JPH032960B2 - - Google Patents

Info

Publication number
JPH032960B2
JPH032960B2 JP21630682A JP21630682A JPH032960B2 JP H032960 B2 JPH032960 B2 JP H032960B2 JP 21630682 A JP21630682 A JP 21630682A JP 21630682 A JP21630682 A JP 21630682A JP H032960 B2 JPH032960 B2 JP H032960B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
plating
bath
layer
alloy plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21630682A
Other languages
Japanese (ja)
Other versions
JPS59107096A (en
Inventor
Naomasa Nakakoji
Kazuo Mochizuki
Toshiro Ichida
Toshio Irie
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21630682A priority Critical patent/JPS59107096A/en
Publication of JPS59107096A publication Critical patent/JPS59107096A/en
Publication of JPH032960B2 publication Critical patent/JPH032960B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、Niめつき層、Ni−Sn合金めつき層
およびクロメート被膜層を有する耐食性・溶接
性・塗装性に優れたシーム溶接缶用表面処理鋼板
に関するものである。 現在実用に供せられている缶用材料としてはブ
リキあるいはTFS(テインフリースチール)があ
るが、これらをシーム溶接缶用材料として用いる
場合、以下に述べるような問題がある。#25ブ
リキは飲料缶(炭酸飲料、ジユース、スープ等)
用のシーム溶接缶用材料として用いられており、
溶接性、耐食性、塗装性に何ら問題はない。しか
し、#25ブリキは高価な錫を片面当に約0.5μめ
つきしたものであり、製缶コストの低減を最大の
特徴とするシーム溶接製缶法おいて適した材料と
はいい難い。 錫目付量を減らした薄目付ブリキをシーム溶接
缶用材料として用いようとする場合には、耐食性
が著しく劣り実用に供することはできない。 TFSは安価な缶用材料であり、塗装性、耐食
性に優れているが、シーム溶接性には問題があ
る。 すなわち、シーム溶接を行なつた場合、TFS
は「散り」を生じ、溶接部の補修塗装を困難にす
るばかりでなく、溶接強度が十分でなく溶接不良
を起し易い。 「散り」は溶融した金属が飛散する現象で、Cr
水和酸化物のような高電気低抗物質が存在する場
合に生ずる。しかし、Cr水和酸化物の形成を僅
少にし、殆んど全てが金属Cr層からなるTFSを
シーム溶接した場合でも、溶接時の昇温過程で
Cr酸化物が形成され「散り」は発生するので、
TFSを溶接缶用材料として用いることはできな
い。 TFSをシーム溶接するために研削により素地
鉄を露出させる方法があるが、研削屑が製缶後缶
内面に相当する面に飛散付着するなど、実用に供
するには問題がある。このように、現在用いられ
ている缶用材料はいずれもシーム溶接缶用材料と
しては不十分である。 本発明は、シーム溶接缶用材料として必要とさ
れる耐食性、溶接性、塗装性に優れ、かつ安価な
シーム溶接缶用表面処理鋼板を提供することを目
的とするものである。 本発明によれば、鋼板表面に0.01〜0.15μのNi
めつき層と、その上層に重量比Sn/(Sn+Ni)
が0.5〜0.8なる合金組成を有し、かつ厚さが0.01
〜0.20μのNi−Sn合金めつき層と、さらにその上
層に1〜30mg/m2のクロメート被膜層を形成する
ことにより、上記目的を達成することができる。 Ni−Sn合金めつき被膜自体は耐食性、溶接性
に優れているが、めつき厚が0.01〜0.20μでは被
膜中にピンホールが存在する。鋼板表面にNi−
Sn合金めつきを施しただけでは、腐食環境にお
いてNi−Sn合金めつき被膜が鉄よりも貴な金属
として作用し、かつその電位差が大きいため、ピ
ンホールからの鉄溶出が促進されて鉄溶解が著し
く、耐食性が十分でない。鋼板表面とNi−Sn合
金めつき被膜層との間にNiめつき層が存在する
と、腐食環境中においてNiが鉄とNi−Sn合金め
つき被膜の中間の貴度を示すため、鉄とNiめつ
き層とNi−Sn合金めつき被膜層の各層間の電位
差が小さくなり、また二重めつきすることで、地
鉄の露出に至るピンホールが減少することによつ
て鉄溶解が著しく減少し、耐食性が向上すること
がわかつた。 本発明の表面処理鋼板も、素地鉄の溶解および
