JPH03294740A - Heating method of pure or ultra-pure water - Google Patents

Heating method of pure or ultra-pure water

Info

Publication number
JPH03294740A
JPH03294740A JP2093041A JP9304190A JPH03294740A JP H03294740 A JPH03294740 A JP H03294740A JP 2093041 A JP2093041 A JP 2093041A JP 9304190 A JP9304190 A JP 9304190A JP H03294740 A JPH03294740 A JP H03294740A
Authority
JP
Japan
Prior art keywords
light
water
pure
pure water
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2093041A
Other languages
Japanese (ja)
Inventor
Yoko Iwase
岩瀬 葉子
Takayuki Saito
孝行 斉藤
Takeshi Nakajima
健 中島
Hiroyuki Shima
嶋 弘之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd, Ebara Infilco Co Ltd filed Critical Ebara Corp
Priority to JP2093041A priority Critical patent/JPH03294740A/en
Publication of JPH03294740A publication Critical patent/JPH03294740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Water Treatments (AREA)

Abstract

PURPOSE:To uniformly and efficiently heat pure of ultra-pure water with a minimum increase in the impurity content by a method wherein a light ranging from near infrared ray to ultraviolet ray is radiated to pure or ultra-pure water in a container which reflects the light. CONSTITUTION:When pure or ultra-pure water is heated, a light source capable of radiating a light having all or part of wave lengths ranging from near infrared ray to ultraviolet ray, and a container which has an inner wall surface capable of reflecting the light having said wave lengths are used. The light source may have such characteristics that it is capable of radiating the light having all or part of wave lengths ranging from near infrared ray and ultraviolet ray and single or plural light sources are able to generate the required heating energy. The container to be used may have such a characteristic that it is capable of efficiently reflecting the light having said wave lengths. To increase the reflectivity, the inner wall surface is finished by mirror finishing, electrolytic polishing, comporite electrolytic polishing, or other method, and preferably made of SUS 316 or SUS 316L.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、純水又は超純水の加熱方法に関し、例えば、
電子工業、医療医薬品工業、精密工業あるいは食品工業
で用いられる純水又は超純水の加熱方法に関するもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for heating pure water or ultrapure water, for example,
The present invention relates to a method for heating pure water or ultrapure water used in the electronics industry, medical and pharmaceutical industry, precision industry, or food industry.

〔従来の技術〕[Conventional technology]

近年、電子工業等では、高集積化、精密化に伴い、洗浄
の高度化が計られている。その一つとして、高温の純水
又は超純水を用いた洗浄がある。
In recent years, in the electronics industry, etc., cleaning has become more sophisticated due to the increase in integration and precision. One such method is cleaning using high-temperature pure water or ultrapure water.

従来の純水又は超純水の加熱方法には、電気ヒーター、
熱交換器、周波数2450MHz及び915 Mflz
等のマイクロ波照射、波長約3μm以上の赤外線照射な
どがある。
Conventional methods of heating pure or ultrapure water include electric heaters,
Heat exchanger, frequency 2450MHz and 915 Mflz
Microwave irradiation, such as microwave irradiation, infrared irradiation with a wavelength of about 3 μm or more, etc.

しかし、電気ヒーターでは、水は接触界面のみで加熱さ
れるため、水全体の加熱は、水自体の熱伝導と対流で行
われ、加熱効果が不均一になりやすい。また接触面での
過熱による沸騰などは、加熱効率の低下等を招くため、
電気ヒーターの単位面積あたりの供給熱量はあまり大き
くできず、加熱速度を高めるためには、接触面積を大き
くする、または水の加圧又は攪拌等を行う必要がある。
However, with electric heaters, water is heated only at the contact interface, so the entire water is heated by heat conduction and convection of the water itself, and the heating effect tends to be uneven. In addition, boiling due to overheating on the contact surface will lead to a decrease in heating efficiency, etc.
The amount of heat supplied per unit area of the electric heater cannot be increased very much, and in order to increase the heating rate, it is necessary to increase the contact area or pressurize or stir the water.

