JPH03291515A - Polarization correcting method for earth magnetism azimuth sensor - Google Patents

Polarization correcting method for earth magnetism azimuth sensor

Info

Publication number
JPH03291515A
JPH03291515A JP9337790A JP9337790A JPH03291515A JP H03291515 A JPH03291515 A JP H03291515A JP 9337790 A JP9337790 A JP 9337790A JP 9337790 A JP9337790 A JP 9337790A JP H03291515 A JPH03291515 A JP H03291515A
Authority
JP
Japan
Prior art keywords
azimuth
sensor
vehicle
data
disturbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9337790A
Other languages
Japanese (ja)
Other versions
JP2723651B2 (en
Inventor
Tadatomi Ishigami
忠富 石上
Fumio Ueda
文夫 上田
Hiroshi Noda
博司 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2093377A priority Critical patent/JP2723651B2/en
Publication of JPH03291515A publication Critical patent/JPH03291515A/en
Application granted granted Critical
Publication of JP2723651B2 publication Critical patent/JP2723651B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To accurately make magnetic corrections by using a learning coefficient for a last azimuth circle center as to a calculated azimuth circle center, performing learning operation by a specific ratio, and obtaining a new azimuth circle center. CONSTITUTION:Output data which is detected by an earth magnetism azimuth sensor 1 and based upon the earth magnetism, output data on the azimuth change of a vehicle from the difference between the right and left wheel speeds of the vehicle which is detected by a wheel speed sensor 2, and output data on the moving distance of the vehicle which is detected by a travel distance sensor 3 are inputted to an arithmetic part 5 through a sensor interface 5. Then the arithmetic part 5 calculates the absolute azimuth and the azimuth variation quantity of the vehicle from the output data of the sensors 1 and 2 and evaluates the disorder of XY coordinates and the disorder of the absolute azimuth by using the radius value of the azimuth circle which is learnt so far as an evaluation reference value according to past several data including individual current values. Further, the radium values of the evaluation reference value which are learnt so far are further learnt and made to correspond to variation in the solarized quantity of the vehicle body.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野] この発明は、地磁気方位センサや車輪速センサを車両に搭載し、車両位置を検出する地磁気方位センサの着磁補正方法に関するものである。 【従来の技術】[Industrial application field] The present invention relates to a magnetization correction method for a geomagnetic azimuth sensor that detects a vehicle position by mounting a geomagnetic azimuth sensor or a wheel speed sensor on a vehicle. [Conventional technology]

