JPH03293093A - Potable water sterilizing device - Google Patents

Potable water sterilizing device

Info

Publication number
JPH03293093A
JPH03293093A JP2097003A JP9700390A JPH03293093A JP H03293093 A JPH03293093 A JP H03293093A JP 2097003 A JP2097003 A JP 2097003A JP 9700390 A JP9700390 A JP 9700390A JP H03293093 A JPH03293093 A JP H03293093A
Authority
JP
Japan
Prior art keywords
chlorine
water
electrical conductivity
drinking water
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2097003A
Other languages
Japanese (ja)
Inventor
Taizo Shinohara
篠原 泰三
Kazuhiro Tsuruta
鶴田 和博
Junichi Nakakubo
中久保 順一
Kazue Nagata
和重 永田
Katsuya Kanzaki
克也 神崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2097003A priority Critical patent/JPH03293093A/en
Publication of JPH03293093A publication Critical patent/JPH03293093A/en
Pending legal-status Critical Current

Links

Landscapes

  • Beverage Vending Machines With Cups, And Gas Or Electricity Vending Machines (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To stably maintain the chlorine concn. of potable water at all times in an adequate range even if the quality of city water fluctuates by controlling the quantity of the electricity to be supplied to the chlorine generating electrodes in accordance with the detected value of the chloride ion concn. and detected value of the electrical conductivity of the potable water so as to maintain the residual chlorine concn. of the potable water after chlorine sterilization in a prescribed range. CONSTITUTION:A pair of the chlorine generating electrodes 6 and a sensor 14 for detecting the chloride ion concn. are installed in the water of a water reservoir 2 and further, an electrical conductivity measuring cell 7 for detecting the electrical conductivity of the city water is installed at the intermediate point of a water feed piping 1. The chlorine generating electrodes 6 are connected via an energization control section 9 to a DC power source 8. This sterilizing device is so constituted as to detect the chloride ion concn. and electrical conductivity of the potable water and to variably control the quantity of the electricity to be supplied to the chlorine generating electrodes 6 in accordance with the C(Cl<->)/EC derived from the detected values thereof, by which the chlorine concn. of the potable water is maintained at all times in the correct range without being affected by the fluctuation in the quality of the potable water.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えばカップ式飲料自動販売機の飲料水供給
系に組み込んで用いる飲料水殺菌装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a drinking water sterilization device used by being incorporated into a drinking water supply system of a cup-type beverage vending machine, for example.

〔従来の技術〕[Conventional technology]

頭記したカップ式飲料自動販売機では、水道から給水さ
れた水道水を機内の水リザーバに貯留し、ここから各種
飲料の製造用水、製氷機の製氷用水などとして機内各所
の末端に配水するようにしている。
In the above-mentioned cup-type beverage vending machine, the tap water supplied from the tap is stored in a water reservoir inside the aircraft, and from there it is distributed to various parts of the aircraft as water for manufacturing various drinks, water for making ice for the ice machine, etc. I have to.

一方、自動販売機では、食品衛生法上から機内の水リザ
ーバに貯留されている飲料水は滅菌されていることが義
務付けられている。
On the other hand, in vending machines, the Food Sanitation Act requires that the drinking water stored in the water reservoir inside the machine be sterilized.

ところで、上水道の給水場から需要末端に配水される水
道水には一般にo、tpp−程度の塩素が含まれている
が、上記の自動販売機では一般に水道からの給水を活性
炭フィルタを経由して水リザーバに導入するようにして
いることから、水道水中に含まれている塩素の多くは活
性炭フィルタを透過する過程で還元、除去されてしまう
、さらに、水道水が水リザーバに長い時間貯留されてい
ると水中の塩素が自己分解することもあり、水リザーバ
の貯留水は残留塩素濃度が低下してこのまま放置すると
殺菌能力が消失するようになる。
By the way, the tap water that is distributed from the water supply station to the demand end generally contains chlorine in the order of o, tpp-, but the above-mentioned vending machines generally pass the water supplied from the tap through an activated carbon filter. Since the water is introduced into the water reservoir, much of the chlorine contained in tap water is reduced and removed during the process of passing through the activated carbon filter.Furthermore, tap water is stored in the water reservoir for a long time. If the water is left untreated, the chlorine in the water may self-decompose, and the residual chlorine concentration of the water in the water reservoir will decrease, and if left untreated, the sterilizing ability will be lost.

このために、自動販売機では水リザーバに貯留されてい
る飲料水を機内で改めて殺菌することが行われており、
かつこの殺菌手段として薬品添加法、オゾン殺菌法の他
に、最近では水道水の電気分解による塩素殺菌法が一部
で実用化されている。
For this reason, in vending machines, the drinking water stored in the water reservoir is sterilized again on the machine.
In addition to chemical addition methods and ozone sterilization methods, chlorine sterilization methods using electrolysis of tap water have recently been put into practical use in some areas.

この塩素殺菌法は、水道水に含まれている塩素イオン(
塩素イオン自身には殺菌能力はない)を有効利用し、水
道水を電気分解することにより塩素イオンを陽極酸化し
て塩素を発生させ、この塩素で飲料水を殺菌しようとす
るものである。具体的には水リザーバの水中に直流電圧
を印加する一対の塩素発生電極を設置しておき、この電
極に通電して水を電気分解する。これにより、水道水に
含まれている塩素イオンが陽極酸化により電子を失って
塩素に変換され、飲料水が再び塩素を含んで殺菌力を有
するようになる。なお、この場合の塩素発生量は、塩素
発生電極に印加する電圧9通電電流9通電時間で与えら
れる通電電気量に比例する。
This chlorine sterilization method uses chlorine ions (
This method makes effective use of chlorine ions (which themselves have no sterilizing ability), electrolyzes tap water, anodizes the chlorine ions, generates chlorine, and uses this chlorine to sterilize drinking water. Specifically, a pair of chlorine generating electrodes that apply a DC voltage are installed in the water of a water reservoir, and electricity is applied to these electrodes to electrolyze the water. As a result, the chlorine ions contained in the tap water lose electrons through anodic oxidation and are converted to chlorine, making the drinking water again contain chlorine and have sterilizing power. Note that the amount of chlorine generated in this case is proportional to the amount of electricity applied to the chlorine generating electrode, which is given by the voltage 9, the current 9, and the energization time.