熱交換器では、高温側媒体として熱水又はスチームが必
要であり、熱効率があまり高くない。
Heat exchangers require hot water or steam as a high-temperature medium, and their thermal efficiency is not very high.

さらに、大きな伝熱面積が必要となるため、伝熱媒体と
して用いられるテフロン等のプラスチック又はステンレ
ス等の金属からの、有機物質及び金属イオン類の溶出量
が大きくなり、純水又は超純水の汚染を招く難点がある
Furthermore, since a large heat transfer area is required, the amount of organic substances and metal ions eluted from plastics such as Teflon or metals such as stainless steel used as heat transfer media increases, and It has the disadvantage of causing pollution.

マイクロ波のエネルギーは、水分子の回転エネルギーと
ほぼ一致するため、水へのマイクロ波の吸収効率は非常
に高い。しかし、電力をマイクロ波に変換する時点で2
0%ないし50%の損失があること、並びにマイクロ波
発生装置がかなり大きく、さらに伝達に用いる導波管の
大きさが波長によって決まり、小型化できない等の難点
がある。また、マイクロ波は人体に対して有害であり、
マイクロ波の検出は肉眼では不可能であるため、漏洩に
気づきにくい。
The energy of microwaves almost matches the rotational energy of water molecules, so the absorption efficiency of microwaves into water is extremely high. However, at the time of converting electricity to microwaves, 2
There are disadvantages such as there is a loss of 0% to 50%, the microwave generator is quite large, and the size of the waveguide used for transmission is determined by the wavelength, making it impossible to miniaturize. Additionally, microwaves are harmful to the human body.
Microwaves cannot be detected with the naked eye, so leaks are difficult to detect.

3μm前後または6μm前後の赤外線のエネルギーは、
水分子の振動エネルギーとほぼ一致するため、水への吸
収効率が非常に高い。従って塗料等の水分の蒸発乾燥に
は非常に効果的である。また、人体は水を主成分とする
ため暖房器具等に使用した場合には比較的少ないエネル
ギーで温かみを感じ有効である。しかし逆に、吸収効率
が高いために、水の表面又は光源との接触界面から数m
mで吸収されてしまい、それ以上の浸透は困難である。
The energy of infrared rays around 3 μm or around 6 μm is
Because it almost matches the vibrational energy of water molecules, its absorption efficiency into water is extremely high. Therefore, it is very effective in evaporating and drying the water content of paints, etc. In addition, since the human body has water as its main component, when used in heating equipment, etc., it is effective to feel warmth using relatively little energy. However, on the contrary, due to its high absorption efficiency, it
It is absorbed by m, and further penetration is difficult.

すなわち、水自体を加熱する場合には電気ヒーターと同
じ難点がある。
That is, when heating water itself, there are the same difficulties as electric heaters.

さらに、通常赤外線光源は熱放射であり、照射強度は光
源温度による。従って、水に直接接触する場合は温度が
限られるため、放射エネルギーはごく小さくなり加熱効
果は小さい。また、水と光源との間に赤外線吸収の無い
02.142等の気体等を介在させて光源温度を高くし
、照射強度を大きくする方法もあるが、純水又は超純水
の加熱に際して気体を介在させることは困難である。
Furthermore, infrared light sources are usually thermal radiation, and the irradiation intensity depends on the source temperature. Therefore, in the case of direct contact with water, the temperature is limited, so the radiant energy is very small and the heating effect is small. Another method is to interpose a gas such as 02.142 that does not absorb infrared rays between the water and the light source to increase the light source temperature and increase the irradiation intensity. It is difficult to intervene.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように、従来の加熱方法では、それぞれに問題が
あり、純水又は超純水を均一にかつ効率よく、不純物を
増加させずに、加熱することは困難であった。
As mentioned above, each of the conventional heating methods has its own problems, and it has been difficult to heat pure water or ultrapure water uniformly and efficiently without increasing impurities.

