JPH03290355A - Al2o3-wc-based high-strength-high-toughness sintered material - Google Patents

Al2o3-wc-based high-strength-high-toughness sintered material

Info

Publication number
JPH03290355A
JPH03290355A JP2090181A JP9018190A JPH03290355A JP H03290355 A JPH03290355 A JP H03290355A JP 2090181 A JP2090181 A JP 2090181A JP 9018190 A JP9018190 A JP 9018190A JP H03290355 A JPH03290355 A JP H03290355A
Authority
JP
Japan
Prior art keywords
toughness
strength
al2o3
sintered body
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090181A
Other languages
Japanese (ja)
Inventor
Hidehiro Endo
遠藤 英宏
Masanori Ueki
正憲 植木
Hiroshi Kubo
紘 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2090181A priority Critical patent/JPH03290355A/en
Publication of JPH03290355A publication Critical patent/JPH03290355A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improved hardness, toughness and thermal conductivity of an Al2O3-WC-based sintered material by adding WC and Al2O3 to the sintered material. CONSTITUTION:10-90vol.% WC having <=10mum particle diameter is blended with 90-10vol.% Al2O3, molded and sintered under normal pressure, sintered by hot press or subjected to hot hydrostatic pressure sintering to give an Al2O3- WC-based high-strength.high-toughness sintered material having density of >=90% theoretical value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高硬度、高強度、高靭性でかつ熱伝導性に優れ
たu、o3−wc系高強度・高靭性焼結体に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a u, o3-wc-based high-strength, high-toughness sintered body that has high hardness, high strength, high toughness, and excellent thermal conductivity.

従来の技術 !’j1203は高硬度で耐摩耗性に優れ、またセラミ
ックス材料の中では比較的安価なため、広く摺動耐摩耗
部材として使用されている。
Conventional technology! 'j1203 has high hardness and excellent wear resistance, and is relatively inexpensive among ceramic materials, so it is widely used as a sliding wear-resistant member.

また、M、03系セラミツクスの焼結性向上、粒成長抑
制を目的として、KgO、CaO等の焼結助剤を添加し
た焼結体、あるいは靭性向上を目的としてZr07を添
加した複合焼結体は、一般に白色セラミックスとして知
られ、切削工具チップ(スローアウェイチップ)をはじ
め、種々の工具材料として用いられている。
In addition, sintered bodies containing sintering aids such as KgO and CaO are added to improve the sinterability of M and 03-based ceramics and suppress grain growth, and composite sintered bodies are added with Zr07 to improve toughness. are generally known as white ceramics and are used as cutting tool tips (throw-away tips) and various other tool materials.

また、紋203セラミックスの強度、靭性さらに硬さ、
熱伝導率を改善するために、TiCあるいはTi(C:
N)を添加した複合焼結体は、いわゆる黒色セラミック
スとして知られ、鋳鉄、鋼等の切削工具チップ、その他
工具材料等に実用化されている。
In addition, the strength, toughness and hardness of Mon 203 ceramics,
To improve thermal conductivity, TiC or Ti(C:
Composite sintered bodies containing N) are known as so-called black ceramics, and have been put to practical use as cutting tool tips for cast iron, steel, etc., and other tool materials.

これらセラミックス工具は、従来の工具鋼、ハイス鋼、
WC−Co系超硬合金、あるいはTiC(TaC) −
N+/Ma系サーメーすトとは異なり、金属相を含まな
いため、硬さ、耐熱性に優れ、また被削金属との反応性
も乏しいので、例えば切削工具チップでは、高速加工、
高温加工などの条件の厳しい加工に適している。
These ceramic tools are made of conventional tool steel, high-speed steel,
WC-Co cemented carbide or TiC (TaC) -
Unlike N+/Ma-based thermates, it does not contain a metallic phase, so it has excellent hardness and heat resistance, and also has poor reactivity with the workpiece metal.
Suitable for processing with severe conditions such as high temperature processing.