一方、自動販売機の水リザーバに貯留されている飲料水
は、塩素濃度が低いと十分な殺菌効果が得られず、また
塩素濃度が過剰になると塩素特有な臭いが強すぎて飲料
の風味を損なう。そこで、従来技術ではこの点を考慮し
、自動販売機据付は先現地での水道水水質(塩素イオン
濃度など)。
On the other hand, if the drinking water stored in the water reservoir of a vending machine has a low chlorine concentration, it will not have sufficient sterilization effect, and if the chlorine concentration is too high, the characteristic odor of chlorine will be too strong and affect the flavor of the drink. spoil. Therefore, conventional technology takes this point into consideration, and when installing a vending machine, the quality of tap water (chlorine ion concentration, etc.) is determined at the site.

自動販売機の飲料販売頻度を基に、適正な飲料水の塩素
濃度が得られるよう自動販売機の設置当初に塩素発生電
極の通電条件(印加電圧2通電電流。
Based on the frequency of beverage sales in the vending machine, the chlorine generating electrode energization conditions (applied voltage 2 energizing current) were set at the time of installation of the vending machine in order to obtain an appropriate chlorine concentration in drinking water.

通電時間など)を調節して設定し、この通電条件の下で
殺菌装置を運転L7て飲料水の殺菌を行うようにしてい
る。
The sterilizer is operated under these energization conditions to sterilize drinking water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、前記した従来技術のままでは実際の運用面で
次のような問題点が残る。すなわち、水道水の水質(塩
素、塩素イオン濃度)は常に一定ではなく、実際に成る
地方の水道水につき年間を通じて水質調査をした結果か
らも、日々9時刻によりかなり変動することが確認され
ている。
However, if the conventional technology described above remains as it is, the following problems remain in actual operation. In other words, the quality of tap water (chlorine and chloride ion concentration) is not always constant, and the results of water quality surveys of local tap water throughout the year have confirmed that it fluctuates considerably depending on the time of day. .

このために、前述のように自動販売機の設置時に塩素発
生電極の通電条件を適正に調節しても、水道水の水質変
動があると飲料水の塩素濃度を常に所定値を維持するこ
とができず、時には塩素濃度が低くなって十分な殺菌効
果が得られなかったり、逆に塩素濃度が過剰となって飲
料水が塩素臭くなるといった不具合が発生する。
For this reason, even if the energizing conditions of the chlorine generating electrode are adjusted appropriately when installing a vending machine as mentioned above, it is difficult to maintain the chlorine concentration of drinking water at a predetermined value if there is a change in the quality of tap water. Sometimes, the chlorine concentration becomes too low to provide sufficient disinfection, or conversely, the chlorine concentration becomes too high, causing problems such as the drinking water smelling like chlorine.

本発明は上記の点にかんがみなされたものであり、水道
水の水質変動があっても飲料水の塩素濃度を常に適正範
囲に安定維持できるようにした飲料水殺菌装置を提供す
ることを目的とする。
The present invention has been made in consideration of the above points, and an object of the present invention is to provide a drinking water sterilization device that can always stably maintain the chlorine concentration of drinking water within an appropriate range even when the quality of tap water changes. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、本発明の殺菌装置において
は、飲料水の電気伝導度検出手段と、飲料水の塩素イオ
ン濃度検出手段と、塩素発生電極に対する通電電気量の
制御手段を備え、塩素殺菌後の飲料水の残留塩素濃度を
所定範囲に維持するように、飲料水の塩素イオン濃度検
出値及び電気伝導度検出値を基に塩素発生電極の通電電
気量を制御するよう構成するものとする。
In order to solve the above problems, the sterilizing device of the present invention includes a means for detecting the electrical conductivity of drinking water, a means for detecting the chlorine ion concentration of drinking water, a means for controlling the amount of electricity supplied to the chlorine generating electrode, The amount of electricity supplied to the chlorine generating electrode shall be controlled based on the detected value of chlorine ion concentration and the detected value of electrical conductivity of the drinking water so as to maintain the residual chlorine concentration of the drinking water after sterilization within a predetermined range. do.

また、前記における塩素イオン濃度検出手段は、電極を
省略することが可能で小型なイオン感応性電界効果トラ
ンジスタ(ISFET)をセンサーとするのが望ましい
が、ガラス電極を用いても良い。
Furthermore, although it is desirable that the chlorine ion concentration detecting means described above uses a small ion-sensitive field effect transistor (ISFET) as a sensor since the electrode can be omitted, a glass electrode may also be used.

また、前記における電気伝導度検出手段は、独立部品と
して電気伝導度セルを給水路中に設置し、これに電気伝
導度計を接続して実施する他、塩素発生電極を測定電極
に兼用し、該電極に電気伝導計を接続して飲料の電気伝
導度を検出するよう構成することもできる。
In addition, the electrical conductivity detection means in the above is implemented by installing an electrical conductivity cell as an independent component in the water supply waterway and connecting an electrical conductivity meter to this, and also using a chlorine generating electrode as a measuring electrode. It is also possible to detect the electrical conductivity of the beverage by connecting an electrical conductivity meter to the electrode.