そこで、本発明は、従来技術の問題点を解消し、均一に
かつ効率よく、しかも不純物の増加も極めて少ない純水
又は超純水の加熱方法を提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for heating pure water or ultrapure water uniformly and efficiently, with extremely little increase in impurities, by solving the problems of the prior art.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、純水又は超純
水を、近赤外領域から紫外領域の光を、該光を反射する
容器内で照射することによって、加熱することを特徴と
する純水又は超純水の加熱方法としたものである。
In order to achieve the above object, the present invention is characterized in that pure water or ultrapure water is heated by irradiating it with light in the near-infrared to ultraviolet region in a container that reflects the light. This is a method of heating pure water or ultrapure water.

本発明は、純水又は超純水の汚染を起こさず、効率よく
かつ均一に加熱することのできる加熱方法を提供するも
のであり、純水または超純水に、近赤外領域から紫外領
域の光をこれらの光を反射する容器内で照射して加熱す
ることで容易に目的を達成し得る。
The present invention provides a heating method that can efficiently and uniformly heat pure water or ultrapure water without causing contamination. This purpose can be easily achieved by irradiating and heating the light inside a container that reflects these lights.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明においては、原水を加熱するに際し、近赤外領域
から紫外領域の全部または一部を放射する光源と、その
周囲にあって前記波長の光を反射する内部表面を持つ容
器とを備えたものであればよい。
In the present invention, when heating raw water, there is provided a light source that emits all or a part of the near-infrared to ultraviolet region, and a container surrounding the light source that has an internal surface that reflects light of the wavelengths. It is fine as long as it is something.

使用する光源の特性は、近赤外領域から紫外領域の全部
または一部の波長の光を、加熱に必要なエネルギーを1
または複数で発生する光源であればよい。光源として、
ランプ1本あたりの出力が大きく、かつ光のエネルギー
の大きい紫外域の光を主に照射するランプが望ましい。
The characteristics of the light source used are that it emits light of all or part of the wavelength from the near-infrared region to the ultraviolet region, and the energy required for heating is 1.
Alternatively, it is sufficient if the light source generates a plurality of light sources. As a light source,
It is desirable to use a lamp that has a large output per lamp and emits light mainly in the ultraviolet region, which has a large amount of light energy.

例えば、波長約400nm以下の紫外域の水銀の輝線ス
ペクトルを主体として連続スペクトルを照射する中圧、
高圧又は超高圧の水銀ランプ、波長約4000m〜約1
1000nの広範囲で連続スペクトルを放射するキセノ
ンランプ、または水銀とキセノンとを共存させて紫外域
を強化した水銀キセノンランプ等を用いることができる
For example, medium pressure that irradiates a continuous spectrum mainly consisting of the emission line spectrum of mercury in the ultraviolet region with a wavelength of about 400 nm or less;
High-pressure or ultra-high-pressure mercury lamp, wavelength approximately 4000 m to approximately 1
A xenon lamp that emits a continuous spectrum over a wide range of 1000 nm, or a mercury-xenon lamp that enhances the ultraviolet region by coexisting mercury and xenon, or the like can be used.

なお低圧水銀ランプは、1本当りの出力が比較的小さく
多数必要であること、ランプ温度が上昇すると放射効率
が低下するとされていることなどから、加熱用途への利
用は困難である。
Note that it is difficult to use low-pressure mercury lamps for heating purposes because the output per lamp is relatively small and a large number of lamps are required, and the radiation efficiency is said to decrease as the lamp temperature increases.

使用する容器の特性は、前記波長域の光を効率よく反射
するものであればよい。容器としては、反射率を大きく
するために内部表面に鏡面研磨、電解研磨、電解複合研
磨等を施した、 5KIS316またはS[l5316
L製等が望ましい。
The characteristics of the container used may be any as long as it can efficiently reflect light in the above wavelength range. The container is made of 5KIS316 or S[l5316, whose internal surface has been subjected to mirror polishing, electrolytic polishing, electrolytic composite polishing, etc. to increase the reflectance.
L-made one is preferable.

〔作 用〕[For production]

純水又は超純水に、近赤外領域から紫外領域の光を、こ
れらの光を反射する容器内で照射して加熱する方法には
、次のような作用がある。
The method of heating pure water or ultrapure water by irradiating it with light in the near-infrared to ultraviolet range in a container that reflects this light has the following effects.