このようにセラミ−2クス工具は負荷の大きな条件で使
用されることが多いため、工具寿命向上を目的として材
料の高硬度化、高強度化、高靭化、さらに工具に発生す
る熱を有効に発散させるために熱伝導率のさらなる改善
が望まれている。
In this way, ceramic 2x tools are often used under conditions of heavy load, so in order to extend tool life, we have made the material harder, stronger, and tougher, and we have also made effective use of the heat generated by the tool. Further improvement in thermal conductivity is desired in order to dissipate heat.

M2O3セラミックスの特性を向上させるため、TiC
、Ti(CM)を添加した黒色セラミックス以外に1例
えば特開昭52−30812号公報では、48重量%以
下のAl1203にTiB2、ZrB2及びHfB2よ
り選ばれた耐火性ニー化物を5〜50重量%、V 、 
Wb、 Ta。
To improve the properties of M2O3 ceramics, TiC
In addition to black ceramics containing Ti (CM), 1 For example, in JP-A-52-30812, 5 to 50 weight % of a refractory nephride selected from TiB2, ZrB2 and HfB2 is added to 48 weight % or less of Al1203. ,V,
Wb, Ta.

Cr、 No等のニー化物を20重量%以下、■族、V
族、■族耐天性遷移金属の炭化物又は炭窒化物を35重
量%、さらに3重量%以下のNgOを添加することを開
示している。
20% by weight or less of nickel compounds such as Cr and No, group II, V
It is disclosed that 35% by weight of carbides or carbonitrides of weather-resistant transition metals of groups 1 and 2 and 3% or less of NgO are added.

TiB2、ZrB2、Hf1h等の耐熱遷移金属のニー
化物は高融点、高硬度という特性を有し、M2O3セラ
ミックスの特性改善には有効である。しかしながら強度
及び靭性の点に関しては、未だ改善の余地がある。
Nied compounds of heat-resistant transition metals such as TiB2, ZrB2, and Hf1h have the characteristics of high melting point and high hardness, and are effective in improving the characteristics of M2O3 ceramics. However, there is still room for improvement in terms of strength and toughness.

一方、l1lCは、高硬度でありまた被削材との反応性
にも乏しく、工具材として優れた特性を宥しているが、
一方で単体では強度・靭性に劣るという欠点も併せ持っ
ている。そこでWCに5〜20重量%の金属coを結合
相として加え、サーメット化した、いわゆる超硬合金と
して広く実用化されてきた。
On the other hand, l1lC has high hardness and poor reactivity with the workpiece material, and has excellent properties as a tool material.
On the other hand, it also has the disadvantage of being inferior in strength and toughness when used alone. Therefore, 5 to 20% by weight of metallic cobalt is added to WC as a binder phase to form a cermet, which has been widely put into practical use as a so-called cemented carbide.

しかしながら、このようなWC−Co系硬合金において
は、WC単体とくらべて強度・靭性は飛躍的に改善され
るものの、前述した様に結合金属相としてのGoを多量
に含むため硬さ、耐熱性、さらには被削材との低反応性
といった特性を著しく劣化させてしまう問題点を有して
いた。
However, although the strength and toughness of such WC-Co-based hard alloys are dramatically improved compared to WC alone, as mentioned above, they contain a large amount of Go as a bonding metal phase, so they have poor hardness and heat resistance. However, this technique has the problem of significantly deteriorating properties such as poor reactivity and low reactivity with the workpiece material.

発明が解決しようとする課題 M 20 s及びllICは、高硬度でかつ被削材との
反応性にも乏しいという特徴を有しているものの、共に
単体では強度及び靭性が低いという欠点を有していた。
Problems to be Solved by the Invention Although M20s and llIC have the characteristics of high hardness and poor reactivity with the work material, both have the drawback of low strength and toughness when used alone. was.

本発明の目的は、M2O3とl1lCとを複合化するこ
とにより、硬さ、被削材との低反応性という特徴を失う
ことなく強度、靭性を向上させ、ざらにAl2O3の熱
伝導率を改良することにある。
The purpose of the present invention is to improve the strength and toughness without losing the characteristics of hardness and low reactivity with the work material, and to roughly improve the thermal conductivity of Al2O3 by combining M2O3 and l11C. It's about doing.