また、前記の電気伝導計を用いる代わりに、塩素発生電
極の通電電流、極間電圧の測定値から求めた電流/電圧
値を基に塩素発生電極の通電電気量を制御するように構
成することもできる。
Furthermore, instead of using the electrical conductivity meter, the amount of electricity supplied to the chlorine generating electrode may be controlled based on the current/voltage values obtained from the measured values of the current supplied to the chlorine generating electrode and the voltage between the electrodes. You can also do it.

さらに、飲料水の水温変動に対応させるために、電気伝
導度検出値を基準温度の電気伝導度に補正し、この補正
値を基に通電電気量を制御するのがよい。
Further, in order to cope with variations in the temperature of drinking water, it is preferable to correct the detected electrical conductivity value to the electrical conductivity at a reference temperature, and control the amount of electricity to be supplied based on this corrected value.

〔作用〕[Effect]

水道水を電気分解した時の塩素発生量は、水道水中の塩
素イオン濃度と電気伝導度によって変化することが予想
される。このため、塩素イオン濃度と電気伝導度を種々
の割合に調整した合成水を試料として、水リザーバに連
続通水しながら一定電流、連続通電の条件で電気分解を
行なったところ、電気伝導度が一定でない場合には、塩
素イオン濃度が増加しても塩素発生量は比例して増加せ
ず、逆に減少することもあった。しかし、電気伝導度が
一定の場合には、塩素イオン濃度が増加すれば塩素発生
量も比例して増加した。ただし、実際の水道水では電気
伝導度が一定で塩素イオン濃度のみ変化することはない
ので、塩素発生量は第5図に示すように塩素イオン濃度
を電気伝導度で割った値(以後、C(cL−> / E
 Cと称す)に比例する。
The amount of chlorine generated when tap water is electrolyzed is expected to vary depending on the chlorine ion concentration and electrical conductivity of the tap water. For this reason, when we electrolyzed samples of synthetic water whose chloride ion concentration and electrical conductivity were adjusted to various ratios under conditions of constant current and continuous current flow while continuously passing water through a water reservoir, we found that the electrical conductivity was If it was not constant, even if the chlorine ion concentration increased, the amount of chlorine generated did not increase proportionally, but on the contrary sometimes decreased. However, when the electrical conductivity was constant, as the chlorine ion concentration increased, the amount of chlorine generated also increased proportionally. However, in actual tap water, the electrical conductivity is constant and only the chlorine ion concentration does not change, so the amount of chlorine generated is the value obtained by dividing the chlorine ion concentration by the electrical conductivity (hereinafter referred to as C (cL->/E
C).

したがって、第5図の関係から、水道より給水を受けた
飲料水についてその塩素イオン濃度と電気伝導度を検出
し、検出値から求めたC(CL−)/ECの増減に応じ
て飲料水を電気分解する塩素発生電極の通電条件(通電
電流9通電時間など)を可変制御することにより、水道
水の水質が変動した場合でも、電気分解により生成した
塩素で殺菌された水の残留塩素濃度を常に適正範囲に維
持することができる。
Therefore, from the relationship shown in Figure 5, the chloride ion concentration and electrical conductivity of drinking water supplied from the tap are detected, and the drinking water is adjusted according to the increase or decrease in C(CL-)/EC determined from the detected values. By variable control of the energization conditions of the chlorine generating electrode for electrolysis (energizing current 9 energizing time, etc.), even if the quality of tap water changes, the residual chlorine concentration in water sterilized with chlorine generated by electrolysis can be reduced. It can always be maintained within an appropriate range.

また、このC(cL−> / E Cによって塩素発生
量が決まる理由は次の通りである。
The reason why the amount of chlorine generated is determined by C(cL->/EC) is as follows.

塩素イオンに由来する電気伝導度をE C(cLとする
と Ctct−1/ EC= a xECtet−、/ E
Ca:比例係数 と表わすことができる。水道水の電気分解では、陽極で
酸素と塩素の発生反応が競合しているため、電極間に流
れる電流は二つの反応の際に流れる電流の和と考えられ
る。ここで、塩素の発生反応によって流れる電流とE 
C<cl、 −sが比例し、電極間に流れる電流とEC
が比例すると考えられる。よって、E C(cL −1
/ E Cは電極間に流れる電流に対する塩素発生に寄
与する電流の割合と考えることができる。すなわち、一
定電流で電解を行なった場合には、E C(cL−) 
/ E Cが決まることによって、言い替えればC(c
L  ) / E Cが決まることによって、自動的に
塩素発生量が決まることになる。
If the electrical conductivity derived from chlorine ions is EC (cL), then Ctct-1/EC= a xECtet-,/E
Ca: Can be expressed as a proportionality coefficient. In tap water electrolysis, the reactions that generate oxygen and chlorine compete with each other at the anode, so the current flowing between the electrodes is considered to be the sum of the currents flowing during the two reactions. Here, the current flowing due to the chlorine generation reaction and E
C<cl, -s is proportional to the current flowing between the electrodes and EC
is considered to be proportional. Therefore, E C(cL −1
/EC can be considered as the ratio of the current that contributes to chlorine generation to the current flowing between the electrodes. That is, when electrolysis is performed with a constant current, E C (cL-)
/E By determining C, in other words, C(c
By determining L)/EC, the amount of chlorine generated is automatically determined.