めつき層自体の溶解を防ぐために他の缶用材料と
同様に塗装して用いられるが、Ni−Sn合金めつ
き被膜自体は塗料密着性、特に高温の水溶液等に
長時間さらされた場合の塗料密着性(塗料二次密
着性)が劣り、塗装後の耐食性が十分でない。 本発明では、鋼板表面にNiめつき、Ni−Sn合
金めつきを施した後に、さらなる耐食性の向上お
よび特に塗料密着性、塗装後耐食性の向上を目的
としてクロメート処理を行なうが、クロメート被
膜は高電気抵抗物質であるため、クロメート被膜
量が過剰であるとシーム溶接時に「散り」を発生
し、溶接性が悪くなる。 そこで、優れた耐食性、溶接性、塗装性(塗料
密着性、塗装後耐食性)が得られるNiめつき量、
Ni−Sn合金めつき量、クロメート被膜量を種々
検討した結果、鋼板表面に0.01〜0.15μのNiめつ
き層と、その上層に重量比Sn/(Sn+Ni)が0.5
〜0.8なる合金組成を有し、かつ厚さが0.01〜
0.20μのNi−Sn合金めつき層と、さらにその上層
に1〜30mg/m2のクロメート被膜層とを形成すれ
ば良いことがわかつた。 本発明において、Ni−Sn合金めつきの目的は
溶接性の向上と耐食性の付与であり、合金組成が
重量比Sn/(Sn+Ni)=0.5〜0.8の範囲におい
て、これらの特性が著しく向上することが判明し
た。 先行技術として特公昭36−15252号「極薄ニツ
ケルめつき鋼板」に開示されるところでは、この
鋼板が半田缶を対象とし、耐食性、半田性、ラツ
カー性、加工性を問題にしており、Ni−Sn合金
めつきの合金組成については規定しておらず、
Niを主体とした層と述べられているのに対し、
本発明鋼板においては、溶接技術の向上によつて
近年開発されたシーム溶接缶を対象とし、特にめ
つき層の合金組成範囲を規定することを大きな特
長とするものであり、上記刊行物に開示された発
明と本発明は思想的にも技術的にも全く異なつた
ものである。 Ni−Sn合金めつきは塩化物−フツ化物浴、硫
酸塩−フツ化物浴、ケイフツ化物浴、、ピロリン
酸浴、塩化物浴のいずれかによつても実施するこ
とが可能であり、浴温度30〜70℃、電流密度0.1
〜50A/dm2で行なうことができる。 Ni−Sn合金めつき層は、平衡状態図に示され
ているようなNi3Sn2,Ni3Sn4などの金属間化合
物の混合組織とは異なり、重量比Sn/(Sn+
Ni)が0.5〜0.8の範囲では殆んど全てが単一層と
なつており、この範囲で溶接性、耐食性に優れた
性能を発揮するのである。 Sn/(Sn+Ni)の値を0.5〜0.8に限定する理
由は以下の通りである。Sn/(Sn+Ni)が0.5よ
り小さいと、めつき層中にクラツクを生じて耐食
性が著しく低下するとともに、溶接時にめつき層
表面に酸化物が形成され易くなるために「散り」
を生じ易くなるからである。Sn/(Sn+Ni)が
0.8より大きい範囲ではめつき層が粗く、ピンホ
ールなどの欠陥を多く含んだ電着組織となり耐食
性が著しく低下するとともに、Ni−Sn合金の融
点が1000℃より低くなり、1000℃以下では溶接時
にめつき層が溶融し、溶融潜熱のため熱損失を生
じ、多くの電流を必要とするため実用的でない。
本発明において、Sn/(Sn+Ni)の値を0.5〜
0.8に限定する理由は上述した処から明らかなよ
うに、溶接性、耐食性の著しく優れた性能を得ら
れるからであり、これ以外の組成では溶接性、、
耐食性に顕著な効果があらわれないからである。 Ni−Sn合金めつきの厚さを0.01〜0.20μに限定
する理由は、0.01μ未満では溶接性、耐食性に顕
著な効果を生じなくなり、また0.2μを超えと溶接
性、耐食性に対する効果が飽和し、経済的なデメ
リツトを生ずるからである。 このNi−Sn合金めつきを鋼板表面に施せば、
溶接性、耐食性が向上する。しかし、めつき層中
のピンホールを皆無にすることは非常に困難であ
り、このピンホールからの鉄溶出が避けられず、
腐食環境においてはNi−Sn合金めつきは鉄より
も貴な金属として作用し、かつその電位差が大き
いためにピンホールからの鉄溶解が促進され、耐
食性が十分でない。 本発明において鋼板とNi−Sn合金めつきとの
中間にNiめつきを施す目的は、耐食性の向上で
ある。腐食環境中においては鉄とNi−Sn合金め
つきの中間の貴度を示し、鉄とNiめつき層とNi
−Sn合金めつき層の各層間の電位差が小さくな
り、また、NiめつきとNi−Sn合金めつきの二層
めつきにすることにより地鉄の露出に至るポンホ
ールが減少することにより、鉄溶解が著しく減少
し耐食性が向上するのである。 Niめつきはワツト浴、スルフアミン酸浴等を
用いた通常の電気めつき法によるか、あるいは化
学めつき法で行なえば良い。本発明でNiめつき
層の厚みを0.01〜0.15μに限定する理由は、0.01μ
未満では耐食性向上に顕著な効果を示さなくな
り、また0.15μを超えると耐食性向上の効果が飽
和し、経済的なデメリツトが生ずるからである。 本発明では、鋼板表面にNiめつき、Ni−Sn合
金めつきを施した後、さらに一層の耐食性、塗料
密着性および塗装後耐食性の向上を目的としてク
ロメート処理を行なう。Ni−Sn合金めつき上に
塗装した場合、Ni−Sn合金めつきは塗料密着性、