課題を解決するための手段 本発明は賀Cが10〜90容量%で残部が実質Al2O
3より成る相対密度が90%以上の高密度かつ高強度・
高靭性なM2O3−wc系焼結体に関するものである。
Means for Solving the Problems The present invention consists of 10 to 90% by volume of carbon and the remainder being substantially Al2O.
High density and high strength with a relative density of 90% or more.
The present invention relates to a highly tough M2O3-wc-based sintered body.

すなわち、本発明はwCが10〜90容量%で残部が実
質M2O3より威る混合粉末を成形・焼結して得られた
密度が理論値の90%以上であることを特徴とするAl
2O,−’dC系高強度・高靭性焼結体に関するもので
ある。
That is, the present invention is an Al powder characterized in that the density obtained by molding and sintering a mixed powder with a wC of 10 to 90% by volume and the balance being substantially higher than M2O3 is 90% or more of the theoretical value.
This invention relates to a 2O, -'dC-based high-strength and high-toughness sintered body.

以下に本発明の内容について詳細に説明する。The content of the present invention will be explained in detail below.

本発明のAl120.−wc複合焼結体中においては、
高硬度のM2O3粒子と、同じ〈高硬度のWC粒子とが
互いに分散した構造を威しており、他に低硬度な第3相
を右さないため高硬度という特徴は失われない、また、
複合体中において、いわゆる粒子分散効果等により破壊
源からのクラ−2りの進展は偏向、湾曲し、強度及び靭
性が向上している。
Al120 of the present invention. -In the wc composite sintered body,
The high hardness M2O3 particles and the same high hardness WC particles have a mutually dispersed structure, and there is no other low hardness third phase, so the high hardness characteristic is not lost.
In the composite, the progress of cracks from the fracture source is deflected and curved due to the so-called particle dispersion effect, and the strength and toughness are improved.

さらにM2O3中に−Cを、また逆にwC中にM、03
を添加することにより、互いに焼結体中で粒成長を抑制
するために複合体中での構成相は微細化し1強度の向上
に寄与している。また、Al1203にくらべWCは熱
伝導率が高いためM2O3にwCを添加することにより
本発明のN1203−We焼結体の熱伝導車も向上する
Furthermore, -C is added to M2O3, and conversely, M, 03 is added to wC.
By adding , the constituent phases in the composite are made finer in order to mutually suppress grain growth in the sintered body, contributing to an improvement in strength. Furthermore, since WC has a higher thermal conductivity than Al1203, adding wC to M2O3 also improves the thermal conductivity of the N1203-We sintered body of the present invention.

本発明の焼結体で貿CがlO〜80容量%であるのはW
Cが10容量%未満では複合化量が少ないためM2O3
セラミックスの強度・靭性・熱伝導率の向上は小さく、
また同様に%llCが80容量%を超えると−Cに対す
るM2O3の複合化量が小くて粒子分散の効果が小さく
なり、強度e靭性の向上も期待できないからである。
In the sintered body of the present invention, the trade C is 1O to 80% by volume.
If C is less than 10% by volume, the amount of compounding is small, so M2O3
Improvements in strength, toughness, and thermal conductivity of ceramics are small;
Similarly, if %llC exceeds 80% by volume, the amount of composite of M2O3 with respect to -C will be small, the effect of particle dispersion will be small, and no improvement in strength or toughness can be expected.

本発明において、焼結方法としては常圧焼結法、ホット
プレス焼結法、熱間静水圧加圧(HIP)焼結法等既知
の焼結法のいずれも用いることができる。
In the present invention, any known sintering method can be used as the sintering method, such as a pressureless sintering method, a hot press sintering method, a hot isostatic pressing (HIP) sintering method, and the like.

また本発明において、使用するM2O3粉体としては、
通常はα型M2O3であるが、その化β型、γ型等の結
晶でも差支えない、さらに非晶質のAl2O3、あるい
は加熱中にα−Al2O3を生成するM(OH)3. 
A100H等でもよい。
In addition, in the present invention, the M2O3 powder used is as follows:
Usually it is α-type M2O3, but crystals such as β-type and γ-type may also be used, as well as amorphous Al2O3 or M(OH)3, which generates α-Al2O3 during heating.
A100H etc. may also be used.