なお、先記したカップ式飲料自動販売機を対象に、機内
の水リザーバに塩素発生電極を設置して飲料水を殺菌す
る場合には、殺菌効果、飲料水の風味、並びに水リザー
バから供給系末端に至る配管経路での塩素消耗分を考慮
して水リザーバにおける水中の塩素濃度を0.4〜1■
/I!の範囲に維持するよう制御するのが好ましい。
In addition, when sterilizing drinking water by installing a chlorine generating electrode in the water reservoir in the machine for the above-mentioned cup-type beverage vending machine, it is important to consider the sterilization effect, the flavor of the drinking water, and the supply system from the water reservoir. Considering the amount of chlorine consumed in the piping route leading to the end, the chlorine concentration in the water in the water reservoir should be set to 0.4 to 1.
/I! It is preferable to maintain the temperature within the range of .

また、飲料水の電気伝導度検出手段としては、水リザー
バに通じる給水管に電気伝導度セルを介装配備してこの
セルに電気伝導度計を接続する他に、水リザーバ内に設
置した塩素発生電極を電気伝導度の測定電極に兼用して
該電極に電気伝導度計を接続し、電気分解の直流電源と
回路を切替えることにより電気伝導度計で飲料水の電気
伝導度を検出することもできる。
In addition, as means for detecting the electrical conductivity of drinking water, in addition to installing an electrical conductivity cell in the water supply pipe leading to the water reservoir and connecting an electrical conductivity meter to this cell, there are also methods for detecting the electrical conductivity of drinking water. The generating electrode is also used as an electrode for measuring electrical conductivity, an electrical conductivity meter is connected to the electrode, and the electrical conductivity of drinking water is detected by the electrical conductivity meter by switching the circuit to the DC power source for electrolysis. You can also do it.

さらに、前記の電気伝導度計を用いる代わりに、飲料水
の電気分解時における塩素発生電極の通電電流、極間電
圧を測定し、この測定値より求めた電流/電圧値を飲料
水の電気伝導度の代替値として用いることもできる。
Furthermore, instead of using the electrical conductivity meter described above, the current and interelectrode voltage of the chlorine generating electrode during electrolysis of drinking water are measured, and the current/voltage value obtained from these measurements is calculated as the electrical conductivity of the drinking water. It can also be used as an alternative value for degree.

なお、前記のように水リザーバに設置した塩素発生電極
を利用して飲料水の電気伝導度を測定する場合には、電
極の水中に浸漬する面積が電気伝導度の測定値に影響を
及ぼすことから、電気伝導度の測定は水リザーバの水位
を一定レベルに調整した条件で行うものとする。
Note that when measuring the electrical conductivity of drinking water using a chlorine generating electrode installed in a water reservoir as described above, the area of the electrode immersed in water may affect the measured value of electrical conductivity. Therefore, the measurement of electrical conductivity shall be carried out under the condition that the water level of the water reservoir is adjusted to a constant level.

また、飲料水の電気伝導度は水温により変化する。そこ
で、飲料水の水温を温度センサで監視し、電気伝導度検
出手段で求めた電気伝導度を基準温度(例えば25℃)
の電気伝導度に補正した上で、この補正値を基に塩素発
生電極の通電電気量を制御するにより、より精度の高い
塩素濃度制御を行うことができる。
Furthermore, the electrical conductivity of drinking water changes depending on the water temperature. Therefore, the temperature of drinking water is monitored with a temperature sensor, and the electrical conductivity determined by the electrical conductivity detection means is set to a reference temperature (for example, 25°C).
By correcting the electrical conductivity to , and then controlling the amount of electricity to be energized to the chlorine generating electrode based on this correction value, it is possible to control the chlorine concentration with higher accuracy.

〔実施例〕〔Example〕

第1図ないし第4図はそれぞれ異なる本発明実施例の飲
料水殺菌装置を示すものである。
1 to 4 show drinking water sterilizers according to different embodiments of the present invention.

各図において、1は水道に接続された給水配管、2は自
動販売機の機内に設置した水リザーバ、3は水道水導入
側の給水弁、4は活性炭フィルタ、5は水リザーバ2か
ら引出し機内の末端部との間に配管した配水管路であり
、これらで自動販売機の飲料水供給系を構成している。
In each figure, 1 is the water supply pipe connected to the water supply, 2 is the water reservoir installed inside the vending machine, 3 is the water supply valve on the tap water introduction side, 4 is the activated carbon filter, and 5 is the drawer from the water reservoir 2 inside the drawer machine. These are the water distribution pipes installed between the end of the vending machine and the drinking water supply system of the vending machine.

ここで、水道から給水された水道水は活性炭フィルタ4
を経由して水リザーバ2に貯留され、ここから販売動作
に合わせて機内の製氷機、カーボネータ、カップなどに
向けて配水される。また、販売の進行に伴って水リザー
バ2の水位が下限レベルまで低下すると給水弁3が開い
て水道水が補給され、水位が再び上限レベルまで回復す
る。
Here, the tap water supplied from the tap is filtered through activated carbon filter 4.
The water is stored in the water reservoir 2 via the water reservoir 2, and from there it is distributed to the ice maker, carbonator, cup, etc. onboard the aircraft in accordance with sales operations. Further, as the water level in the water reservoir 2 decreases to the lower limit level as sales progress, the water supply valve 3 opens and tap water is replenished, and the water level recovers to the upper limit level again.

かかる構成の飲料水供給系に対し、第1図の実施例では
、水リザーバ2の水中に一対の塩素発生電極6と塩素イ
オン濃度検出用のセンサー14が、さらに給水配管1の
途中には水道水の電気伝導度を検出する電気伝導度測定
セルフが設置されている。ここで、塩素発生電極6は直
流電源8に通電制御部9を介して接続されている。
In the embodiment shown in FIG. 1, a drinking water supply system having such a configuration is equipped with a pair of chlorine generating electrodes 6 and a sensor 14 for detecting chlorine ion concentration in the water of the water reservoir 2, and a water supply pipe 1 in the middle of the water supply pipe 1. A self-conductivity measuring device is installed to detect the electrical conductivity of water. Here, the chlorine generating electrode 6 is connected to a DC power source 8 via an energization control section 9.