特に高温の水溶液等に長時間さらされた場合の塗
料密着性が劣り、塗装後の耐食性が十分でない。
クロメート被膜を施すことにより耐食性をさらに
向させ、かつ塗料密着性を向上せしめ、塗装後の
耐食性を向上させることができるのである。 クロメート処理浴は無水クロム酸、クロム酸
塩、重クロム酸塩またはこれらの混合物の水溶液
で、濃度は5〜70g/、PHを適当に調整したも
のを用いれば良く、処理方法は浸漬法、電解法、
スプレー法いずれでも良い。 クロメート被膜量を1〜30mg/m2に限定する理
由は、1mg/m2未満では下地表面を十分に被覆す
ることができず、耐食性、塗料密着性、塗装後耐
食性を向上させる効果は十分であり、また30mg/
m2を超えると耐食性、塗料密着性、塗装後耐食性
を向上させる効果は十分であるが、被膜自体の高
電気抵抗のため溶接部での鉄と鉄の接合を阻害
し、「散り」を発生するからである。 次に、本発明を実施例および比較例を挙げて具
体的に説明する。 〔実施例1〕 ブリキ原板を電解脱脂、酸洗した後、ワツト浴
を用いて浴温度55℃、電流密度5A/dm2で0.03μ
のNiめつきを行ない、さらに塩化物−フツ化物
浴を用いてPH2.5、浴温度70℃、電流密度5A/d
m2で0.04μのNi−Sn合金めつきを行なつた、その
後、60g/のクロム酸浴を用いて電流密度
10A/dm2でクロメート処理を行なつた。 〔実施例2〕 ブリキ原板を電解脱脂、酸洗した後、ワツト浴
を用いて浴温度60℃、電流密度10A/dm2
0.06μのNiめつきを行ない、さらにピロリン酸浴
を用いてPH8.0、浴温度65℃、、電流密度3A/d
m2で0.02μのNi−Sn合金めつきを行なつた。その
後、50g/の重クロム酸ナトリウム浴を用いて
電流密度15A/dm2でクロメート処理を行なつ
た。 〔実施例3〕 ブリキ原板を電解脱脂、酸洗した後、スルフア
ミン酸浴を用いて浴温度50℃、電流密度10A/d
m2で0.02μのNiめつきを行ない、さらに塩化物−
フツ化物浴を用いてPH2.5、浴温度60℃、電流密
度10A/dm2で0.18μのNi−Sn合金めつきを行な
つた。その後、75g/の重クロム酸浴を用いて
電流密度15A/dm2でクロメート処理を行なつ
た。 〔実施例4〕 ブリキ原板を電解脱脂、酸洗した後、ワツト浴
を用いて浴温度55℃、電流密度5A/dm2で0.13μ
のNiめつきを行ない、さらに塩化物−フツ化物
浴を用いてPH2.5、浴温度75℃、電流密度10A/
dm2で0.10μのNi−Sn合金めつきを行なつた。そ
の後、50g/のクロム酸浴を用いて電流密度
15A/dm2でクロメート処理を行なつた。 〔比較例1〕 ブリキ原板を電解脱脂、、酸洗した後、塩化物
−フツ化物浴を用いてPH2.5、浴温度60℃、電流
密度10A/dm2で0.06μのNi−Sn合金めつきを行
なつた。その後、45g/のクロム酸浴を用いて
クロメート処理を行なつた。 〔比較例2〕 ブリキ原板を電解脱脂、酸洗した後、ワツト浴
を用いて浴温度55℃、電流密度5A/dm2で0.03μ
のNiめつきを行ない、さらに塩化物−フツ化物
浴を用いてPH2.5、浴温度70℃、電流密度5A/d
m2で0.04μのNi−Sn合金めつきを行なつた。 〔比較例3〕 ブリキ原板を電解脱脂、酸洗した後、スルフア
ミン酸浴を用いて浴温度50℃、電流密度10A/d
m2で0.03μのNiめつきを行ない、さらにピロリン
酸浴を用いてPH8.0、浴温度60℃、電流密度3A/
dm2で0.04μのNi−Sn合金めつきを行なつた。そ
の後、75g/のクロム酸浴を用いて電流密度
15A/dm2でクロメート処理を行なつた。 上記のような処理をした鋼板から164.7×80mm
の試片を切り出してシーム溶接性試験を行なつ
た。また、100×100mmの試片を用いて塗料二次密
着性試験を行なつた。 (1) シーム溶接性試験 スードロニツク社製製缶機を用いて、溶接速度
8m/mm、接胴加圧力30Kgf、オーバーラツプ0.4
mmでシーム溶接を行ない、適正電流範囲を求め
た。 (2) 塗料二次密着性試験および塗装後の耐食性エ
ポキシフエノール系塗料を50mg/m2塗装後、2
%NaC+4%酢酸溶液中で125℃×60分処理
後、クロスカツトテープ剥離試験で塗料二次密
着性を評価し、塗膜面の腐食状態で塗装後の耐
食性を評価した。 上記試料についての諸試験結果を示した表1か
ら明らかなように、本発明による表面処理鋼板
(実施例1〜4)は、溶接性、塗料二次密着性、
塗装後の耐食性において比較材(比較例1〜3)
に比べて優れた性能を示す。
The present invention relates to a surface-treated steel sheet for seam-welded cans that has a Ni plating layer, a Ni-Sn alloy plating layer, and a chromate coating layer and has excellent corrosion resistance, weldability, and paintability. Tinplate and TFS (tein-free steel) are currently available materials for cans, but when these are used as materials for seam-welded cans, there are problems as described below. #25 Tin is a beverage can (carbonated drink, juice, soup, etc.)