(1)近赤外領域から紫外領域の光は、波長約3μmま
たは約6μmの赤外線またはマイクロ波に比較して、水
への吸収効率が低い。従って、水に一過性で照射した場
合、水に吸収されるエネルギーは大きくない。しかし、
容器内表面によって光が反射して、繰り返し吸収され、
加熱される。すなわち、水の熱伝導または対流に比較し
て、均一な加熱が可能である。
(1) Light from the near-infrared region to the ultraviolet region has a lower absorption efficiency into water than infrared rays or microwaves having a wavelength of about 3 μm or about 6 μm. Therefore, when water is irradiated temporarily, the energy absorbed by the water is not large. but,
Light is reflected by the inner surface of the container and absorbed repeatedly,
heated. That is, uniform heating is possible compared to water heat conduction or convection.

さらに、−過あたりの吸収効率が高くないため、系内の
一部、例えば接触界面などで過熱されることが無い。す
なわち、光源単位面積あたりの照射強度、すなわちエネ
ルギー密度を大きくすることができ、水質低下の原因と
なる水と加熱媒体との接触面積を小さくすることができ
る。
Furthermore, since the absorption efficiency per unit temperature is not high, a part of the system, such as a contact interface, is not overheated. That is, the irradiation intensity per unit area of the light source, that is, the energy density, can be increased, and the contact area between water and the heating medium, which causes deterioration in water quality, can be reduced.

(2)純水又は超純水中にわずかに残存する有機物質を
、分解除去できる可能性がある。
(2) It is possible to decompose and remove organic substances slightly remaining in pure water or ultrapure water.

ここで、食品等の加熱においては、主成分である有機物
質の変質を起こさずに加熱することが必要であり、有機
物質の変質分解を起こす可能性の高い紫外領域の光は利
用できなかった。
Here, when heating foods, etc., it is necessary to heat them without causing deterioration of the organic substances that are the main components, and it was not possible to use light in the ultraviolet region, which is likely to cause decomposition and decomposition of organic substances. .

しかし、純水又は超純水の加熱においては、水の加温の
みが問題であり、共存する有機物質の分解はむしろ望ま
しい。
However, when heating pure water or ultrapure water, only the heating of the water is a problem, and decomposition of coexisting organic substances is rather desirable.

(3)254nmの紫外線には殺菌作用があり、加温の
みに比較して高い殺菌効果が得られる。
(3) Ultraviolet light of 254 nm has a bactericidal effect, and a higher bactericidal effect can be obtained compared to heating alone.

〔実施例〕〔Example〕

以下に、本発明を実施例及び比較例を挙げて説明するが
、本発明は、次の実施例に限定されるものではない。
The present invention will be described below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

実施例1 水道水を原水として、逆浸透装置、イオン交換塔及びメ
ンブレンフィルタ等で構成された純水製造装置で処理し
て得られた純水を、第1図に示した1kWの中圧紫外線
ランプによる紫外線加熱装置に、流量的20β/hで通
水して処理した。処理前後の水温を第1表に、被処理水
および処理水の水質の例を第2表に示した。なお温水の
分析は、ガラス製ザンプルびんに採水して冷却した水に
ついて行った。
Example 1 Tap water was used as raw water and purified water obtained by processing it in a water purification device consisting of a reverse osmosis device, an ion exchange tower, a membrane filter, etc. was exposed to 1 kW of medium-pressure ultraviolet light as shown in Figure 1. The treatment was carried out by passing water through an ultraviolet heating device using a lamp at a flow rate of 20β/h. Table 1 shows the water temperature before and after the treatment, and Table 2 shows examples of the water quality of the treated water and the treated water. The hot water analysis was performed on water that was collected in a glass sample bottle and cooled.

比較例1 前記実施例と同様に処理して得られた純水を、1kWの
電気ヒーターを組み込んだ高温水槽に浸漬したテフロン
製チューブよりなる熱交換器を用いて加熱した。加熱開
始後の時間と処理水水温は、第1表に示したようになっ
た。また、実施例1と同様に測定した被処理水および処
理水の水質は第2表に示したようになった。
Comparative Example 1 Pure water obtained by the same treatment as in the above example was heated using a heat exchanger made of a Teflon tube immersed in a high-temperature water tank equipped with a 1 kW electric heater. The time after the start of heating and the temperature of the treated water were as shown in Table 1. Further, the water quality of the treated water and the treated water measured in the same manner as in Example 1 was as shown in Table 2.