またM2O3粒体の粒径として、通常は焼結性の優れる
10pm以下のものが好ましく、IILm以下(サブミ
クロン)の微細なものはさらに望ましい。
Furthermore, the particle size of the M2O3 particles is preferably 10 pm or less, which provides excellent sinterability, and more preferably fine particles of IILm or less (submicron).

M、03と複合化するWC粉体も通常は焼結性の優れる
10g、m以下のものが好ましく、IILm以下(サブ
ミクロン)の微細なものはさらに望ましい。
The WC powder to be composited with M and 03 is preferably 10 g, m or less because of its excellent sinterability, and more preferably fine powder of IILm or less (submicron).

以上のようにM 203にlO〜80容量%の範囲で−
Cを添加した混合材料を酸形・焼結することによって高
密度で高硬度、高強度、高靭性かつ熱伝導性にも優れた
M2O3WC系複合焼結体が製造可能となる。
As mentioned above, M 203 has −
By acid-forming and sintering a C-added mixed material, an M2O3WC-based composite sintered body with high density, high hardness, high strength, high toughness, and excellent thermal conductivity can be manufactured.

本発明のような複合セラミックスの理論密度を正確に決
定することは容易ではなく、また一般に焼結体の密度と
しては高い方が好ましいが、少なくとも密度が理論値の
90%以上の焼結体でなければ前述の好ましい特性は損
われ、望ましいものではない。
It is not easy to accurately determine the theoretical density of composite ceramics such as the one of the present invention, and generally a higher density is preferable for the sintered body, but it is preferable to use a sintered body whose density is at least 90% of the theoretical value. Otherwise, the aforementioned favorable properties would be impaired and would not be desirable.

作用 本発明における焼結体は、WCが10〜90容量%で残
部が実質M2O3より成り、焼結体中で高硬度のWC粒
子とAQ203粒子とが分散した構造を有しているため
、l)高硬度であり、2)粒子分散効果により靭性が向
上し、3)靭性向上に伴って強度も改善され、4)良熱
伝導性のWCの添加によりAl2O3の熱伝導率を改善
する作用を威している。
Function The sintered body in the present invention has a structure in which WC is 10 to 90% by volume and the remainder is substantially M2O3, and highly hard WC particles and AQ203 particles are dispersed in the sintered body. ) has high hardness, 2) toughness is improved due to the particle dispersion effect, 3) strength is improved with improved toughness, and 4) the addition of WC, which has good thermal conductivity, has the effect of improving the thermal conductivity of Al2O3. It's intimidating.

以下実施例を挙げて説明する。This will be explained below with reference to examples.

実施例 実施例1〜7 α型M2O3粉末(平均粒径0.2gm、純度99.9
9%以上)に実施例1〜7に示す容量比で1llC粉末
(平均粒径1.OILm、純度99%以上)を添加し、
ボールミルを用いて充分混合した後、1700℃の温度
で2時間、アルゴン不活性雰囲気中で、 400kgf
/cm2の圧力でホットプレス焼結を行った。
Examples Examples 1 to 7 α-type M2O3 powder (average particle size 0.2 gm, purity 99.9
9% or more) and 1llC powder (average particle size 1.OILm, purity 99% or more) at the volume ratio shown in Examples 1 to 7.
After thorough mixing using a ball mill, 400 kgf was heated at a temperature of 1700°C for 2 hours in an argon inert atmosphere.
Hot press sintering was performed at a pressure of /cm2.