It is used as a material for seam welded cans for
There are no problems with weldability, corrosion resistance, or paintability. However, #25 tin plate is made of expensive tin plated with approximately 0.5 μm of tin on one side, and is not a suitable material for the seam welding can manufacturing method, whose main feature is a reduction in can manufacturing costs. When thin tinplate with a reduced tin coating is used as a material for seam welded cans, its corrosion resistance is extremely poor and it cannot be put to practical use. TFS is an inexpensive material for cans and has excellent paintability and corrosion resistance, but it has problems with seam weldability. In other words, if seam welding is performed, TFS
Not only does this cause "splashing", making it difficult to repair and paint the welded area, but the welding strength is insufficient and welding defects are likely to occur. "Scatter" is a phenomenon in which molten metal scatters, and Cr
Occurs when highly electrostatic substances such as hydrated oxides are present. However, even if the formation of Cr hydrated oxide is minimized and TFS is seam welded, which consists of almost all metallic Cr layers, the temperature increase during welding
Cr oxide is formed and "scattering" occurs, so
TFS cannot be used as a material for welded cans. In order to seam weld TFS, there is a method of exposing the base iron by grinding, but there are problems in putting it to practical use, such as grinding debris scattering and adhering to the surface corresponding to the inner surface of the can after the can is made. As described above, all currently used can materials are insufficient as seam welded can materials. An object of the present invention is to provide a surface-treated steel sheet for seam-welded cans that is excellent in corrosion resistance, weldability, and paintability required as a material for seam-welded cans, and is inexpensive. According to the present invention, 0.01 to 0.15μ of Ni is formed on the surface of the steel plate.
