2. When the <110> crystal orientation is tilted with respect to the axis of the single crystal emitter, the angle between the two naturally formed planes and the opening plane of the Wehnelt electron emission hole becomes smaller due to the tilt. 2. The emitter setting method according to claim 1, wherein the emitter is set so as to be shifted in a direction in which the center of the Wehnelt is located on the side naturally formed surface.
JP2099560A 1990-04-16 1990-04-16 Emitter setting method Pending JPH03297041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099560A JPH03297041A (en) 1990-04-16 1990-04-16 Emitter setting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099560A JPH03297041A (en) 1990-04-16 1990-04-16 Emitter setting method

Publications (1)

Publication Number Publication Date
JPH03297041A true JPH03297041A (en) 1991-12-27

Family

ID=14250535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099560A Pending JPH03297041A (en) 1990-04-16 1990-04-16 Emitter setting method

Country Status (1)

Country Link
JP (1) JPH03297041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901981A1 (en) * 2020-04-24 2021-10-27 IMS Nanofabrication GmbH Charged-particle source

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3901981A1 (en) * 2020-04-24 2021-10-27 IMS Nanofabrication GmbH Charged-particle source

Similar Documents

Publication Publication Date Title
JPH03297041A (en) Emitter setting method
US6297584B1 (en) Precision alignment of microcolumn tip to a micron-size extractor aperture
US11990311B2 (en) Charged particle source and charged particle beam device
US6727507B2 (en) Electron beam proximity exposure apparatus and method
US4205254A (en) Electron gun for a cathode ray tube
JPS63184243A (en) Electron gun for color picture tube
JP2006024522A (en) X-ray generation device
JPH0130247B2 (en)
US4429222A (en) Transmission electron microscope
JPS6313247A (en) Electron emission device and its manufacture
JP2001308004A (en) Method of manufacturing semiconductor device and electron beam exposure method
JPH0131256B2 (en)
JPH0765766A (en) Electrostatic deflecting system
JPS6346942B2 (en)
JPS6057651B2 (en) thermionic emission cathode
US4728855A (en) Vertical and horizontal deflection electrodes for electrostatic deflection type cathode ray tube
JPS6025132A (en) Diode type electron gun
JPS63187528A (en) Electron gun
JPS6269424A (en) Lanthanum hexabromide hot cathode
JPH10239850A (en) Charged particle beam device and variable formation type charged particle beam plotting device
JP2000021288A (en) Thermal field emission type electron gun
JPS5856946B2 (en) electron beam equipment
JPH0316735B2 (en)
CN116325057A (en) Guard electrode and field emission device
JPS6310579A (en) Semiconductor laser