焼結体はJIS R1801に準拠し、3mmX4sm
X380鳳の試験片に加工し、アルキメデス法により密
度を測定した後、室温で三点曲げ試験を行った。焼結体
の靭性としては、予き裂導入法(S E PH法)を用
いて、破壊靭性値;Kxcを測定した。また、硬さの評
価として、ビッカース硬さを荷重1kgf 、保持時間
15秒で測定した。さらに、熱伝導率についてはレーザ
ーフラッシュ法を用いて測定した。
The sintered body conforms to JIS R1801 and is 3mm x 4sm.
After processing the sample into a test piece of X380 and measuring its density by the Archimedes method, a three-point bending test was conducted at room temperature. As for the toughness of the sintered body, the fracture toughness value; Kxc was measured using a pre-crack introduction method (SE PH method). Further, as a hardness evaluation, Vickers hardness was measured under a load of 1 kgf and a holding time of 15 seconds. Furthermore, thermal conductivity was measured using a laser flash method.

第1表中、実施例1〜7に各組成について得られた焼結
体の相対密度(理論値に対して百分率で示す)、曲げ強
さ、破壊靭性値、硬さ及び熱伝導率を示す。
In Table 1, Examples 1 to 7 show the relative density (expressed as a percentage of the theoretical value), bending strength, fracture toughness, hardness, and thermal conductivity of the sintered bodies obtained for each composition. .

また同第1表中、比較例1〜3には1llCを添加しな
いU2O5単体を1350.1500及び1700℃の
各温度でホットプレスした焼結体について、また比較例
4〜6には逆に般、03を添加しないWC単体を150
0.1700及び1800℃でホットプレスした焼結体
について同様にその特性を示している。
In addition, in Table 1, Comparative Examples 1 to 3 are for sintered bodies obtained by hot pressing U2O5 alone without addition of 1llC at temperatures of 1350, 1500 and 1700°C, and Comparative Examples 4 to 6 are for general use. , 150 WC alone without adding 03
The properties of sintered bodies hot-pressed at 0.1700°C and 1800°C are similarly shown.

さらに比較例7及び8にはそれぞれM2O3にWCを5
及び95容量%添加した混合粉体を1700℃でホット
プレス焼結した場合についても同様にその特性を示して
いる。尚、比較例3 (Ai203単体、1700℃で
ホットプレス)及び比較例6 (wc単体、1900℃
でホットプレス)では焼結体中で粒成長が著しく、テス
トピースの加工が不可能であり、従って各特性の測定は
できなかった。
Furthermore, in Comparative Examples 7 and 8, 5 WC was added to M2O3.
The same characteristics are also shown when a mixed powder containing 95% by volume is hot-press sintered at 1700°C. In addition, Comparative Example 3 (Ai203 alone, hot pressed at 1700°C) and Comparative Example 6 (wc alone, 1900°C
(hot pressing), the grain growth in the sintered body was significant, making it impossible to process a test piece, and therefore it was not possible to measure each characteristic.

実施例1〜7及び比較例1〜6より、種々の温度でホッ
トプレスしたM2O3単体、WC単体にくらべ、その両
者を複合化した本発明のu、o3−we系複合焼結体は
、曲げ強さ、破壊靭性値等において、特性が著しく改善
されていることが明らかである。
From Examples 1 to 7 and Comparative Examples 1 to 6, compared to M2O3 alone and WC alone hot-pressed at various temperatures, the u, o3-we composite sintered body of the present invention, which is a composite of both, is It is clear that the properties are significantly improved in terms of strength, fracture toughness, etc.

また比較例7.8及び実施例1〜7より、M2O3に添
加するwCの量としてはlO〜80容量%が特性の改良
の見地から適当であることがわかる。
Further, from Comparative Example 7.8 and Examples 1 to 7, it is understood that the amount of wC added to M2O3 is 10 to 80% by volume from the viewpoint of improving properties.

また、X線回折の結果から実施例1〜7の焼結体からa
−M2O3とWe (hexagonal相)のピーク
が観察され、焼結体はα−Al 203と賀C粒の分散
した構造より成ることがわかった。
In addition, from the results of X-ray diffraction, it was found that a
-M2O3 and We (hexagonal phase) peaks were observed, and it was found that the sintered body had a structure in which α-Al 203 and KaC grains were dispersed.