Weight ratio Sn/(Sn+Ni) in the plating layer and the upper layer
has an alloy composition of 0.5 to 0.8, and a thickness of 0.01
The above object can be achieved by forming a Ni-Sn alloy plating layer of ~0.20μ and a chromate coating layer of 1~30mg/m 2 on top of the Ni-Sn alloy plating layer. Although the Ni-Sn alloy plating film itself has excellent corrosion resistance and weldability, pinholes are present in the film when the plating thickness is 0.01 to 0.20μ. Ni− on the steel plate surface
If only Sn alloy plating is applied, the Ni-Sn alloy plating film acts as a nobler metal than iron in a corrosive environment, and the potential difference is large, promoting iron elution from pinholes and dissolving iron. corrosion resistance is significant and corrosion resistance is insufficient. When a Ni plating layer exists between the steel sheet surface and the Ni-Sn alloy plating layer, Ni has a nobleness between that of iron and the Ni-Sn alloy plating layer in a corrosive environment. The potential difference between the plating layer and the Ni-Sn alloy plating film layer becomes smaller, and double plating reduces the number of pinholes that expose the bare metal, thereby significantly reducing iron dissolution. It was found that corrosion resistance was improved. The surface-treated steel sheet of the present invention is also coated and used in the same way as other can materials to prevent dissolution of the base iron and the plating layer itself, but the Ni-Sn alloy plating film itself has good paint adhesion and In particular, paint adhesion (secondary paint adhesion) is poor when exposed to high-temperature aqueous solutions for long periods of time, and corrosion resistance after painting is insufficient. In the present invention, after applying Ni plating or Ni-Sn alloy plating to the steel plate surface, chromate treatment is performed for the purpose of further improving corrosion resistance, especially paint adhesion, and post-painting corrosion resistance. Since it is an electrically resistive material, if the amount of chromate film is excessive, it will cause "splatter" during seam welding, resulting in poor weldability. Therefore, the amount of Ni plating that provides excellent corrosion resistance, weldability, and paintability (paint adhesion, corrosion resistance after painting),
As a result of various studies on the amount of Ni-Sn alloy plating and the amount of chromate coating, we found that a Ni plating layer of 0.01 to 0.15μ was formed on the surface of the steel sheet, and the upper layer had a weight ratio of Sn/(Sn+Ni) of 0.5.
It has an alloy composition of ~0.8 and a thickness of ~0.01
It has been found that it is sufficient to form a Ni-Sn alloy plating layer with a thickness of 0.20μ and a chromate coating layer with a thickness of 1 to 30 mg/m 2 on top of the Ni-Sn alloy plating layer. In the present invention, the purpose of Ni-Sn alloy plating is to improve weldability and impart corrosion resistance, and these properties can be significantly improved when the alloy composition has a weight ratio of Sn/(Sn+Ni) in the range of 0.5 to 0.8. found. As a prior art, it is disclosed in Japanese Patent Publication No. 36-15252 "Ultra-thin nickel-plated steel plate" that this steel plate is intended for solder cans, and the problems are corrosion resistance, solderability, lubricity, and workability. -The alloy composition of Sn alloy plating is not specified.