比較例2 前記実施例と同様に処理して得られた純水を、1 kl
liの電気ヒーターを5IIS[l316管を周囲に巻
き付けた加熱装置を用いて加温した。加温開始後の時間
と処理水水温は第1表に示したようになった。また実施
例1と同様に測定した被処理水および処理水の水質は第
2表に示したようになった。
Comparative Example 2 1 kl of pure water obtained by the same treatment as in the above example
The heating device was heated using an electric heater with a 5IIS [1316 tube wrapped around it. The time after the start of heating and the temperature of the treated water were as shown in Table 1. Furthermore, the water quality of the treated water and the treated water measured in the same manner as in Example 1 was as shown in Table 2.

第1表 加温開始後の水温の経時変化 第2表 処理前後の水質 0 〔発明の効果〕 本発明は、近赤外領域から紫外領域の光を、前記領域の
光を反射する容器内で照射することによって、純水又は
超純水を加熱するものであり、 ■)従来法である熱交換器などに比較して、水と装置と
の接触面積が非常に小さく、不純物増加がきわめて小さ
い。高温側媒体が不要のため、所要エネルギーが少ない
Table 1 Changes in water temperature over time after the start of heating Table 2 Water quality before and after treatment 0 [Effects of the Invention] The present invention allows light from the near-infrared region to the ultraviolet region to be transmitted in a container that reflects light in the aforementioned region. It heats pure water or ultrapure water by irradiating it. ■) Compared to conventional methods such as heat exchangers, the contact area between the water and the device is extremely small, and the increase in impurities is extremely small. . Since no high-temperature medium is required, less energy is required.

2)電気ヒーター、赤外線照射等に比較して均一な加熱
ができる。
2) Uniform heating is possible compared to electric heaters, infrared irradiation, etc.

3)熱交換器、マイクロ波照射等に比較して装置が小型
化できる。
3) The device can be made smaller compared to heat exchangers, microwave irradiation, etc.

4)紫外線の殺菌作用により、加熱のみに比較して殺菌
効果が高い。
4) Due to the sterilizing effect of ultraviolet rays, the sterilizing effect is higher than that of heating alone.

等の効果がある。There are other effects.

このため本発明によれば、純水又は超純水を水質低下を
起こさず、かつ効率的に加温できる。
Therefore, according to the present invention, pure water or ultrapure water can be heated efficiently without causing a drop in water quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、実施例に用いた加熱装置の断面概略図である
。 1・・・中圧紫外線ランプ、2・・・石英保護管、3・
・・容器
FIG. 1 is a schematic cross-sectional view of a heating device used in an example. 1... Medium pressure ultraviolet lamp, 2... Quartz protection tube, 3...
··container

Claims (1)

【特許請求の範囲】 1、純水又は超純水を、近赤外領域から紫外領域の光を
、該光を反射する容器内で照射することによって、加熱
することを特徴とする純水又は超純水の加熱方法。 2、前記近赤外領域から紫外領域の光は、中圧、高圧又
は超高圧の水銀ランプ、キセノンランプ、水銀キセノン
ランプから選ばれた光源からの光である請求項1記載の
純水又は超純水の加熱方法。
[Claims] 1. Pure water or ultrapure water characterized by being heated by irradiating the pure water or ultrapure water with light in the near-infrared to ultraviolet region in a container that reflects the light. How to heat ultrapure water. 2. The pure water or ultraviolet light according to claim 1, wherein the light from the near-infrared region to the ultraviolet region is light from a light source selected from a medium-pressure, high-pressure, or ultra-high pressure mercury lamp, xenon lamp, or mercury-xenon lamp. How to heat pure water.
JP2093041A 1990-04-10 1990-04-10 Heating method of pure or ultra-pure water Pending JPH03294740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093041A JPH03294740A (en) 1990-04-10 1990-04-10 Heating method of pure or ultra-pure water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093041A JPH03294740A (en) 1990-04-10 1990-04-10 Heating method of pure or ultra-pure water