第7図及び第8図は、例えば特開昭63−128222
号公報に示された従来の地磁気方位センサの着磁補正方
法を示す装置の構成図および方位変化における地磁気方
位センサの出力変化原理の説明図であり、図において、
71は地磁気方位センサ、72は車両の方位変化検出手
段としての、例えば車輪速センサ、73は演算手段であ
る。また第8図は方位変化における地磁気方位センサ7
Iの出力変化説明図である。まず、車両がAだけ変化す
ると方位センサ出力も八から已に変化する。 この場合、地磁気方位センサ71の方位円の半径が方位
変化前と方位変化後で変らないとすると、第8図より明
らかなように、方位円の中心、0は線分ABを底辺とす
る2等辺三角形で、頂角がθとなる三角形の頂点である
。つまり、車両の方位変化量θと回転方向と車両が方位
変化する前の地磁気方位センサ71の出力A及び方位変
化後の地磁気方位センサ71の出力Bが求められれば、
方位の中心、つまり着磁量を求めることができる。 次に、上記原理に基〈実施例を図について説明する。第
9図(イ)は新たな着磁が加ったときの地磁気方位セン
サ71の出力変化、及び演算説明図である。車両が進行
中に新たな着磁が起こり、着磁量がΔX−Δxl+Δy
−ΔyIに変化したとする。また、カーブする前の比較
的安定した地磁気方位センサ71の出力をAp(x+、
yυ、カーブした後の比較的安定した地磁気方位センサ
71の出力をBp (xt、3’z)とする。まず、車
両が方位変化する前の地磁気方位センサ71の出力Ap
(x+、yυを演算手段73に記憶しておく。次に、車
両が方位変化すると、左右輪の車輪速センサ72等によ
り方位変化量θSが求まる。(ハ)図は車両の方位変化
前を示し、(ニ)図は車両の左回りによる方位変化後の
変化角θとなったことを示している。前記左右車輪速セ
ンサによって求まるθSとθとは同じ角度と考える。 方位変化後、方位センサの出力Bp(xz、yz)が求
まる。これらAp+(X+、)’+)+  13p  
(xz、yz)。 θSより方位変化前後の方位用の半径は一定として、(
イ)図において、 Ap、 ap間の長さL= (X+  Xz)2+(y
t  )’z)2とここで、 ベク トルAp、Bpの方向をθAplslとすると、 Xz−X。 ベク トルSopの方向をθ、。。 とすると、 θSows =θAplp ” 着磁の中心Op (Δx。 +ΔyI ) は (ΔX l +Δy+) = (Sx + I!cos
  θSo、、 Sy + l sin  θso、)
で求められる。
FIG. 7 and FIG.
FIG. 1 is a block diagram of a device showing a conventional magnetization correction method for a geomagnetic azimuth sensor disclosed in the publication, and an explanatory diagram of the principle of output change of the geomagnetic azimuth sensor when the azimuth changes;
71 is a geomagnetic azimuth sensor, 72 is a vehicle azimuth change detecting means, such as a wheel speed sensor, and 73 is a calculation means. Figure 8 also shows the geomagnetic orientation sensor 7 when the orientation changes.
It is an explanatory diagram of output change of I. First, when the vehicle changes by A, the azimuth sensor output also changes from 8 to 3. In this case, assuming that the radius of the azimuth circle of the geomagnetic azimuth sensor 71 does not change before and after the azimuth change, as is clear from FIG. It is an equilateral triangle, and the vertex of the triangle has an apex angle of θ. In other words, if the amount of change in the vehicle's orientation θ, the rotational direction, the output A of the geomagnetic orientation sensor 71 before the vehicle's orientation changes, and the output B of the geomagnetic orientation sensor 71 after the orientation change is determined,
The center of orientation, that is, the amount of magnetization can be determined. Next, based on the above principle, an embodiment will be described with reference to the drawings. FIG. 9(a) is an explanatory diagram of output changes and calculations of the geomagnetic azimuth sensor 71 when new magnetization is applied. New magnetization occurs while the vehicle is moving, and the amount of magnetization becomes ΔX - Δxl + Δy
Suppose that it changes to -ΔyI. In addition, the relatively stable output of the geomagnetic direction sensor 71 before the curve is Ap(x+,
yυ, the relatively stable output of the geomagnetic azimuth sensor 71 after curving is assumed to be Bp (xt, 3'z). First, the output Ap of the geomagnetic direction sensor 71 before the vehicle changes direction.
(x+, yυ are stored in the calculating means 73.Next, when the vehicle changes its direction, the amount of change in direction θS is determined by the wheel speed sensors 72, etc. of the left and right wheels. Figure (d) shows that the angle of change is θ after the azimuth changes due to the counterclockwise rotation of the vehicle. θS and θ found by the left and right wheel speed sensors are considered to be the same angle. After the azimuth change, the azimuth changes. The output Bp(xz, yz) of the sensor is found.These Ap+(X+,)'+)+13p
(xz, yz). Assuming that the radius for the orientation before and after the orientation change is constant from θS, (
b) In the figure, the length L between Ap and ap = (X+ Xz)2+(y
t)'z)2 and here, if the direction of the vectors Ap and Bp is θAplsl, then Xz-X. The direction of the vector Sop is θ. . Then, θSows = θAplp ” The center of magnetization Op (Δx. +ΔyI) is (ΔX l +Δy+) = (Sx + I!cos
θSo,, Sy + l sin θso,)
is required.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来の地磁気方位センサの着磁補正方法は、以上のよう
に実行されているので、方位変化前後で地磁気方位セン
サの方位円半径が一定であるとの条件により、旋回後の
外乱磁気を多く含む異端データを除去し、方位変化前後
の旋回角と地磁気方位センサ出力データに基づいて方位
円中心を算出する方法は、旋回前の地磁気方位センサ出
力データが仮に外乱磁気の影響を大きく受は検出誤差が
大きかったならば、旋回後に方位円半径が一定であると
の条件を満足して方位円を算出しても算出した方位円中
心の値は誤差を大きく持つことになる。従って、この方
位円中心をそのまま使い補正すると、補正する毎に方位
円中心が大きく変動することになり方位円中心を収束さ
せることができない。仮に方位円中心を平均化しても地
磁気方位センサの方位円か外乱磁気により大きく歪んだ
環境化における方位円中心の平均化ならば、いつまでも
方位円中心が真価に修正されない。 具体的には、高架道路などの地磁気方位センサの方位円
が歪んで、しかも乱れている環境下では地磁気方位セン
サ出力データの検出精度が下がるため方位円中心の誤っ
た算出や、誤った補正を行ってしまうという課題があっ
た。 この発明は上記のような課題を解決するためになされた
もので、地磁気方位センサと、地磁気以外で移動体の方
位変化を検出する第2の方位センサの夫々の現在地を含
む過去何個か分のデータを基に、地磁気方位センサのX
、Y成分出力値によるXY座標上の方位円のそれまでに
学習した半径値を評価基準値として個々のデータの乱れ
を評価することにより以後の該補正処理で使う個々のデ
ータの重み付け、補正時期の決定、そして少なくとも、
該重み付けしたデータに基づいて個々のデータに対する
方位円中心の算出、学習を行い、評価基準値となるそれ
までに学習した半径値を該補正時期に該方位円中心に基
づき更に学習させて該個々のデータの乱れの評価を車両
ボディーの着磁量の変化に対応させる地磁気方位センサ
の着磁補正方法を得ることを目的とする。
The conventional magnetization correction method for the geomagnetic azimuth sensor is executed as described above, and therefore contains a large amount of disturbance magnetism after turning, due to the condition that the radius of the azimuth circle of the geomagnetic azimuth sensor is constant before and after the azimuth change. The method of removing unconventional data and calculating the center of the azimuth circle based on the turning angle before and after the azimuth change and the output data of the geomagnetic azimuth sensor is a method that eliminates detection errors if the output data of the geomagnetic azimuth sensor before turning is greatly affected by magnetic disturbance. If the radius of the azimuth circle is large, even if the azimuth circle is calculated while satisfying the condition that the radius of the azimuth circle is constant after the turn, the calculated value of the center of the azimuth circle will have a large error. Therefore, if the center of the azimuth circle is used for correction as it is, the center of the azimuth circle will vary greatly each time the correction is made, making it impossible to converge the center of the azimuth circle. Even if the center of the azimuth circle is averaged, if the center of the azimuth circle is averaged in an environment that is greatly distorted by the azimuth circle of the geomagnetic azimuth sensor or disturbance magnetism, the center of the azimuth circle will never be corrected to its true value. Specifically, in an environment where the azimuth circle of the geomagnetic azimuth sensor is distorted and disturbed, such as on an elevated road, the detection accuracy of the output data of the geomagnetic azimuth sensor decreases, so the center of the azimuth circle may be incorrectly calculated or incorrectly corrected. There was a problem with leaving. This invention was made in order to solve the above-mentioned problems, and the present invention is based on past information including the current location of each of the geomagnetic azimuth sensor and the second azimuth sensor that detects changes in the azimuth of a moving body using methods other than geomagnetism. Based on the data of the geomagnetic direction sensor
By evaluating the disturbance of individual data using the previously learned radius value of the azimuth circle on the XY coordinates based on the Y component output value as the evaluation reference value, weighting of the individual data used in the subsequent correction process and correction timing are determined. decision, and at least
The center of the azimuth circle is calculated and learned for each data based on the weighted data, and the radius value learned so far, which becomes the evaluation reference value, is further learned based on the center of the azimuth circle at the correction time. The present invention aims to provide a magnetization correction method for a geomagnetic azimuth sensor that allows evaluation of disturbances in data to correspond to changes in the amount of magnetization of a vehicle body.