While it is said that the layer is mainly composed of Ni,
The steel plate of the present invention targets seam welded cans that have been developed in recent years due to improvements in welding technology, and has a major feature of specifying the alloy composition range of the plated layer, and is disclosed in the above publication. The invention described above and the present invention are completely different both conceptually and technically. Ni-Sn alloy plating can also be carried out using a chloride-fluoride bath, a sulfate-fluoride bath, a silicate bath, a pyrophosphoric acid bath, or a chloride bath, depending on the bath temperature. 30~70℃, current density 0.1
It can be performed at ~50 A/ dm2 . Unlike the mixed structure of intermetallic compounds such as Ni 3 Sn 2 and Ni 3 Sn 4 as shown in the equilibrium phase diagram, the Ni-Sn alloy plated layer has a weight ratio of Sn/(Sn +
When Ni) is in the range of 0.5 to 0.8, almost all the material is a single layer, and in this range it exhibits excellent weldability and corrosion resistance. The reason why the value of Sn/(Sn+Ni) is limited to 0.5 to 0.8 is as follows. If Sn/(Sn+Ni) is less than 0.5, cracks will occur in the plating layer and the corrosion resistance will drop significantly, and oxides will be more likely to form on the surface of the plating layer during welding, resulting in "scattering".
This is because it becomes more likely to occur. Sn/(Sn+Ni)
If the range is larger than 0.8, the plated layer will be rough and the electrodeposited structure will have many defects such as pinholes, resulting in a marked decrease in corrosion resistance.At the same time, the melting point of the Ni-Sn alloy will be lower than 1000℃, and if it is below 1000℃, it will become difficult to weld. The plating layer melts, causing heat loss due to latent heat of melting, and requires a large amount of current, which is not practical.
In the present invention, the value of Sn/(Sn+Ni) is 0.5 to
The reason why it is limited to 0.8 is that, as is clear from the above, extremely excellent performance in weldability and corrosion resistance can be obtained; other compositions have poor weldability,...
This is because there is no significant effect on corrosion resistance. The reason why the Ni-Sn alloy plating thickness is limited to 0.01 to 0.20μ is that if it is less than 0.01μ, it will not have a significant effect on weldability and corrosion resistance, and if it exceeds 0.2μ, the effect on weldability and corrosion resistance will be saturated. This is because it causes economic disadvantages. If this Ni-Sn alloy plating is applied to the steel plate surface,
Improves weldability and corrosion resistance. However, it is extremely difficult to completely eliminate pinholes in the plating layer, and iron elution from these pinholes is unavoidable.
In a corrosive environment, Ni-Sn alloy plating acts as a metal more noble than iron, and because the potential difference is large, iron dissolution from pinholes is promoted, resulting in insufficient corrosion resistance. In the present invention, the purpose of applying Ni plating between the steel plate and the Ni-Sn alloy plating is to improve corrosion resistance. In a corrosive environment, the nobleness between iron and Ni-Sn alloy plating is intermediate, and the iron and Ni plating layer and Ni
-The potential difference between each layer of the Sn alloy plating layer is reduced, and by using two layers of Ni plating and Ni-Sn alloy plating, the number of holes that lead to the exposure of the base metal is reduced, which reduces iron dissolution. This results in a significant reduction in corrosion resistance and improved corrosion resistance. Nickel plating may be carried out by a conventional electroplating method using a Watt bath, a sulfamic acid bath, etc., or by a chemical plating method. The reason why the thickness of the Ni plating layer is limited to 0.01 to 0.15μ in the present invention is 0.01μ
This is because if it is less than 0.15μ, the effect of improving corrosion resistance will not be noticeable, and if it exceeds 0.15μ, the effect of improving corrosion resistance will be saturated, resulting in economic disadvantages. In the present invention, after Ni plating or Ni-Sn alloy plating is applied to the surface of a steel sheet, chromate treatment is performed for the purpose of further improving corrosion resistance, paint adhesion, and post-painting corrosion resistance. When painted on Ni-Sn alloy plating, Ni-Sn alloy plating has poor paint adhesion.
In particular, paint adhesion is poor when exposed to high-temperature aqueous solutions for long periods of time, and corrosion resistance after painting is insufficient.