なお、塩素イオン濃度検出用のセンサー14は、電極を
省略することが可能で小型なイオン感応性電界効果トラ
ンジスタ(ISFET)を用い、このイオン感応性電界
効果トランジスタ(ISFET)からの信号をアンプ1
5を介して前記通電制御部9に与えられる。また、電気
伝導度セルフは一対の測定電極を内蔵したものであり、
電気伝導度計10を介してその検出信号が前記通電制御
部9に与えられる。さらに、通電制御部9はタイマ。
The sensor 14 for detecting the chloride ion concentration uses a small ion-sensitive field effect transistor (ISFET) that can omit electrodes, and the signal from the ion-sensitive field effect transistor (ISFET) is sent to the amplifier 1.
5 to the energization control section 9. In addition, the electrical conductivity self-container has a built-in pair of measurement electrodes.
The detection signal is given to the energization control section 9 via the electrical conductivity meter 10. Furthermore, the energization control section 9 is a timer.

電圧、電流調節器などを備え、飲料水の塩素イオン濃度
検出値及び電気伝導度検出値より求めたC (C1−1
/ E Cを基に塩素発生電極6の通電電気量を調節制
御する機能をもったものである。
C (C1-1
It has a function of adjusting and controlling the amount of electricity supplied to the chlorine generating electrode 6 based on /E C.

なお具体的には、例えば制御部9にマイクロコンピュー
タを備え、ここで第5図、から得た飲料水のC(cL−
1/ E Cと塩素発生量との関係データを基に、飲料
水のC(cL−1/ E Cの検出値と対比演算して塩
素殺菌後の飲料水の残留塩素濃度が適正な濃度(0,4
〜1■/lの範囲)を維持するように塩素発生量、つま
り塩素発生電極6の通電条件を決めるように制御する。
Specifically, for example, the control unit 9 is equipped with a microcomputer, and the drinking water C (cL-
Based on the relationship data between 1/E C and the amount of chlorine generated, calculate the appropriate residual chlorine concentration in drinking water after chlorine sterilization by comparing it with the detected value of C (cL-1/E C) in drinking water. 0,4
The amount of chlorine generated, that is, the conditions for energizing the chlorine generating electrode 6, is controlled so as to maintain the amount of chlorine generated (in the range of 1.about.1.about.1/l).

すなわち、水道水の水質変動により、C(cL−) /
 E C検出値が増加した場合にはその増加分に対応し
て塩素発生電極6の通電電気量、つまり通電時間1通電
電流などを減じ、逆にC(cL−1/ E C検出値が
減少した場合には通電電気量を増すように制御する。
In other words, due to changes in tap water quality, C(cL-)/
When the E C detection value increases, the amount of electricity energized by the chlorine generating electrode 6, that is, the energization time 1 energizing current, etc., is reduced in accordance with the increase, and conversely, the C (cL-1/E C detection value decreases). If this occurs, the amount of electricity supplied is controlled to be increased.

これにより、水道水の水質変動に左右されることなく、
常に水リザーバ2に貯留されている飲料水の塩素濃度を
適正な範囲(十分な殺菌力を有し、かつ塩素臭のない0
.4〜1■/1の範囲)に維持することができる。
As a result, it is not affected by fluctuations in the quality of tap water.
Always keep the chlorine concentration of the drinking water stored in the water reservoir 2 within an appropriate range (0.000
.. 4 to 1/1).

第2図は本発明の応用実施例を示すものである。FIG. 2 shows an applied embodiment of the present invention.

第1図の実施例では電気伝導度セルフを独立部品として
設置した例を示したのに対し、第2図の実施例は水リザ
ーバ2に設置した塩素発生電極6を飲料水の電気伝導度
測定用電極に兼用して、該電極6に電気伝導度計10を
接続したものである。
The embodiment shown in Fig. 1 shows an example in which the electrical conductivity self is installed as an independent component, whereas the embodiment shown in Fig. 2 uses the chlorine generating electrode 6 installed in the water reservoir 2 to measure the electrical conductivity of drinking water. An electrical conductivity meter 10 is connected to the electrode 6, which also serves as an electrode.

また、電極6と直流電源8.電気伝導度計10との間に
は制御部9からの指令で切替動作する回路切替スイッチ
11が介装接続されている。
In addition, the electrode 6 and the DC power source 8. A circuit changeover switch 11 is connected between the electric conductivity meter 10 and the electric conductivity meter 10 .

かかる構成で飲料水の電気伝導度を測定する場合には、
スイッチ11を電気伝導度計10側に切替えて飲料水の
電気伝導度を検出し、その検出信号を通電制御部9に与
える。なお、電気伝導度の測定には電極6と飲料水との
接触面積が影響するので、電気伝導度測定時には水リザ
ーバ2の水位を一定レベルで行う必要がある。このため
に、例えば給水弁3が開放して水リザーバ2の水位が上
限レベルに達したタイミングで電気伝導度を測定する。
When measuring the electrical conductivity of drinking water with this configuration,
The switch 11 is switched to the electrical conductivity meter 10 side to detect the electrical conductivity of the drinking water, and the detection signal is given to the energization control section 9. Note that since the electrical conductivity measurement is affected by the contact area between the electrode 6 and the drinking water, it is necessary to keep the water level in the water reservoir 2 at a constant level when measuring the electrical conductivity. For this purpose, for example, the electrical conductivity is measured at the timing when the water supply valve 3 is opened and the water level in the water reservoir 2 reaches the upper limit level.