【課題を解決するための手段】[Means to solve the problem]

この発明に係る地磁気方位センサの着磁補正方法は、地
磁気を利用する第1の方位センサと該地磁気以外で車両
の方位変化を検出する第2の方位センサとの夫々の現在
値を含む過去何個か分のデータを基にして、前記第1の
方位センサのX、 Y成分出力値によるXY座標上の方
位円のそれまでに学習した半径値を評価基準値として個
々のデータの乱れを演算部で乱れ評価し、その乱れ評価
の結果を以後の着磁補正処理に用いる個々のデータの重
み付けや補正時期の決定に用い、前記重み付けしたデー
タにより方位円の中心の算出と補正、及び方位円の半径
の学習を行い、その学習結果を評価基準値となるそれま
でに学習した半径値を更に学習させ、該個々のデータの
乱れ評価を移動体ボディーの着磁量の変化に対応させる
ようにしたものである。
A magnetization correction method for a geomagnetic azimuth sensor according to the present invention is based on past information including the current values of a first azimuth sensor that uses geomagnetism and a second azimuth sensor that detects a change in the azimuth of a vehicle using something other than the geomagnetism. Based on the individual pieces of data, calculate the disturbance of each piece of data using the previously learned radius value of the azimuth circle on the XY coordinates based on the X and Y component output values of the first azimuth sensor as an evaluation reference value. The disturbance evaluation results are used to weight individual data and determine the correction timing for subsequent magnetization correction processing, and the weighted data are used to calculate and correct the center of the azimuth circle, and to calculate and correct the center of the azimuth circle. The learning result is used as the evaluation reference value.The radius value learned so far is further learned, and the disturbance evaluation of each data is made to correspond to changes in the amount of magnetization of the moving object body. This is what I did.

【作 用】[For use]