By applying a chromate film, corrosion resistance can be further improved, paint adhesion can be improved, and corrosion resistance after painting can be improved. The chromate treatment bath may be an aqueous solution of chromic anhydride, chromate, dichromate, or a mixture thereof, with a concentration of 5 to 70 g/pH and an appropriately adjusted pH. Treatment methods include immersion, electrolysis, etc. law,
Any spray method is fine. The reason why the amount of chromate film is limited to 1 to 30 mg/ m2 is that if it is less than 1 mg/ m2 , the underlying surface cannot be sufficiently covered, and the effect of improving corrosion resistance, paint adhesion, and post-painting corrosion resistance is not sufficient. Yes, also 30mg/
If it exceeds m2 , it is effective in improving corrosion resistance, paint adhesion, and post-painting corrosion resistance, but the high electrical resistance of the coating itself inhibits the bonding of iron to iron at the welding part, causing "splashing". Because it does. Next, the present invention will be specifically explained with reference to Examples and Comparative Examples. [Example 1] After electrolytically degreasing and pickling a tin plate, it was heated to 0.03μ using a Watt bath at a bath temperature of 55°C and a current density of 5A/ dm2.
Ni plating was performed using a chloride-fluoride bath at pH 2.5, bath temperature 70℃, and current density 5A/d.
Ni-Sn alloy plating with a thickness of 0.04 μm was carried out, followed by a current density using a 60 g/chromic acid bath.
Chromate treatment was carried out at 10 A/dm 2 . [Example 2] After electrolytically degreasing and pickling a tin plate, it was heated in a Watts bath at a bath temperature of 60°C and a current density of 10A/ dm2 .
Ni plating with a thickness of 0.06μ was performed, and a pyrophosphoric acid bath was used at a pH of 8.0, a bath temperature of 65°C, and a current density of 3A/d.
Ni-Sn alloy plating with a thickness of 0.02 μm was performed. Thereafter, chromate treatment was carried out using a 50 g sodium dichromate bath at a current density of 15 A/dm 2 . [Example 3] After electrolytically degreasing and pickling a tin plate, it was treated in a sulfamic acid bath at a bath temperature of 50°C and a current density of 10 A/d.
Ni plating with a thickness of 0.02 μm was carried out, and further chloride-
Ni-Sn alloy plating with a thickness of 0.18μ was carried out using a fluoride bath at a pH of 2.5, a bath temperature of 60°C, and a current density of 10A/dm 2 . Thereafter, chromate treatment was carried out using a 75 g/dichromate bath at a current density of 15 A/dm 2 . [Example 4] After electrolytically degreasing and pickling a tin plate, it was heated to 0.13μ using a Watt bath at a bath temperature of 55°C and a current density of 5A/ dm2.
Ni plating was performed using a chloride-fluoride bath at pH 2.5, bath temperature 75℃, and current density 10A/
0.10μ Ni-Sn alloy plating was carried out at dm2 . Then, the current density was measured using a 50g/chromic acid bath.
Chromate treatment was carried out at 15 A/dm 2 . [Comparative Example 1] After electrolytically degreasing and pickling a tinplate blank, a 0.06μ Ni-Sn alloy plate was prepared using a chloride-fluoride bath at pH 2.5, bath temperature 60℃, and current density 10A/ dm2. I conducted a search. Thereafter, chromate treatment was performed using a 45 g/chromic acid bath. [Comparative Example 2] After electrolytically degreasing and pickling a tin plate, it was heated to 0.03μ using a Watt bath at a bath temperature of 55°C and a current density of 5A/ dm2.
Ni plating was performed using a chloride-fluoride bath at pH 2.5, bath temperature 70℃, and current density 5A/d.
Ni-Sn alloy plating with a thickness of 0.04 μm was carried out. [Comparative Example 3] After electrolytically degreasing and pickling a tinplate original plate, a sulfamic acid bath was used at a bath temperature of 50°C and a current density of 10A/d.
Ni plating with a thickness of 0.03 μm was performed using a pyrophosphoric acid bath at a pH of 8.0, a bath temperature of 60°C, and a current density of 3 A/m2.