実施例8〜lO 実施例1〜7で用いたと同様の平均粒径0.2井m、純
度99.8!3%以上のα型M2O3粉末に70容量%
のWC粉末(平均粒径1.Ogm、純度99%以上)を
添加し、ボールミルを用いて充分、粉体を混合後、16
00〜1900℃の温度で2時間、アルゴンガス中で4
00kgf/cm’の圧力でホットプレス焼結した。
Example 8-IO 70% by volume of α-type M2O3 powder with an average particle size of 0.2 μm and a purity of 99.8!3% or more as used in Examples 1-7
of WC powder (average particle size 1.0gm, purity 99% or more) was added, and the powder was thoroughly mixed using a ball mill.
4 hours in argon gas at a temperature of 00 to 1900 °C for 2 hours.
Hot press sintering was performed at a pressure of 00 kgf/cm'.

得られた焼結体について、実施例1〜7と同様にその相
対密度、曲げ強さ及び破Is靭性値について測定し、第
2表中に結果をまとめている。
The relative density, bending strength, and fracture Is toughness of the obtained sintered bodies were measured in the same manner as in Examples 1 to 7, and the results are summarized in Table 2.

また比較例9として、実施例8〜10と全く同じ混合粉
体を1500℃でホットプレスした場合についても、そ
の特性を第2表に示している。
Table 2 also shows the properties of Comparative Example 9, in which the same mixed powder as in Examples 8 to 10 was hot pressed at 1500°C.

また比較例9と実施例3及び8〜10より、ホットプレ
ス条件が適切で、90%以上の相対密度を有する焼結体
は、曲げ強さと破壊靭性値において優れた特性を示して
いるのに対し、相対密度が80%を下回る焼結体では著
しく特性が低下することが明らかである。
Furthermore, from Comparative Example 9 and Examples 3 and 8 to 10, a sintered body with appropriate hot pressing conditions and a relative density of 90% or more shows excellent properties in terms of bending strength and fracture toughness. On the other hand, it is clear that a sintered body with a relative density of less than 80% has significantly lower characteristics.

実施例U 本発明のM2O3−wc系複合体の優位性を明らかにす
るため、A1203−TiC、M2O3−TiB2等の
黒色セラミックスとの特性の比較を行った。
Example U In order to clarify the superiority of the M2O3-wc-based composite of the present invention, the properties were compared with black ceramics such as A1203-TiC and M2O3-TiB2.

実施例1〜10で用いたと同様のα−M203粉末に3
0容量%のWC(実施例1−10と同じ)粉末を添加し
、さらに比較用として、α−A1203に30容量%の
TiC(平均粒径1.2 p−m、純度99%以上)、
TiB2 (平均粒径2〜31Lm、純度88%以上)
、及びZrB2(平均粒径3JLm、純度98%以上)
粉末を各々添加した。
3 to α-M203 powder similar to that used in Examples 1 to 10.
0 volume % WC (same as Example 1-10) powder was added, and for comparison, 30 volume % TiC (average particle size 1.2 p-m, purity 99% or more) was added to α-A1203.
TiB2 (average particle size 2-31Lm, purity 88% or more)
, and ZrB2 (average particle size 3JLm, purity 98% or more)
Each powder was added.

混合粉末をボールミルにより、充分混練した後、175
0℃で2時間ホットプレス焼結し、得られた焼結体につ
いて、密度、曲げ強さ及び破壊靭性値を測定した。
After thoroughly kneading the mixed powder with a ball mill, 175
Hot press sintering was carried out at 0° C. for 2 hours, and the density, bending strength and fracture toughness values of the obtained sintered body were measured.

第3表に実施例11と比較例10−12として、その結
果を示している。
Table 3 shows the results as Example 11 and Comparative Examples 10-12.

実施例11と比較例10〜12より、M2O3にTie
、TiB2あるいはZrB2を添加するよりも本発明の
ようにWCを添加する方がより高強度・高靭性な焼結体
が得られることが明らかである。
From Example 11 and Comparative Examples 10 to 12, Tie in M2O3
It is clear that a sintered body with higher strength and toughness can be obtained by adding WC as in the present invention than by adding , TiB2 or ZrB2.

実施例12〜13 本発明のAlAl12o3−系焼結体について、常圧焼
結の適応性について検討した。
Examples 12 to 13 The adaptability of the AlAl12o3-based sintered body of the present invention to pressureless sintering was investigated.

実施例8〜lOと同様にα型M2O3粉末に70容量%
のWC粉末を添加し、ボールミルを用いて充分混合した
後、50X 5haの金型を用いて100kgf/c層
2の圧力で一軸加圧成形した。その後成形体を7000
kgf/cm2(7)圧力でcIP(冷間静水圧プレス
)rft。
Example 8 - 70% by volume of α-type M2O3 powder as in IO
WC powder was added thereto, thoroughly mixed using a ball mill, and then uniaxially pressed using a 50×5 ha mold at a pressure of 100 kgf/c layer 2. After that, the molded body was 7000
cIP (cold isostatic pressing) rft at kgf/cm2 (7) pressure.

形し、アルゴン気流中、1800及び1850℃の温度
で1時間常圧焼成した。
It was molded and baked at normal pressure for 1 hour at temperatures of 1800 and 1850° C. in an argon stream.

この時、サンプル中AQ 203相の分解・気化を防止
するため、成形体はAn 203粉体(詰め粉)中に埋
めて焼成に供した。
At this time, in order to prevent decomposition and vaporization of the AQ 203 phase in the sample, the molded body was buried in An 203 powder (filling powder) and subjected to firing.

得られた焼結体について実施例8〜lOと同様に密度、
曲げ強さ、及び破壊靭性値を測定し、その結果を第4表
中実施例12、工3に示している。
Regarding the obtained sintered body, the density,
The bending strength and fracture toughness values were measured and the results are shown in Example 12 and Work 3 in Table 4.

実施例12.13と比較例1〜6より、本発明のM2O
3WC系複合焼結体は常圧焼結によっても十分緻密化し
、またその特性もホットプレスで作製したM2O3単体
、貿C単体よりも優れていることが明らかである。
From Example 12.13 and Comparative Examples 1 to 6, M2O of the present invention
It is clear that the 3WC-based composite sintered body is sufficiently densified by pressureless sintering, and its properties are superior to M2O3 alone and TradeC alone produced by hot pressing.

また実施例3と実施例12.13を比較しても、常圧焼
結したAl2O370容量%WC複合体は密度、曲げ強
さにおいてはホットプレス法で作製した場合には及ばな
いものの、破壊靭性値においては逆にホットプレス材の
特性を凌いでいることがわかる。
Furthermore, even when comparing Example 3 and Examples 12 and 13, the Al2O3 70% by volume WC composite sintered under pressure is not as good as those produced by the hot pressing method in terms of density and bending strength, but the fracture toughness is On the contrary, it can be seen that the properties of the hot-pressed material are superior to those of the hot-pressed material.

茎 実施例8 3 O 比較例9 第 第 表 表 発明の効果 本発明のように、ML203に’dCを複合化すること
により、高密度で機械的性質に優れるAl1203−I
dC系複合焼結体が得られる。
Stem Example 8 3 O Comparative Example 9 Table 1 Effects of the Invention As in the present invention, by compounding ML203 with 'dC, Al1203-I which has high density and excellent mechanical properties
A dC-based composite sintered body is obtained.

本発明のM2O5−WC系高密度焼結体は、M2O3セ
ラミックスの強度、靭性及び熱伝導率等の特性を著しく
向上させており、A9!203基セラミックス工具の寿
命をより一層延ばすことが可能である。
The M2O5-WC-based high-density sintered body of the present invention has significantly improved properties such as strength, toughness, and thermal conductivity of M2O3 ceramics, and can further extend the life of A9!203 ceramic tools. be.

Claims (1)

【特許請求の範囲】[Claims]  WCが10〜90容量%で残部が実質Al_2O_3
より成る、密度が理論値の90%以上である高強度・高
靭性なAl_2O_3−WC系焼結体。
WC is 10-90% by volume and the remainder is essentially Al_2O_3
A high-strength and high-toughness Al_2O_3-WC-based sintered body having a density of 90% or more of the theoretical value.
JP2090181A 1990-04-06 1990-04-06 Al2o3-wc-based high-strength-high-toughness sintered material Pending JPH03290355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090181A JPH03290355A (en) 1990-04-06 1990-04-06 Al2o3-wc-based high-strength-high-toughness sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090181A JPH03290355A (en) 1990-04-06 1990-04-06 Al2o3-wc-based high-strength-high-toughness sintered material

Publications (1)

Publication Number Publication Date
JPH03290355A true JPH03290355A (en) 1991-12-20

Family

ID=13991320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090181A Pending JPH03290355A (en) 1990-04-06 1990-04-06 Al2o3-wc-based high-strength-high-toughness sintered material

Country Status (1)

Country Link
JP (1) JPH03290355A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286684A (en) * 1992-02-14 1994-02-15 Ngk Spark Plug Company, Ltd. Aluminum oxide-based sintered object and process for producing the same
JP2006248803A (en) * 2005-03-08 2006-09-21 Kyocera Corp Magnetic head substrate and method for producing the same
WO2006115016A1 (en) * 2005-04-21 2006-11-02 Hitachi Metals, Ltd. Material of ceramic substrate for thin-film magnetic head
JP2010265173A (en) * 2010-07-08 2010-11-25 Kyocera Corp Substrate for magnetic head

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920207A (en) * 1972-06-16 1974-02-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920207A (en) * 1972-06-16 1974-02-22

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5286684A (en) * 1992-02-14 1994-02-15 Ngk Spark Plug Company, Ltd. Aluminum oxide-based sintered object and process for producing the same
JP2006248803A (en) * 2005-03-08 2006-09-21 Kyocera Corp Magnetic head substrate and method for producing the same
JP4624139B2 (en) * 2005-03-08 2011-02-02 京セラ株式会社 Manufacturing method of magnetic head substrate
WO2006115016A1 (en) * 2005-04-21 2006-11-02 Hitachi Metals, Ltd. Material of ceramic substrate for thin-film magnetic head
JP5354901B2 (en) * 2005-04-21 2013-11-27 日立金属株式会社 Ceramic substrate materials for thin film magnetic heads
JP2010265173A (en) * 2010-07-08 2010-11-25 Kyocera Corp Substrate for magnetic head

Similar Documents

Publication Publication Date Title
US5045512A (en) Mixed sintered metal materials based on borides, nitrides and iron binder metals
JPH0513103B2 (en)
JP2005281084A (en) Sintered compact and manufacturing method therefor
EP0170889A2 (en) ZrB2 Composite sintered material
JPH0627036B2 (en) High strength and high toughness TiB ▲ Bottom 2 ▼ Ceramics
JPH03290355A (en) Al2o3-wc-based high-strength-high-toughness sintered material
JPH02217359A (en) Titanium carbon nitride based toughened ceramics
US4927791A (en) Chromium carbide sintered body
JPH069264A (en) Wc-al2o3 sintered composite compact
JPH0881270A (en) Ceramic sintered compact containing cubic boron nitride and cutting tool
JPH11217258A (en) Sintered compact of alumina-base ceramic and its production
JP2004131769A (en) Hyperfine-grained cemented carbide
JP3051603B2 (en) Titanium compound sintered body
JP5092237B2 (en) cBN-based ultra-high pressure sintered body and method for producing the same
JP3213903B2 (en) Tantalum carbide based sintered body and method for producing the same
JP4004024B2 (en) Titanium carbide based ceramic tool and manufacturing method thereof
JP3481702B2 (en) Cubic boron nitride sintered body using hard alloy as binder and method for producing the same
JPH0610107B2 (en) High strength and high toughness TiB2 composite sintered body
JP2997334B2 (en) Fiber reinforced ceramics
JP2004114163A (en) Alumina group ceramic tool and production method for the same
JPH02307862A (en) Production of high-hardness al2o3-base composite
JP2840696B2 (en) Method for producing alumina fiber reinforced ceramics
JPH02243559A (en) Al2o3-b4c-based high-density calcined compact and production thereof
JPH0710747B2 (en) Boride-zirconium oxide-carbonitride ceramic materials
JPH0761901B2 (en) ZrO2 added high toughness boride ceramics