地磁気を利用した第1の方位センサと車両の方位変化を
検出する第2の方位センサの個々の現在値を含む過去何
個か分のデータを基に方位円のそれまでに学習した半径
値を評価基準値として方位円半径の乱れ、XY座標の乱
れ、及び絶対方位の乱れを評価することにより、以後の
該補正処理で使うデータの重み付け、補正時期の決定を
行い、該重み付けしたデータに基づいて方位円中心の算
出、補正を行う。そして、評価基準値のそれまでの学習
した半径値を更に学習させ、該個々゛のデータの乱れの
評価を車体ボディーの着磁量の変化に対応させるように
する。
The previously learned radius value of the azimuth circle is calculated based on several past data including the current values of the first azimuth sensor that uses geomagnetism and the second azimuth sensor that detects changes in the vehicle's azimuth. By evaluating the disturbance of the radius of the azimuth circle, the disturbance of the XY coordinates, and the disturbance of the absolute direction as evaluation reference values, the data to be used in the subsequent correction process is weighted, the correction timing is determined, and the correction timing is determined based on the weighted data. Calculate and correct the center of the azimuth circle. Then, the previously learned radius value of the evaluation reference value is further learned, and the evaluation of the individual data disturbances is made to correspond to the change in the amount of magnetization of the vehicle body.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。 第1図はこの発明の一実施例による移動体用ナビゲーシ
ョン装置の構成を示すブロック図で、図において、1は
地磁気に基づいて絶対方位を検出する第1の方位センサ
としての地磁気方位センサ、2は車両の左右の車輪速の
相違などから車両の方位変化を検出する第2の方位セン
サとしての車輪速センサ、3は移動体としての車両の移
動距離を検出する走行距離センサで、前記各センサ1〜
3はセンサインタフェース4に入力される。5は順次送
られてくる各センサ1〜3からの出力データに基づいて
地磁気センサ・データの安定値抽出や車両の移動距離、
進行方位および自車位置の算出などを行う演算部、6は
自車位置などを描画する表示部である。 ここで、対象として評価する地磁気センサ・データの乱
れは、座標乱れ、方位乱れ、そして半径乱れの3つであ
り、それぞれの評価方法を以下に示す。 まず、座標乱れは地磁気以外の外乱磁気を含む磁気の乱
れを判定するもので、評価基準値の方位円半径の学習値
に対する、現在値を含めた過去何個か分のXY座標点を
移動平均した平均座標点と平均に使った個々の座標点の
座標点間の大きさの比で区分することで大中小の3段階
に評価する。 方位乱れは車両のジグザグ走行による乱れ分を除去した
いために、現在値を含めた過去何個か分の絶対方位の方
位変化角と第2の方位センサから検出した方位変化角の
、それぞれの絶対値を移動平均した両平均値の差の大き
さを区分することで大中小の3段階に評価する。 また、半径乱れは地磁気以外の外乱磁気の大きさを判定
するもので、評価基準値の方位円半径の学習値に対する
、個々のxy座標点と方位円中心から算出する方位円半
径の大きさの比で区分することで大中小の3段階に評価
する。 これらの乱れの評価で使う判定値の一例を第2図に示す
。第2図において、aは座標乱れ、bは方位乱れ、そし
てCは半径乱れのそれぞれの判定値を示す。 次に、動作を第3図と第4図のフローチャート及び第5
図の着磁補正処理図を用いて説明する。 まず、第3図においてステップ5T31では移動体ナビ
ゲーション装置のイニシャル処理、初期表示と地磁気方
位センサ1の旋回補正を実行する。 ここで得た地磁気方位センサ1のXY出力成分値の最大
最小値から方位円半径の学習値の初期化を行う。(1)
式でXmax、 Xm1n、 Ymax+ Yminは
XY出力成分値のそれぞれ最大値及び最小値で、RAl
は方位円半径の学習値である。 Xmax−Xmin   Ymax   Yminステ
ップ5T32では車両が一定距離以上移動するまで待機
する。ステップ5T33では地磁気方位センサ1と車輪
速センサ2からの出力データを人力する。ステップ5T
34では絶対方位と車両の方位変化量を算出する。ステ
ップ5T35では、個々の現在値を含む過去何個か分の
データを基に、方位円のそれまでに学習した半径値を評
価基準値として方位円半径の乱れ、xy座標の乱れ、及
び絶対方位の乱れの評価を行う。この評価を受けて以後
の着磁補正処理で使うデータの重み付けや、補正時期の
決定を行う。また、重み付けされたデータは方位円の中
心の算出(ステップ5T49)と後述する車両の進行方
向の算出(ステップ5T36)に用いられる。 更に、前記評価基準値のそれまでに学習した半径値は、
更に学習させ個々のデータの乱れの再評価結果として車
体ボディの着磁量の変化に対応させるように処理する。 ステップ5T36では(2)弐により車両の進行方位を
算出する。(2)式において、θ、とθi−1は車両の
進行方位の現在値と前回値、JKは絶対方位、φは車両
の方位変化、kは座標と方位乱れの評価結果により値を
替える絶対方位の重み付は係数をそれぞれ示す。 θ1−θ1−+ + (JK−θ=−+) x k+φ
X(1−k)・・・(2)ステップ5T37では地磁気
方位センサ1の着磁補正を行う。ステップ5T38では
各データのメモリ格納と車両位置の更新を行う。 第4図において、ステップ5T41では車両の旋回角と
旋回距離の更新を行い、ステップ5T42では車両が直
進走行状態でかつ磁気部れと方位乱れが小さいことを判
定するために、座標と方位乱れの評価結果を判定し、評
価結果が共に小ならばステップ5T43を実行し、そう
でないならば地磁気方位センサ・データの検出精度が低
いということで着磁補正の処理を抜ける。ステップ5T
43では方位変化前のX、Y成分出力値の設定と車両の
旋回角と旋回距離の有効を判定し、方位変化前のX、Y
成分出力値が設定されていないか、もしくは、旋回角が
60°未満か120°超過か、旋回距離が200m超過
ならばステップ5T44を実行し、そうでなければステ
ップ5T45を実行する。ここで、旋回角と旋回距離を
処理の条件に含めたのは、磁気環境の変化する前後のデ
ータを除去することと車両の左右折動作で補正ができる
ようにするためである。ステップ5T44では方位変化
前のX、Y成分出力値の設定値と車両の旋回角、旋回距
離の0クリアをし、その後着磁補正の処理を抜ける。ス
テップ5T45では外乱磁気の大きさを判定するために
半径乱れの評価を行う。 ステップ5T46では外乱磁気の大きなところでの補正
を避けるためにステップ5T45での評価結果が大なら
ば着磁補正の処理を抜け、そうでなければステップ5T
47を実行する。ステップ5T47では外乱磁気の変動
に対応させるために評価基準値である地磁気方位センサ
の方位円半径の学習値を更新する。(3)式でx、、y
、とX2.Y2は方位変化前後のx、y成分出力値、甲
は車両の旋回角、そ1.て、Rは方位円半径の現在値で
ある。 ステップ5T48では補正を確実1.こ行うため乙こス
テ、プS T 4.5での評価結果が中ならば着磁補正
の処理を抜け、そうでなければステップ5T49を実行
する。ステップ5T49では第6図に示す方位変化前後
のX、Y成分出力値と車両の旋回角との関係により下式
に基づいて方位円の中心を算出し学習する。1式でX 
CO+  Y CoとX、、Y、は地磁気方位センサの
方位円中心の推定値と学習値のx、y成分出力値である
。 xo=xo+(xco−xo)xk  −・ −−−・
(7)Yl)=YO+(YCO−Yll)X k  ・
−・・−−(8)なお、上記実施例では、座標乱れ、方
位乱れ、および半径乱れの個々の評価方法について説明
したが、他の評価方法により重み付けしたデータを着磁
補正以外の処理に使用してもよく、上記実施例と同様の
効果を奏する。 また、方位円中心の算出式で方位変化前後のX。 Y成分出力値を、平均したX、Y成分出力値の平均座標
点としてもよいし、算出式を、方位円のXY成分最大、
最小値を使う方法など、その他の任意の方法にしてもよ
い。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the configuration of a mobile navigation device according to an embodiment of the present invention. In the figure, 1 is a geomagnetic azimuth sensor as a first azimuth sensor that detects an absolute azimuth based on geomagnetism; 2 3 is a wheel speed sensor as a second azimuth sensor that detects a change in the azimuth of the vehicle based on the difference in the speed of the left and right wheels of the vehicle, and 3 is a mileage sensor that detects the distance traveled by the vehicle as a moving object; 1~
3 is input to the sensor interface 4. 5 extracts stable values of geomagnetic sensor data based on the output data from each sensor 1 to 3 sent sequentially, and the distance traveled by the vehicle;