0.04μ Ni-Sn alloy plating was carried out at dm2 . Then, the current density was
Chromate treatment was carried out at 15 A/dm 2 . 164.7×80mm from steel plate treated as above
Samples were cut out and seam weldability tests were conducted. In addition, a secondary paint adhesion test was conducted using a 100 x 100 mm specimen. (1) Seam weldability test Using a Sudronik can making machine, welding speed
8m/mm, contact force 30Kgf, overlap 0.4
Seam welding was performed using mm, and the appropriate current range was determined. (2) Paint secondary adhesion test and corrosion resistance after painting After applying epoxy phenol paint at 50mg/ m2 ,
After treatment in a % NaC + 4% acetic acid solution at 125°C for 60 minutes, the secondary adhesion of the paint was evaluated using a cross-cut tape peel test, and the corrosion resistance after painting was evaluated based on the corrosion state of the painted surface. As is clear from Table 1 showing the various test results for the above samples, the surface-treated steel sheets according to the present invention (Examples 1 to 4) have excellent weldability, secondary paint adhesion,
Comparative materials in terms of corrosion resistance after painting (Comparative Examples 1 to 3)
shows superior performance compared to

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 鋼板表面に0.01〜0.15μのNiめつき層と、そ
の上層に重量比Sn/(Sn+Ni)が0.5〜0.8なる
合金組成を有し、かつ厚さが0.01〜0.2μのNi−Sn
合金めつき層と、さらに上層に1〜30mg/m2のク
ロメート被膜層とを有することを特徴とする耐食
性・溶接性・塗装性に優れたシーム溶接缶用表面
処理鋼板。
1. A Ni plating layer of 0.01 to 0.15μ on the surface of the steel plate, and an Ni-Sn layer on the top layer having an alloy composition with a weight ratio of Sn/(Sn+Ni) of 0.5 to 0.8 and a thickness of 0.01 to 0.2μ.
A surface-treated steel sheet for seam welded cans with excellent corrosion resistance, weldability, and paintability, characterized by having an alloy plating layer and an upper layer of a chromate coating layer of 1 to 30 mg/m 2 .
JP21630682A 1982-12-10 1982-12-10 Surface treated steel sheet for seam welded can with superior corrosion resistance, weldability and coatability Granted JPS59107096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21630682A JPS59107096A (en) 1982-12-10 1982-12-10 Surface treated steel sheet for seam welded can with superior corrosion resistance, weldability and coatability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21630682A JPS59107096A (en) 1982-12-10 1982-12-10 Surface treated steel sheet for seam welded can with superior corrosion resistance, weldability and coatability

Publications (2)

Publication Number Publication Date
JPS59107096A JPS59107096A (en) 1984-06-21
JPH032960B2 true JPH032960B2 (en) 1991-01-17

Family

ID=16686453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21630682A Granted JPS59107096A (en) 1982-12-10 1982-12-10 Surface treated steel sheet for seam welded can with superior corrosion resistance, weldability and coatability

Country Status (1)

Country Link
JP (1) JPS59107096A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024395A (en) * 1983-07-20 1985-02-07 Nippon Kokan Kk <Nkk> Steel sheet plated with multi-layer nickel
CA2174637C (en) * 1993-10-22 2004-06-22 Hitoshi Ohmura A surface treated steel sheet for battery containers, a battery container, and a battery produced thereof
DK35198A (en) * 1998-03-12 1999-10-07 Voss Fabrik As A stove top
DK178476B1 (en) * 2013-05-31 2016-04-11 Elplatek As Decorative chrome surface that eliminates the use of hexavalent chromium electrolytes in production, and minimizes nickel release from the surface

Also Published As

Publication number Publication date
JPS59107096A (en) 1984-06-21

Similar Documents

Publication Publication Date Title
US4501802A (en) Hydrated chromium oxide-coated steel strip useful for welded cans and other containers
JPS5828356B2 (en) Chrome-plated steel sheet with excellent weldability
JPH0216397B2 (en)
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPH032960B2 (en)
JPS6214240B2 (en)
JPH0140118B2 (en)
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPS5941495A (en) Surface treated steel plate for welded can
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JPS6123786A (en) Manufacture of steel sheet for vessel having superior corrosion resistance
JPH0431039B2 (en)
JPS60262975A (en) Surface treated steel sheet having superior weldability and its manufacture
JPS5891192A (en) Surface treated steel plate for seam welding
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JPH0340115B2 (en)
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion
JPH06116790A (en) Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material
JPS6318676B2 (en)
JPS6067676A (en) Steel plate for welded can
JPH0726207B2 (en) High-performance Sn-based multilayer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS59205494A (en) Preparation of steel plate for welded can