Publications (1)

Publication Number Publication Date
JPH03294740A true JPH03294740A (en) 1991-12-25

Family

ID=14071420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093041A Pending JPH03294740A (en) 1990-04-10 1990-04-10 Heating method of pure or ultra-pure water

Country Status (1)

Country Link
JP (1) JPH03294740A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590240A (en) * 1995-05-30 1996-12-31 Process Technology Inc Ultra pure water heater with coaxial helical flow paths
CN103062903A (en) * 2013-01-15 2013-04-24 山东金仓新能源科技有限公司 Remotely-controlled intelligent light-wave heating water heater

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS40712Y1 (en) * 1961-11-01 1965-01-11
JPS5848380A (en) * 1981-09-18 1983-03-22 セイコーエプソン株式会社 Lamp annealing device
JPS6222462U (en) * 1985-07-23 1987-02-10
JPS62181422A (en) * 1985-10-26 1987-08-08 Nissho Giken Kk Light projecting apparatus
JPS62183962A (en) * 1986-02-07 1987-08-12 Hitachi Ltd Heating device
JPH0232535A (en) * 1988-07-21 1990-02-02 Kyushu Electron Metal Co Ltd Manufacture of silicon substrate for semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS40712Y1 (en) * 1961-11-01 1965-01-11
JPS5848380A (en) * 1981-09-18 1983-03-22 セイコーエプソン株式会社 Lamp annealing device
JPS6222462U (en) * 1985-07-23 1987-02-10
JPS62181422A (en) * 1985-10-26 1987-08-08 Nissho Giken Kk Light projecting apparatus
JPS62183962A (en) * 1986-02-07 1987-08-12 Hitachi Ltd Heating device
JPH0232535A (en) * 1988-07-21 1990-02-02 Kyushu Electron Metal Co Ltd Manufacture of silicon substrate for semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5590240A (en) * 1995-05-30 1996-12-31 Process Technology Inc Ultra pure water heater with coaxial helical flow paths
CN103062903A (en) * 2013-01-15 2013-04-24 山东金仓新能源科技有限公司 Remotely-controlled intelligent light-wave heating water heater

Similar Documents

Publication Publication Date Title
US4534282A (en) Process and apparatus for treating food products
CN104822395B (en) Ultraviolet sterilizer
US5932886A (en) Ultraviolet irradiation device
RU2531622C2 (en) Device for microwave radiation processing of fluid
US20150246148A1 (en) Compact system with high homogeneity of the radiation field
US20120168641A1 (en) Uv ptfe diffuser technology
TW200845204A (en) UV light irradiating apparatus with liquid filter
JPH08252575A (en) Reactor for emitting ultraviolet rays uv for processing liquid
EP0856704A4 (en) Microwave heating apparatus
KR20120017021A (en) Ultraviolet light treatment chamber
EP1365814A2 (en) Ultraviolet wastewater disinfection system and method
JPH02222764A (en) Method and apparatus for treating water with sunbeam and heat thereof
JPH03294740A (en) Heating method of pure or ultra-pure water
JP2002527237A (en) Fluid purification device by light pulse
US4100418A (en) Method of and means for filtering the infrared rays from a source of UV radiation
JP2009536091A (en) Apparatus for fluid treatment, in particular water sterilization, having an electrodeless gas discharge lamp
RU2323161C1 (en) Apparatus for ultraviolet inflow treatment of liquid
CN208974724U (en) A kind of silicon carbide ceramics chlorination equipment
JPS6297845A (en) Substance treater by ultraviolet ray
CN216384127U (en) Infrared vaporizer suitable for steaming oven
JPS63260132A (en) Surface modification apparatus
JP2013220363A (en) External illumination type ultraviolet irradiation apparatus
CN102430547A (en) Deep ultraviolet optical film processing device
KR20110034301A (en) A sanitizing system
WO2013191003A1 (en) Fluid processing device