An arithmetic unit calculates the traveling direction and the position of the own vehicle, and 6 is a display unit that draws the position of the own vehicle. Here, there are three types of disturbances in geomagnetic sensor data to be evaluated: coordinate disturbances, azimuth disturbances, and radius disturbances, and evaluation methods for each are shown below. First, coordinate disturbance is used to judge magnetic disturbances including disturbance magnetism other than geomagnetism, and is a moving average of several past XY coordinate points including the current value for the learned value of the azimuth circle radius of the evaluation standard value. It is evaluated in three stages: large, medium, and small by dividing the size of the average coordinate point and the individual coordinate points used for the average. Since we want to remove the azimuth disturbance due to the zigzag movement of the vehicle, we calculate the absolute azimuth change angle of several past absolute azimuths including the current value and the azimuth change angle detected from the second azimuth sensor. The values are evaluated in three stages: large, medium, and small by classifying the magnitude of the difference between the two average values obtained by taking a moving average of the values. In addition, the radius disturbance is used to determine the magnitude of magnetic disturbance other than geomagnetism, and the size of the radius of the azimuth circle calculated from each xy coordinate point and the center of the azimuth circle relative to the learned value of the radius of the azimuth circle of the evaluation reference value. It is evaluated in three stages: large, medium, and small by classifying it based on the ratio. An example of judgment values used in evaluating these disturbances is shown in FIG. In FIG. 2, a indicates the coordinate disturbance, b indicates the azimuth disturbance, and C indicates the determination value for the radius disturbance. Next, the operation will be described in the flowcharts shown in Figures 3 and 4 and in Figure 5.
This will be explained using the magnetization correction processing diagram shown in the figure. First, in step 5T31 in FIG. 3, initial processing of the mobile navigation device, initial display, and turning correction of the geomagnetic azimuth sensor 1 are executed. The learning value of the azimuth circle radius is initialized from the maximum and minimum values of the XY output component values of the geomagnetic azimuth sensor 1 obtained here. (1)
In the formula, Xmax, Xm1n, Ymax+Ymin are the maximum and minimum values of the XY output component values, respectively, and RAl
is the learned value of the radius of the azimuth circle. Xmax-Xmin Ymax Ymin In step 5T32, the process waits until the vehicle moves a certain distance or more. In step 5T33, the output data from the geomagnetic direction sensor 1 and the wheel speed sensor 2 are input manually. Step 5T
In step 34, the absolute heading and the amount of change in the heading of the vehicle are calculated. In step 5T35, based on the past several pieces of data including the individual current values, the radius value of the azimuth circle learned up to that point is used as the evaluation reference value, and the disturbance of the azimuth circle radius, the disturbance of the xy coordinates, and the absolute azimuth. Evaluate the disturbance. Based on this evaluation, weighting of data used in subsequent magnetization correction processing and correction timing are determined. The weighted data is also used to calculate the center of the azimuth circle (step 5T49) and to calculate the traveling direction of the vehicle (step 5T36), which will be described later. Furthermore, the previously learned radius value of the evaluation reference value is
Furthermore, it is processed to correspond to changes in the amount of magnetization of the vehicle body as a result of learning and re-evaluating disturbances in individual data. In step 5T36, the traveling direction of the vehicle is calculated using (2) 2. In equation (2), θ and θi-1 are the current and previous values of the vehicle's heading, JK is the absolute heading, φ is the change in the vehicle's heading, and k is the absolute value that changes depending on the coordinates and the evaluation result of the heading disturbance. The weighting of the directions indicates the coefficients respectively. θ1−θ1−+ + (JK−θ=−+) x k+φ
X(1-k)...(2) In step 5T37, the magnetization of the geomagnetic direction sensor 1 is corrected. In step 5T38, each data is stored in the memory and the vehicle position is updated. In FIG. 4, in step 5T41, the turning angle and turning distance of the vehicle are updated, and in step 5T42, the coordinates and azimuth disturbance are updated in order to determine that the vehicle is running straight and that the magnetic part deviation and azimuth disturbance are small. The evaluation results are determined, and if both evaluation results are small, step 5T43 is executed; if not, the detection accuracy of the geomagnetic direction sensor data is low, and the magnetization correction process is exited. Step 5T
43, it is determined whether the settings of the X and Y component output values before the direction change and the turning angle and turning distance of the vehicle are valid, and the X and Y component output values before the direction change are determined.
If the component output value is not set, or if the turning angle is less than 60° or more than 120°, or if the turning distance exceeds 200 m, step 5T44 is executed; otherwise, step 5T45 is executed. Here, the reason why the turning angle and turning distance are included in the processing conditions is to remove data before and after changes in the magnetic environment and to enable correction based on left and right turning movements of the vehicle. In step 5T44, the set values of the X and Y component output values before the direction change, the turning angle of the vehicle, and the turning distance are cleared to zero, and then the process exits from the magnetization correction process. In step 5T45, radial disturbance is evaluated in order to determine the magnitude of the magnetic disturbance. In step 5T46, in order to avoid correction in areas with large disturbance magnetism, if the evaluation result in step 5T45 is large, the process of magnetization correction is skipped, otherwise step 5T