この電気伝導度測定が終了すると、再びスイッチ11を
直流電源8側に切替え、前記で得た飲料水の電気伝導度
検出値と塩素イオン濃度検出値を基に第1図の実施例と
同様に塩素発生電極6に対する通電制御を行って飲料水
を電気分解し、塩素を発生させる。
When this electrical conductivity measurement is completed, the switch 11 is again switched to the DC power supply 8 side, and based on the detected electrical conductivity value and the detected chloride ion concentration value of the drinking water obtained above, the same procedure as in the embodiment shown in FIG. 1 is carried out. The chlorine generating electrode 6 is controlled to be energized to electrolyze drinking water and generate chlorine.

この実施例によれば、第1図の実施例で示した独立部品
としての電気伝導度セルフを省略することができ、殺菌
装置のコンパクト化が図れる。
According to this embodiment, the electrical conductivity self as an independent component shown in the embodiment of FIG. 1 can be omitted, and the sterilizer can be made more compact.

また、第3図は本発明の別の応用実施例を示す。Further, FIG. 3 shows another applied embodiment of the present invention.

本実施例では第2図の実施例で用いていた電気伝導計の
代わりに、塩素発生電極6の通電電流、電極間電圧を測
定して電流/電圧値を演算する計測手段12を備え、塩
素発生電極6に直流電源8より直流電圧を印加した状態
で計測手段12で求めた電流/電圧値を電気伝導度の代
替値として制御部9に与えて電極6の通電電気量を制御
するようにしたものである。
In this embodiment, instead of the electrical conductivity meter used in the embodiment shown in FIG. The current/voltage value obtained by the measuring means 12 with a DC voltage applied to the generating electrode 6 from the DC power source 8 is given to the control unit 9 as a substitute value for the electrical conductivity to control the amount of electricity energized by the electrode 6. This is what I did.

本実施例は次の点を基礎として飲料水の電気伝導度を検
出するようにしたものである。すなわち、飲料水の電気
伝導度と前記により求めた電流/電圧値とは第6図で表
すように比例の関係にあることが実験結果から確認され
ており、したがって第6図と先記した第5図との関係か
ら第7図で表すように塩素イオン濃度/(電流/電圧)
値と塩素発生量の関係が求められる。したがって、この
関係データを制御部9のマイクロコンピュータに格納し
て塩素イオン濃度検出値と電気分解時に検出した電流/
電圧値より求めた塩素イオン濃度/(電流/電圧)値と
対比演算しすることで、第1図の実施例と同様に水リザ
ーバ内の塩素濃度を制御することができる。
In this embodiment, the electrical conductivity of drinking water is detected based on the following points. In other words, it has been confirmed from the experimental results that the electrical conductivity of drinking water and the current/voltage values determined above are in a proportional relationship as shown in Figure 6. From the relationship with Figure 5, as shown in Figure 7, chloride ion concentration/(current/voltage)
The relationship between the value and the amount of chlorine generated is determined. Therefore, this relational data is stored in the microcomputer of the control unit 9, and the detected chlorine ion concentration value and the current/current detected during electrolysis are stored in the microcomputer of the control unit 9.
By performing a comparison calculation with the chlorine ion concentration/(current/voltage) value obtained from the voltage value, the chlorine concentration in the water reservoir can be controlled in the same manner as in the embodiment shown in FIG.

なお、電流一定制御の回路の場合は、電流は一定なので
電圧のみを測定して既知の電流との間で電流/電圧値を
演算すればよい。
Note that in the case of a constant current control circuit, since the current is constant, it is sufficient to measure only the voltage and calculate the current/voltage value between it and the known current.

第4図は飲料水の水温変化に対応させた実施例であ−る
。すなわち、飲料水の電気伝導度は水温に対応して変化
する性質がある。そこで、本実施例では飲料水の水温を
リザーバ内に設けた測温抵抗体やサーミスタなどの水温
センサ13により監視してその水温測定値を制御部9に
入力し、別に検出した飲料水の電気伝導度の検出値を所
定の補正式により例えば水温25℃を基準温度とした基
準水温の電気伝導度に補正し、この補正値より導いたC
3゜−、/ECで塩素発生電極5の通電電気量を制御す
るようにしたものである。この実施例によれば、飲料水
の水温変動による電気伝導度の変化に及ぼす影響を受け
ずに塩素濃度制御を高精度で行うことができる。
FIG. 4 shows an embodiment that corresponds to changes in the temperature of drinking water. That is, the electrical conductivity of drinking water has a property of changing depending on the water temperature. Therefore, in this embodiment, the temperature of the drinking water is monitored by a water temperature sensor 13 such as a resistance temperature detector or thermistor provided in the reservoir, and the water temperature measurement value is input to the control unit 9, and the electricity of the drinking water detected separately is monitored. The detected conductivity value is corrected using a predetermined correction formula to the electrical conductivity at a reference water temperature, for example, with water temperature of 25°C as the reference temperature, and the C derived from this correction value.
The amount of electricity supplied to the chlorine generating electrode 5 is controlled by 3°-, /EC. According to this embodiment, the chlorine concentration can be controlled with high precision without being affected by changes in electrical conductivity due to temperature fluctuations in drinking water.

なお、水温センサ13の設置箇所は水リザーバ2に限定
されるものではなく、第1図のように給水管lに電気伝
導度測定セルフを介装した場合にはセルフと並置して配
備するのがよい。
Note that the installation location of the water temperature sensor 13 is not limited to the water reservoir 2, but if an electrical conductivity measuring self is installed in the water supply pipe l as shown in Fig. 1, it may be installed in parallel with the self. Good.