47. In step 5T47, the learned value of the radius of the azimuth circle of the geomagnetic azimuth sensor, which is the evaluation reference value, is updated in order to correspond to fluctuations in the magnetic disturbance. In equation (3), x, y
, and X2. Y2 is the x and y component output values before and after the direction change, A is the turning angle of the vehicle, and Part 1. , R is the current value of the radius of the azimuth circle. In step 5T48, the correction is made to ensure 1. In order to do this, in step 5, if the evaluation result in step ST4.5 is medium, the magnetization correction process is skipped, and if not, step 5T49 is executed. In step 5T49, the center of the azimuth circle is calculated and learned based on the following formula based on the relationship between the X and Y component output values before and after the azimuth change and the turning angle of the vehicle as shown in FIG. 1 set is X
CO+ Y Co and X, Y are the x and y component output values of the estimated value and learned value of the center of the azimuth circle of the geomagnetic azimuth sensor. xo=xo+(xco-xo)xk −・ −−−・
(7) Yl)=YO+(YCO-Yll)X k ・
--- (8) In the above embodiment, individual evaluation methods for coordinate disturbance, azimuth disturbance, and radius disturbance were explained, but data weighted by other evaluation methods may be used for processing other than magnetization correction. It may be used, and the same effect as the above embodiment can be obtained. Also, the calculation formula for the center of the azimuth circle is used to calculate the X before and after the azimuth change. The Y component output value may be the average coordinate point of the averaged X and Y component output values, or the calculation formula may be set to the maximum XY component of the azimuth circle,
Any other method may be used, such as using the minimum value.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば、地磁気を利用した第
1の方位センサと車両の方位変化を検出する第2の方位
センサの個々の現在値を含む過去何個か分のデータを基
に方位円のそれまでに学習した半径値を評価基準値とし
て方位円半径の乱れ、XY座標の乱れ及び絶対方位の乱
れを評価することにより、以後の補正処理で使うデータ
の重みづけ、補正時期の決定を行い、該重み付けしたデ
ータに基づいて方位円中心の算出や補正を行う。そして
、評価基準値のそれまでに学習した半径値を更に学習さ
せ、該個々のデータの乱れの評価を車体ボディの着磁量
の変化に対応させるようにしたので、外乱磁気を含む磁
気乱れの大きさ、外乱磁気の大きさ、そして方位の乱れ
の大きさ等、異なった観点から評価して異端データを除
去する。また、高い検出精度に加え、外乱磁気の影響の
少ないデータを計算に用いることにより方位円中心の信
頼性を向上させ、悪環境下での補正を防止して補正を的
確に行うことができる等の効果がある。
As described above, according to the present invention, based on past data including the individual current values of the first azimuth sensor that uses geomagnetism and the second azimuth sensor that detects changes in the azimuth of the vehicle, By evaluating disturbances in the radius of the azimuth circle, disturbances in the XY coordinates, and disturbances in the absolute orientation using the previously learned radius value of the azimuth circle as an evaluation reference value, it is possible to weight the data used in subsequent correction processing and determine the timing of correction. A determination is made, and the center of the azimuth circle is calculated and corrected based on the weighted data. Then, the previously learned radius value of the evaluation reference value is further learned, and the evaluation of the disturbance of each individual data is made to correspond to the change in the amount of magnetization of the vehicle body, so the magnetic disturbance including disturbance magnetism is Heretical data is removed by evaluating it from different perspectives, such as the size, the magnitude of magnetic disturbance, and the magnitude of azimuth disturbance. In addition to high detection accuracy, the reliability of the center of the azimuth circle is improved by using data that is less affected by magnetic disturbances in calculations, and it is possible to prevent corrections under adverse environments and perform accurate corrections. There is an effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による車両位置検出装置の
構成を示すブロック図、第2図は一例として乱れの評価
で使う評価基準値の説明図、第3図及び第4図はこの発
明の詳細な説明するフローチャート、第5図はこの発明
の着磁補正処理図、第6図は方位変化前後のXY成分出
力値と車両旋回角の説明図、第7図は従来の車両検出装
置における着磁補正の構成図、第8図は方位変化におけ
る地磁気方位センサの出力変化説明図、第9図(イ)は
地磁気方位センサの出力変化及び演算説位変化説明図で
ある。 図において、1は地磁気方位センサ(第1の方位センサ
)、2は車輪速センサ(第2の方位センサ)、3は走行
距離センサ、5は演算部である。 なお、図中、同一符号は同一、又は相当部分を示す。 第 図 !I!輪itシカ (3F、2.+):ろイ111で戸1)第 図 第 3 図 第 図 第 図 第 図 ■ 0 第 ワ 図 第 8 図 第 図 方植変イヒ桐E 手 続 補 正 書 (自発)
FIG. 1 is a block diagram showing the configuration of a vehicle position detection device according to an embodiment of the present invention, FIG. 2 is an explanatory diagram of evaluation reference values used in disturbance evaluation as an example, and FIGS. 3 and 4 are diagrams of the present invention. 5 is a diagram of the magnetization correction process of the present invention, FIG. 6 is an explanatory diagram of the XY component output value and vehicle turning angle before and after the direction change, and FIG. 7 is a diagram of the conventional vehicle detection device. A configuration diagram of magnetization correction, FIG. 8 is an explanatory diagram of output change of the geomagnetic azimuth sensor due to azimuth change, and FIG. 9 (a) is an explanatory diagram of output change of the geomagnetic azimuth sensor and calculation orientation change. In the figure, 1 is a geomagnetic azimuth sensor (first azimuth sensor), 2 is a wheel speed sensor (second azimuth sensor), 3 is a travel distance sensor, and 5 is a calculation unit. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Diagram! I! Wheel IT deer (3F, 2.+): Roi 111 door 1) Figure 3 Figure 8 Figure 8 )