〔発明の効果〕 本発明による飲料水殺菌装置は、以上説明したように構
成されているので、次記の効果を奏する。
[Effects of the Invention] Since the drinking water sterilization device according to the present invention is configured as described above, it exhibits the following effects.

(1)飲料水の塩素イオン濃度と電気伝導度を検出し、
この検出値より導いたC (cL−1/ E Cを基に
塩素発生電極の通電電気量を可変制御するよう構成した
ことにより、水道水の水質変動に左右されることなしに
常に飲料水の塩素濃度を適正範囲に維持することができ
、これにより例えばカップ式飲料自動販売機を対象に、
機内の飲料水供給系を通して十分な殺菌力を有し、かつ
飲料に塩素臭を与えない良質な飲料水を安定供給するこ
とができる。
(1) Detect the chlorine ion concentration and electrical conductivity of drinking water,
By configuring the structure to variably control the amount of electricity supplied to the chlorine generating electrode based on C (cL-1/E It is possible to maintain the chlorine concentration within an appropriate range.
Through the in-flight drinking water supply system, it is possible to stably supply high-quality drinking water that has sufficient sterilizing power and does not impart a chlorine odor to drinks.

(2)また、塩素発生電極を電気伝導度の測定電極とし
て兼用させ、この塩素発生電極を介して飲料水の電気伝
導度を検出することにより、独立部品としての電気伝導
度セルが省略できて殺菌装置のコンパクト化が図れる。
(2) Also, by using the chlorine generating electrode as an electrode for measuring electrical conductivity and detecting the electrical conductivity of drinking water through this chlorine generating electrode, the electrical conductivity cell as an independent component can be omitted. The sterilizer can be made more compact.

(3)電気伝導度の検出値を基準水温の電気伝導度に補
正して制御に用いることにより、飲料水の水温変動の影
響を受けずに高精度で塩素濃度の制御が行える。
(3) By correcting the detected value of electrical conductivity to the electrical conductivity of the reference water temperature and using it for control, the chlorine concentration can be controlled with high precision without being affected by fluctuations in the temperature of drinking water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第4図はそれぞれ異なる本発明実施例の構
成図、第5図は塩素イオン濃度と電気伝導度を種々の割
合に調整した合成水を試料とじて求めた塩素発生量とC
(cL−1/ECの関係図、第6図は飲料水の電気伝導
度と塩素発生電極で測定した電流/電圧値との関係図、
第7図は塩素イオン濃度/電流/電圧値と塩素発生量の
関係図である。図において、 1・・・水道水給水管、2・・・水リザーバ、6・・・
塩素発生電極、7・・・電気伝導度セル、8・・・直流
電源、9・・・通電制御部、10・・・電気伝導度計、
12・・・電流/電圧値の計測手段、13・・・水温セ
ンサ。 第 図 第 図
Figures 1 to 4 are configuration diagrams of different embodiments of the present invention, and Figure 5 shows the amount of chlorine generated and C obtained from samples of synthetic water with chlorine ion concentration and electrical conductivity adjusted to various ratios.
(Relationship diagram of cL-1/EC, Figure 6 is a diagram of the relationship between the electrical conductivity of drinking water and the current/voltage value measured with the chlorine generating electrode,
FIG. 7 is a diagram showing the relationship between chlorine ion concentration/current/voltage values and the amount of chlorine generated. In the figure, 1...Tap water supply pipe, 2...Water reservoir, 6...
Chlorine generating electrode, 7... electrical conductivity cell, 8... DC power supply, 9... energization control section, 10... electrical conductivity meter,
12... Current/voltage value measurement means, 13... Water temperature sensor. Figure Figure

Claims (1)

【特許請求の範囲】 1)水道からの給水を貯留する水リザーバを含む飲料水
供給系に対してその水路中に直流電圧を印加する一対の
塩素発生電極を設け、電気分解により水道水に含まれる
塩素イオンを陽極酸化し、塩素に変換して飲料水を殺菌
する飲料水殺菌装置において、飲料水の電気伝導度検出
手段と、飲料水の塩素イオン濃度検出手段と、塩素発生
電極に対する通電電気量の制御手段とを備え、塩素殺菌
後の飲料水の残留塩素濃度を所定範囲に維持するよう、
飲料水の塩素イオン濃度検出値及び電気伝導度検出値を
基に塩素発生電極の通電電気量を制御することを特徴と
する飲料水殺菌装置。 2)請求項1に記載の飲料水殺菌装置において、塩素発
生電極を電気伝導度測定電極に兼用し、該電極に電気伝
導計を接続して飲料水の電気伝導度を検出することを特
徴とする飲料水殺菌装置。 3)請求項1に記載の飲料水殺菌装置において、塩素発
生電極を電気伝導度測定電極に兼用し、かつ該電極の通
電電流、電極間電圧の測定値から求めた電流/電圧値を
基に塩素発生電極の通電電気量を制御することを特徴と
する飲料水殺菌装置。 4)請求項1に記載の飲料水殺菌装置において、飲料水
の電気伝導度検出値を基準温度の電気伝導度に補正し、
この補正値を基に塩素発生電極の通電電気量を制御する
ことを特徴とする飲料水殺菌装置。
[Claims] 1) A pair of chlorine generating electrodes are provided to apply a DC voltage to a drinking water supply system including a water reservoir that stores water supplied from the tap water, and chlorine is contained in the tap water by electrolysis. In a drinking water sterilizer that sterilizes drinking water by anodizing the chlorine ions produced in the water and converting them into chlorine, the device includes a means for detecting the electrical conductivity of drinking water, a means for detecting the concentration of chlorine ions in drinking water, and a means for energizing the chlorine generating electrode. to maintain the residual chlorine concentration in drinking water after chlorine sterilization within a predetermined range.
A drinking water sterilization device characterized by controlling the amount of electricity supplied to a chlorine generating electrode based on a detected value of chlorine ion concentration and a detected value of electrical conductivity of drinking water. 2) The drinking water sterilizer according to claim 1, characterized in that the chlorine generating electrode is also used as an electrical conductivity measuring electrode, and an electrical conductivity meter is connected to the electrode to detect the electrical conductivity of the drinking water. Drinking water sterilizer. 3) In the drinking water sterilizer according to claim 1, the chlorine generating electrode is also used as an electrical conductivity measuring electrode, and based on the current/voltage value determined from the measured values of the current flowing through the electrode and the voltage between the electrodes. A drinking water sterilization device characterized by controlling the amount of electricity applied to a chlorine generating electrode. 4) In the drinking water sterilizer according to claim 1, the detected value of the electrical conductivity of the drinking water is corrected to the electrical conductivity of a reference temperature;
A drinking water sterilizer characterized in that the amount of electricity supplied to the chlorine generating electrode is controlled based on this correction value.
JP2097003A 1990-04-12 1990-04-12 Potable water sterilizing device Pending JPH03293093A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2097003A JPH03293093A (en) 1990-04-12 1990-04-12 Potable water sterilizing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2097003A JPH03293093A (en) 1990-04-12 1990-04-12 Potable water sterilizing device

Publications (1)

Publication Number Publication Date
JPH03293093A true JPH03293093A (en) 1991-12-24

Family

ID=14180051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2097003A Pending JPH03293093A (en) 1990-04-12 1990-04-12 Potable water sterilizing device

Country Status (1)

Country Link
JP (1) JPH03293093A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6376259B1 (en) 2001-03-21 2002-04-23 Ramtron International Corporation Method for manufacturing a ferroelectric memory cell including co-annealing
KR20020071255A (en) * 2001-03-05 2002-09-12 주식회사 버룽 Control apparatus for sterilization and disinfection system by metal ion under water diffusion by electric method
GB2405644A (en) * 2003-09-03 2005-03-09 Salamander Water treatment system
JP2007283167A (en) * 2006-04-13 2007-11-01 Hirose Electric Co Ltd Slightly acidic water generator
JP2007283218A (en) * 2006-04-17 2007-11-01 Fuji Electric Retail Systems Co Ltd Water-quality control system of water tank
JP2007319775A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water and method for correcting concentration of electrolytic water
JP2007319778A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water
JP2007319779A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water and method for correcting concentration of electrolytic water
JP2020094986A (en) * 2018-12-14 2020-06-18 クリナップ株式会社 Free residual chlorine concentration calculation method, free residual chlorine concentration calculation system, and space cleaning system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020071255A (en) * 2001-03-05 2002-09-12 주식회사 버룽 Control apparatus for sterilization and disinfection system by metal ion under water diffusion by electric method
US6376259B1 (en) 2001-03-21 2002-04-23 Ramtron International Corporation Method for manufacturing a ferroelectric memory cell including co-annealing
GB2405644A (en) * 2003-09-03 2005-03-09 Salamander Water treatment system
GB2405644B (en) * 2003-09-03 2008-02-27 Salamander Water treatment system
JP2007283167A (en) * 2006-04-13 2007-11-01 Hirose Electric Co Ltd Slightly acidic water generator
JP2007283218A (en) * 2006-04-17 2007-11-01 Fuji Electric Retail Systems Co Ltd Water-quality control system of water tank
JP2007319775A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water and method for correcting concentration of electrolytic water
JP2007319778A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water
JP2007319779A (en) * 2006-05-31 2007-12-13 Sanyo Electric Co Ltd Apparatus for generating weakly-electrolytic water and method for correcting concentration of electrolytic water
JP2020094986A (en) * 2018-12-14 2020-06-18 クリナップ株式会社 Free residual chlorine concentration calculation method, free residual chlorine concentration calculation system, and space cleaning system

Similar Documents

Publication Publication Date Title
US4451341A (en) Electrolytic water sterilization system
RU2385448C2 (en) Magnetic induction flow metre (versions)
JPH03293093A (en) Potable water sterilizing device
JPH06246268A (en) Method and device for producing electrolyte
JPH05115876A (en) Controller for continuous electrolytic ionized-water producing device
JP2685070B2 (en) Drinking water sterilizer
JP4950547B2 (en) Slightly acidic water generator
JP2602324B2 (en) Drinking water sterilizer
JPH09225468A (en) Drinking water sterilizing device
JPH06246269A (en) Device for producing electrolyte
WO2004096716A1 (en) Mineral water generator
JP3612902B2 (en) Electrolyzed water generator
JP2564950B2 (en) Drinking water sterilizer
JPH03195A (en) Chlorine generating electrode of potable water sterilizing device
JPH08215684A (en) Ionic water making apparatus
JPH06246265A (en) Device for producing electrolyte
JP2024046559A (en) Electrolyzed water generator
JP2000042559A (en) Chlorine generator
JP3911311B2 (en) Electrolytic ion water generator
JPH08318279A (en) Sterilizing water for spore bacteria and sterilization of spore bacteria
JP4161885B2 (en) Alkaline ion water conditioner
JPH10109093A (en) Drinking water sterilization device
JP2002098669A (en) Measuring method for chlorine concentration
JP2000334461A (en) Storage type strong electrolytic water production device and receiver thereof
JPH11114567A (en) Chlorine generator