Claims (1)

【特許請求の範囲】[Claims]  地磁気を利用する第1の方位センサと、該地磁気以外
で車両の方位変化を検出する第2の方位センサとの夫々
の現在値を含む過去何個か分のデータを基にして第1の
方位センサのX、Y成分値によるXY座標上の方位円の
それまでに学習した半径値を評価基準値として個々のデ
ータの乱れを演算部で乱れ評価し、前記乱れ評価の結果
を以後の着磁補正処理に用いる個々のデータの重み付け
や、補正時期の決定に用い、前記重み付けしたデータに
より方位円の中心の算出と補正及び方位円の半径の学習
を行い、その学習結果を評価基準値となるそれまでに学
習した半径値を該補正時期に方位円中心を基にして更に
学習させ、該個々のデータの乱れ評価を移動体ボディー
の着磁量の変化に対応させるようにした地磁気方位セン
サの着磁補正方法。
The first direction is determined based on several pieces of past data including the current values of a first direction sensor that uses geomagnetism and a second direction sensor that detects changes in the vehicle's direction using something other than the geomagnetism. Disturbances in individual data are evaluated in the calculation unit using the previously learned radius value of the azimuth circle on the XY coordinates based on the X and Y component values of the sensor as the evaluation reference value, and the results of the disturbance evaluation are used for subsequent magnetization. It is used to weight each piece of data used in the correction process and to determine the correction timing, and the weighted data is used to calculate and correct the center of the azimuth circle and learn the radius of the azimuth circle, and the learning results are used as the evaluation reference value. A geomagnetic azimuth sensor that further learns the previously learned radius value based on the center of the azimuth circle at the correction time, and makes the disturbance evaluation of the individual data correspond to changes in the amount of magnetization of the mobile body. Magnetization correction method.
JP2093377A 1990-04-09 1990-04-09 Magnetization correction method for geomagnetic bearing sensor Expired - Fee Related JP2723651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2093377A JP2723651B2 (en) 1990-04-09 1990-04-09 Magnetization correction method for geomagnetic bearing sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2093377A JP2723651B2 (en) 1990-04-09 1990-04-09 Magnetization correction method for geomagnetic bearing sensor

Publications (2)

Publication Number Publication Date
JPH03291515A true JPH03291515A (en) 1991-12-20
JP2723651B2 JP2723651B2 (en) 1998-03-09

Family

ID=14080616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093377A Expired - Fee Related JP2723651B2 (en) 1990-04-09 1990-04-09 Magnetization correction method for geomagnetic bearing sensor

Country Status (1)

Country Link
JP (1) JP2723651B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038587A (en) * 2012-07-20 2014-02-27 Nintendo Co Ltd Information processing program, information processing device, information processing system, and attitude calculation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834314A (en) * 1981-08-24 1983-02-28 Nippon Soken Inc Bearing detector
JPS63128222A (en) * 1986-11-18 1988-05-31 Sumitomo Electric Ind Ltd Magnetization correcting method for geomagnetic azimuth sensor
JPH01154252A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Program debug back-up device for parallel processors
JPH01165915A (en) * 1987-12-22 1989-06-29 Tokai Rika Co Ltd Azimuth sensor of car
JPH01173614U (en) * 1988-05-27 1989-12-08

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5834314A (en) * 1981-08-24 1983-02-28 Nippon Soken Inc Bearing detector
JPS63128222A (en) * 1986-11-18 1988-05-31 Sumitomo Electric Ind Ltd Magnetization correcting method for geomagnetic azimuth sensor
JPH01154252A (en) * 1987-12-11 1989-06-16 Hitachi Ltd Program debug back-up device for parallel processors
JPH01165915A (en) * 1987-12-22 1989-06-29 Tokai Rika Co Ltd Azimuth sensor of car
JPH01173614U (en) * 1988-05-27 1989-12-08

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014038587A (en) * 2012-07-20 2014-02-27 Nintendo Co Ltd Information processing program, information processing device, information processing system, and attitude calculation method

Also Published As

Publication number Publication date
JP2723651B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
KR100792514B1 (en) Method to obtain orientation of a mobile body and system thereof
JPH04315913A (en) Vehicle bearing measuring device
JPH051914A (en) Compensating magnetized vector
JPH02501854A (en) Navigation method for vehicles with electronic compasses
CN106979780A (en) A kind of unmanned vehicle real-time attitude measuring method
JPH02206716A (en) Running azimuth detection device for vehicle
WO2018214226A1 (en) Unmanned vehicle real-time posture measurement method
JPH04238216A (en) Calculating method for scale factor of gyroscope
JPH02501855A (en) Navigation method for vehicles with electronic compass
CN108426584B (en) Calibration method for multiple sensors of automobile
CN106595669B (en) Method for resolving attitude of rotating body
JPH03293517A (en) Correcting method for magnetization of terrestrial magnetism sensor
CN110030991B (en) High-speed rotation angle movement measuring method for flyer integrating gyroscope and magnetometer
JPH03291515A (en) Polarization correcting method for earth magnetism azimuth sensor
JPH03285110A (en) Measuring apparatus of angular velocity
CN114252073A (en) Robot attitude data fusion method
Xu et al. Research on orb-slam autonomous navigation algorithm
JPH0462419A (en) Azimuth detector
JPS63128222A (en) Magnetization correcting method for geomagnetic azimuth sensor
Wang et al. Research on Dynamic Heading Calculation of Complex Magnetic Disturbance
JP3682091B2 (en) Current position calculation system and current position calculation method
JPH03291516A (en) Stable value extracting method for earth magnetism azimuth sensor
JP3635145B2 (en) Gyro sensor sensitivity coefficient correction device
JPH1183532A (en) Location system
JP2737243B2 (en) Mobile navigation system

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees