JPH03289106A - Rotary transformer and manufacture thereof - Google Patents

Rotary transformer and manufacture thereof

Info

Publication number
JPH03289106A
JPH03289106A JP2090834A JP9083490A JPH03289106A JP H03289106 A JPH03289106 A JP H03289106A JP 2090834 A JP2090834 A JP 2090834A JP 9083490 A JP9083490 A JP 9083490A JP H03289106 A JPH03289106 A JP H03289106A
Authority
JP
Japan
Prior art keywords
ferrite
core
powder
rotary transformer
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2090834A
Other languages
Japanese (ja)
Inventor
Hajime Kawamata
川又 肇
Shinji Harada
真二 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2090834A priority Critical patent/JPH03289106A/en
Publication of JPH03289106A publication Critical patent/JPH03289106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Recording Or Reproducing By Magnetic Means (AREA)

Abstract

PURPOSE:To enable obtaining a low-cost and high-quality rotary transformer with good dimensional accuracy and excellent magnetic properties by binding soft ferrite powder with a glass material, by winding a coil around a cylindrical or discoid fixed side and rotary side ferrite core having coil-winding recessed grooves and by combining these cores with each other. CONSTITUTION:After no-alkali borosilicate lead glass powder is added to highly crystalline ferrite magnetic powder and both materials are mixed and granulated, respectively two flat plate-type rotary transformer molded articles 15, 18 to be rotary side and fixed side ones are made from the granulated powders under pressure by metal molds 13, 16 capable of preforming recessed grooves at the time of molding. These molded articles are placed separately within an electric furnace and processed so that glass binding-type rotary transformer ferrite cores are obtained. Then, A coil 10 or short ring 11 is wound around these grooves 8, 12 and two cores 5, 6 are combined with each other to make a rotary transformer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はビデオテープレコーダやデジタルオーディオチ
ーブレコーダなどの回転する磁気ヘッドに対する信号の
授受に用いるロータリートランスおよびその製造方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a rotary transformer used for transmitting and receiving signals to and from a rotating magnetic head of a video tape recorder, a digital audio recorder, etc., and a method of manufacturing the same.

従来の技術 ビデオテープレコーダやデジタルオーディオチーブレコ
ーダなどの磁気記録再生機器に使用されるロータリート
ランスには円板型と円筒型の2種類があり、各々の構造
断面の概略図を第13図、第14図に示した。
Conventional technology There are two types of rotary transformers used in magnetic recording and reproducing equipment such as video tape recorders and digital audio chip recorders: disk type and cylindrical type. Schematic cross-sectional views of each structure are shown in Figures 13 and 13. It is shown in Figure 14.

両図にみられるように、ロータリートランスの構造は円
板型あるいは円筒型の固定側となるフェライトコア5と
回転側となるフェライトコア6の両者が同軸に相対向し
て一定の極小間隙に保たれており、対向するそれぞれの
表面には必要とするチャンネル数のコイル用凹溝7.8
が設けられ、そのコイル用凹溝7.8内にコイル9.1
0が装着されている。また各チャンネル間にはショート
リング11をはめこむ凹溝12が設けである。
As seen in both figures, the structure of the rotary transformer is such that a disk-shaped or cylindrical ferrite core 5 on the fixed side and a ferrite core 6 on the rotating side are coaxially opposed to each other and maintained with a constant extremely small gap. Each facing surface has grooves for coils with the required number of channels.
A coil 9.1 is provided in the coil groove 7.8.
0 is attached. Furthermore, a groove 12 into which a short ring 11 is fitted is provided between each channel.

上記構成のロータリートランスにおいては、記録再生信
号電流の損失を極力少なくする上で回転に支障をきたさ
ない限り、固定側と回転側の両フェライトコア5.6の
相対向間隙は狭ければ狭い程好ましい、実際には70I
Jm以下という極めて高精度の間隙量が要求されている
In the rotary transformer with the above configuration, in order to minimize the loss of the recording/reproducing signal current, the narrower the relative gap between the ferrite cores 5.6 on both the stationary side and the rotating side is, as long as it does not impede rotation. Preferred, actually 70I
An extremely high precision gap amount of Jm or less is required.

この要求を満たすためには、各々のフェライトコア5.
6の特に対向面となる平坦度、表面粗度、真円度、同軸
度さらには組立て精度を正確に制御しなければならない
In order to meet this requirement, each ferrite core 5.
Particularly, the flatness, surface roughness, roundness, and coaxiality of the facing surfaces of 6 must be precisely controlled, as well as the assembly accuracy.

ロータリートランス用フェライトコアは通常次のように
して作製される。
A ferrite core for a rotary transformer is usually produced as follows.

まず第15図に示すように、円板型もしくは円筒型フェ
ライト焼結晶を作成し、次に所望の寸法精度を得るため
に特殊な機械加工で仕上げる。
First, as shown in FIG. 15, a disk-shaped or cylindrical sintered ferrite crystal is created, and then finished by special machining to obtain the desired dimensional accuracy.

上記フェライト焼結体高を作成する方法としては、まず
所望の組成で原料を配合・混合した後、1000℃以下
の温度で仮焼成する。次にこの仮焼成品を粉砕し、この
粉砕粉末に適量のポリビニルアルコール(PVA)水溶
液などバインダーを加え造粒した後、この造粒粉を金型
で圧綿成形する。
As a method for producing the above-mentioned ferrite sintered body, first, raw materials are blended and mixed in a desired composition, and then pre-sintered at a temperature of 1000° C. or less. Next, this calcined product is pulverized, an appropriate amount of a binder such as an aqueous solution of polyvinyl alcohol (PVA) is added to the pulverized powder, and the granulated powder is granulated, and then the granulated powder is compressed using a mold.

こうして得られた成形品を1000°C以上の高温で本
焼成して円筒型もしくは円板型フェライト焼結晶を得る
か、あるいは上記フェライト仮焼粉砕粉末を柑脂と混練
し、円筒状もしくは円板状にトランスファー底形した後
、脱バインダ熱処理工程を経て同しく1000’C以上
の高温本焼成を行って同様のフェライト焼結体を得ると
いう2つの方法がある。
Either the molded product thus obtained is fired at a high temperature of 1000°C or higher to obtain a cylindrical or disc-shaped sintered ferrite crystal, or the calcined and ground ferrite powder is kneaded with citrus to form a cylindrical or disc-shaped ferrite crystal. There are two methods in which a similar ferrite sintered body is obtained by forming a transfer bottom into a shape, followed by a binder removal heat treatment step, and then performing main firing at a high temperature of 1000'C or higher.

(特開昭61−84006公報参照) しかし、上記のどちらの方法であっても得られたフェラ
イト焼結晶は、焼成前の成形品寸法に比べ10%以上の
大きい収縮や反りが発生するので、そのままでは寸法お
よび精度的にもロータリートランスコアとしての厳しい
要求仕様内に納めることは非常に困難である。
(Refer to Japanese Unexamined Patent Publication No. 61-84006) However, the ferrite sintered crystals obtained by either of the above methods shrink or warp by 10% or more compared to the dimensions of the molded product before sintering. As it is, it is extremely difficult to meet the strict requirements for a rotary transformer core in terms of size and accuracy.

従って、たとえば円筒型コアを作る場合は通常次のよう
になされている。まずその内外径が所望の寸法よりも約
1閣以上の余裕をもった円筒型フェライト焼結体を用意
し、この筒状体の外周面をセンタレスグラインダで1次
研削し、次にこの外周面を基準にして内周面を内面研削
機で粗研削し、その後内外周面両方ともに特殊研削機で
表面仕上げした後、必要チャンネル数のコイル用凹溝を
内周もしくは外周に沿って溝研削砥石または回転連続刃
で同時溝加工されて円筒型ロータリートランスコアの最
終製品としての寸法精度を得ている。
Therefore, for example, when making a cylindrical core, it is usually done as follows. First, prepare a cylindrical ferrite sintered body whose inner and outer diameters have an allowance of about one degree or more than the desired dimensions, first grind the outer peripheral surface of this cylindrical body with a centerless grinder, and then Roughly grind the inner circumferential surface using an internal grinding machine, then finish both the inner and outer circumferential surfaces using a special grinder, and then use a groove grinding wheel to create the required number of coil grooves along the inner or outer circumference. Alternatively, simultaneous groove processing is performed using a continuous rotating blade to obtain dimensional accuracy for the final product of a cylindrical rotary transformer core.

発明が解決しようとする課題 このように従来法によるフェライト焼結技術では、焼結
晶が大幅に収縮することや反りの現象は不可避で、収縮
量をあらかじめ見込んで余裕ある寸法で円筒型もしくは
円板型フェライト焼結晶を作製し、粗研削から最終的に
精密加工で所望の寸法、精度を出し、さらにコイル装着
用の溝加工を行うことによってロータリートランス用フ
ェライトコアに仕上げている。しかし、この方法では加
工工数が多いことや、また材料が堅いため加工時に割れ
や欠けなどが生じるなど工程歩留が悪いため、低コスト
で作るのが難しいという大きな課題があった。
Problems to be Solved by the Invention As described above, with conventional ferrite sintering technology, it is unavoidable that the sintered crystal shrinks significantly and warps. A molded ferrite sintered crystal is produced, rough-ground and finally precision-machined to achieve the desired dimensions and accuracy, and a groove for installing a coil is processed to create a ferrite core for a rotary transformer. However, this method has the major problem of being difficult to manufacture at a low cost, as it requires a large number of processing steps and the material is hard, resulting in cracks and chips during processing, resulting in poor process yields.

本発明の目的は上述した従来技術の欠点を解消し、成形
寸法からほとんど収縮しないでかつ磁気特性にも優れた
ガラス結着型フェライトコアを用いたロータリートラン
スとそれを安価に製造できる方法を提供するものである
The purpose of the present invention is to eliminate the above-mentioned drawbacks of the prior art, and to provide a rotary transformer using a glass-bonded ferrite core that hardly shrinks due to molded dimensions and has excellent magnetic properties, and a method for manufacturing the same at low cost. It is something to do.

課題を解決するための手段 上記課題を解決するために本発明のロータリートランス
は、ソフトフェライト粉末をガラス材で結着しコイル巻
装用の凹溝を有した円筒型もしくは円板型の固定側およ
び回転側フェライトコアにコイルを巻装し、それらを組
み合わせた構成とするものである。
Means for Solving the Problems In order to solve the above problems, the rotary transformer of the present invention has a cylindrical or disc-shaped fixed side made of soft ferrite powder bound with a glass material and having a groove for winding a coil. A coil is wound around a rotating side ferrite core, and the structure is a combination of these.

上記コアの製造方法としては、所望の組成で原料を配合
・混合した後、この混合物を造粒したものを本焼成と同
様の高温焼成を行い、これを粉砕して十分にフェライト
化が進んだ高結晶性ソフトフェライト磁性粉末(本焼粉
という)を得、次にこの本焼粉にこの焼成温度より低い
軟化点をもつガラス粉末を混合・造粒し、金型に適当な
量を充填し、ここでこの造粒粉末を加圧成形する場合、
固定側コアと回転側コアが対面する各々の面にコイルが
巻装されるための凹溝を、要求される寸法精度をもつ金
型で対向する少なくとも一個の円筒型あるいは2個の円
板型の成形品を作製し、次にこうして得られたそれぞれ
の成形品を上記ガラス粉末の軟化温度以上でかつ上記フ
ェライト粉末の焼成温度以下の範囲で加熱処理してロー
タリートランス用コアを得る方法とするものである。
The method for producing the core is as follows: After blending and mixing the raw materials with the desired composition, this mixture is granulated and fired at a high temperature similar to the main firing, and then pulverized to ensure sufficient ferrite formation. Highly crystalline soft ferrite magnetic powder (referred to as sintered powder) is obtained, and then glass powder having a softening point lower than the sintering temperature is mixed and granulated with this sintered powder, and an appropriate amount is filled into a mold. , when this granulated powder is pressure molded,
At least one cylindrical or two disc-shaped molds having the required dimensional accuracy are used to form concave grooves for winding the coil on each surface where the stationary core and rotating core face each other. A method is provided in which a core for a rotary transformer is obtained by producing a molded article, and then heat-treating each of the thus obtained molded articles at a temperature higher than the softening temperature of the glass powder and lower than the firing temperature of the ferrite powder. It is something.

もう一つの方法としては、上記の高結晶性フェライト磁
性粉末とガラス粉末との混合・造粒物を所望の寸法に加
圧成形し、この成形品を上記と全く同様の加熱処理を行
ってフェライトコアを作成した後、固定側コアと回転側
コアが対面する各々の面にコイルが巻装されるための凹
溝を機械加工してロータリートランス用コアを得る方法
とすることもできる。
Another method is to pressure-mold the mixture and granules of the above-mentioned highly crystalline ferrite magnetic powder and glass powder into the desired dimensions, and heat-treat the molded product in exactly the same manner as above to produce ferrite. After the core is created, a rotary transformer core may be obtained by machining concave grooves for winding a coil on each surface where the stationary core and the rotating core face each other.

作用 本発明によるロータリートランス用ガラス結着型フェラ
イトコアの作製方法は、従来のフェライト焼結法と異な
り、磁気特性を確保しながらも成形寸法からほとんど変
化しないため、金型寸法通りにできあがり、これまでに
行われていた表面研削や研磨工程が不要になるか大幅に
短縮されるという効果がある。
Function: Unlike the conventional ferrite sintering method, the method for producing a glass-bonded ferrite core for rotary transformers according to the present invention has almost no change from the molding dimensions while ensuring magnetic properties. The effect is that the surface grinding and polishing processes that were previously performed are no longer necessary or are significantly shortened.

また、ロータリートランス用のコイルを巻装するための
凹溝加工をする場合でも、本発明のガラス結着型フェラ
イトコアの組織は加工し易い性質を有しているので高価
でかつ特殊な研削装置を必要とせず通常の研削機で容易
に凹溝加工ができる。
Furthermore, even when machining concave grooves for winding coils for rotary transformers, the structure of the glass-bonded ferrite core of the present invention is easy to process, so expensive and special grinding equipment is not required. Concave grooves can be easily machined using a normal grinding machine without the need for.

以上のように、高寸法精度のロータリートランス用コア
の製造プロセスは簡単で歩留も高いので、従来のものよ
りはるかに安価で高品質なものが得られるという特徴が
ある。
As described above, the manufacturing process for a core for a rotary transformer with high dimensional accuracy is simple and has a high yield, so it is characterized by being able to obtain a high-quality product at a much lower cost than conventional products.

実施例 以下、本発明の実施例について説明する。Example Examples of the present invention will be described below.

ロータリートランス用コアの製造方法としては、第4図
に示すように、所望の組成で原料を配合・混合した後、
この混合物にPVA水溶液を適量加え、造粒したものを
第13図に示す従来法の本焼成と同様の高温焼成を行い
、これを粉砕して十分にフェライト化が進んだ高結晶性
ソフトフェライト磁性粉末(本焼物)を得、次にこの本
焼粉にこの焼成温度より低い軟化点をもつガラス粉末と
バインダーを適量加え、混合・造粒した後、金型に適当
な量を充填する。ここでこの造粒粉末を加圧成形する場
合、固定側コアと回転側コアが対面する各々の面にコイ
ルあるいはショートリングを設けるための凹溝を、要求
される寸法精度をもつ金型で対向する少なくとも1個の
円筒型あるいは2個の円板型の成形品を作製する。次に
こうして得られたそれぞれの成形品を上記ガラス粉末の
軟化温度以上でかつ上記フェライト粉末の焼成温度以下
の範囲で加熱処理した後、コアの凹溝にコイルあるいは
ショートリングを巻き、ロータリートランスを得るので
ある。
As shown in Fig. 4, the method for manufacturing the rotary transformer core is as follows: After blending and mixing raw materials with a desired composition,
Add an appropriate amount of PVA aqueous solution to this mixture, granulate the mixture, perform high-temperature firing similar to the main firing of the conventional method as shown in Figure 13, and crush it to obtain highly crystalline soft ferrite magnetism with sufficient ferrite formation. A powder (final firing product) is obtained, and then an appropriate amount of glass powder and a binder having a softening point lower than the firing temperature are added to the final firing powder, mixed and granulated, and then an appropriate amount is filled into a mold. When this granulated powder is pressure-molded, grooves for providing coils or short rings are formed on each surface where the stationary core and rotating core face each other using a mold with the required dimensional accuracy. At least one cylindrical or two disk-shaped molded product is produced. Next, each of the molded products thus obtained is heat-treated at a temperature above the softening temperature of the glass powder and below the firing temperature of the ferrite powder, and then a coil or short ring is wound around the groove of the core, and a rotary transformer is connected. You get it.

ところで、本発明に用いるロータリートランス用コアは
第3図の微細構造の模式図に示すように高結晶性フェラ
イトm性籾末1をこの高結晶性フェライト磁性粉末1の
焼成温度以下で軟化溶融するガラス材2で結着した構成
としたものである。
By the way, the core for a rotary transformer used in the present invention, as shown in the schematic diagram of the microstructure in FIG. It has a structure in which it is bound by a glass material 2.

具体的には、高結晶性フェライト磁性粉末1とガラス粉
末とをよく混合し、適量のバインダを加えて造粒した混
合造粒物を加圧成形した後、この成形体中の高結晶性フ
ェライ)[性粉末1間に混在高結晶性フェライト磁性粉
末1をガラス材2で単に結着し固化したフェライト磁性
体をいう、なお、図中3は空隙、4は高結晶性フェライ
ト磁性粉末1中のボアを示す、ここで使用する高結晶性
フェライト磁性粉末1は高温焼成によって十分にフェラ
イト化したものであって、通常は】000°C以上で焼
成したものが好ましい。
Specifically, highly crystalline ferrite magnetic powder 1 and glass powder are thoroughly mixed, an appropriate amount of binder is added, and the mixed granules are pressure-molded, and then the high-crystalline ferrite in this compact is granulated. ) [A ferrite magnetic material in which highly crystalline ferrite magnetic powder 1 mixed between magnetic powders 1 is simply bound and solidified with a glass material 2. In the figure, 3 is a void, and 4 is a high crystalline ferrite magnetic powder 1. The highly crystalline ferrite magnetic powder 1 used here is one that has been sufficiently ferrite-formed by high-temperature sintering, and is preferably sintered at 1000° C. or higher.

ソフトフェライト磁性体を得たい場合は、高結晶性フエ
ライtitt性粉末1の抗磁力Hcが小さい程良いので
、磁性粒子のサイズは大きい程好ましいが、高結晶性フ
ェライト磁性粉末】の充填密度が下がるので、実際には
100〜200μm径までが適している。
If you want to obtain a soft ferrite magnetic material, the smaller the coercive force Hc of the highly crystalline ferrite magnetic powder 1, the better, so the larger the size of the magnetic particles, the better, but the packing density of the highly crystalline ferrite magnetic powder decreases. Therefore, a diameter of 100 to 200 μm is actually suitable.

次に高結晶性フェライト磁性粉末lを結着するガラス粉
末の軟化温度は、本発明によるフェライト磁性体の応用
を考えると耐熱性の観点から下限は300″C以上であ
ることが望ましい、高結晶性フェライト磁性粉末lに加
えるガラス粉末の量は0.3〜30wt%が良く、Q、
3@t%より少ないと高結晶性フェライト磁性粉末工の
結着効果が小さく機械的強度が確保できない、一方、3
0wt%より多いガラス量では、結着力は十分に強くな
るが非磁性量が増すためにフェライト磁性体としての磁
気特性が著しく悪化してよろしくない。
Next, considering the application of the ferrite magnetic material according to the present invention, the lower limit of the softening temperature of the glass powder that binds the highly crystalline ferrite magnetic powder l is desirably 300"C or more from the viewpoint of heat resistance. The amount of glass powder added to the magnetic ferrite powder L is preferably 0.3 to 30 wt%, Q,
If it is less than 3@t%, the binding effect of the highly crystalline ferrite magnetic powder is small and mechanical strength cannot be ensured.
If the amount of glass is more than 0 wt%, the binding force will be sufficiently strong, but the amount of non-magnetism will increase, so the magnetic properties as a ferrite magnetic material will be significantly deteriorated, which is not good.

高結晶性フェライト磁性粉末1とガラス粉末の混合成形
体の加熱処理は、ガラス粉末の混合成形体の加熱処理は
、ガラス粉末の溶融浸透を主な目的とするものであるか
ら、熱処理の保持時間および昇降温に要する時間を含め
て3時間以下でも可能である。
The heat treatment of the mixed molded body of the highly crystalline ferrite magnetic powder 1 and the glass powder is carried out with the holding time of the heat treatment because the main purpose of the heat treatment of the mixed molded body of the glass powder is to melt and penetrate the glass powder. It is also possible to do this for 3 hours or less, including the time required for raising and lowering the temperature.

熱処理温度は基本的にはガラスの軟化温度より上であれ
ば良いが、高結晶性フェライト磁性粉末1の焼成温度に
近くなるに従い、特に800″C以上になるとガラス材
2の結着効果が増し、低収縮性であるにもかかわらず磁
気特性も優れるという好ましい結果が得られた。
Basically, the heat treatment temperature should be above the softening temperature of the glass, but as it gets closer to the firing temperature of the highly crystalline ferrite magnetic powder 1, particularly at 800"C or higher, the binding effect of the glass material 2 increases. , favorable results were obtained in that the magnetic properties were excellent despite the low shrinkage.

以下、具体的な実施例について説明する。Hereinafter, specific examples will be described.

(実施例1) F e gos 48gno1%、N i 014mo
1%、Zn034+so1%、Cu04mo1%よりな
る出発原料を配合・混合し、この混合物にポリビニルア
ルコール(PVA)の5wt%水溶液を5wt%加え、
これを造粒したものを1320°Cで6時間焼成したも
のを粉砕して、平均粒径70μmのN1−Zn−CU系
ソフトフェライト本焼成粉を準備した。この粉末をX線
解析した結果、ソフトフェライト特有の鋭いスピネル構
造回折線が得られ結晶性の非常に高い磁性粉末であるこ
とを確認した。次に上記高結晶性フェライト磁性粉末に
対して軟化点(Td)370°C1平均粒径1μmの無
アルカリホウケイ酸鉛系ガラス粉末を3wt%加えて混
合・造粒した後、この造粒粉を3ton/cdの圧力で
、第5図、第6図に示すように予め成形特に凹溝の形成
ができるような金型13.16でもって回転側と固定側
となる平板型ロータリートランス用成形品15゜18を
それぞれ2個作製した。この成形品を電気炉内に個々に
設置し、1200℃、60分間空気中で加熱処理しガラ
ス結着型の平板型ロータリートランス用フェライトコア
を得た。
(Example 1) F e gos 48gno1%, N i 014mo
1%, Zn034+so1%, and Cu04mo1% are blended and mixed, and 5wt% of a 5wt% aqueous solution of polyvinyl alcohol (PVA) is added to this mixture.
The granulated product was fired at 1320° C. for 6 hours and pulverized to prepare N1-Zn-CU based soft ferrite main fired powder having an average particle size of 70 μm. As a result of X-ray analysis of this powder, sharp spinel structure diffraction lines characteristic of soft ferrite were obtained, confirming that it was a highly crystalline magnetic powder. Next, 3 wt% of alkali-free lead borosilicate glass powder with a softening point (Td) of 370°C and an average particle size of 1 μm was added to the above highly crystalline ferrite magnetic powder, mixed and granulated, and then the granulated powder was mixed and granulated. A molded product for a flat plate type rotary transformer, which forms the rotating side and the stationary side, using a mold 13.16 that can be pre-molded at a pressure of 3 ton/cd as shown in Figs. 5 and 6, especially forming grooves. Two pieces of each 15°18 were made. The molded products were individually placed in an electric furnace and heat-treated in air at 1200° C. for 60 minutes to obtain a glass-bonded ferrite core for a flat plate type rotary transformer.

次に第1図に示すようにこれら凹溝8.12にコイルI
Oあるいはシッートリング11を巻装し、2個のコア5
.6を組み合わせてロータリートランスを作製した。
Next, as shown in FIG.
Wrapped with O or seat ring 11, two cores 5
.. A rotary transformer was created by combining 6.

上記実施例1の材料特性を第1表に示した。The material properties of Example 1 are shown in Table 1.

実施例1では、コアの収縮率が0.1%以下と、はとん
ど熱処理によるコア収縮がないため金型寸法どうりのも
のが得られ、磁気特性、トランス特性にも優れたものが
得られた。
In Example 1, the shrinkage rate of the core was 0.1% or less, and there was almost no core shrinkage due to heat treatment, so a product with mold dimensions was obtained, and a product with excellent magnetic and transformer properties was obtained. Obtained.

(実施例2) 実施例工で用いた同一のフェライト本焼粉に対して同一
のガラス粉末を3wt%、バインダーとして5wt%P
VA水溶液を5wt%加えて混合、造粒した後、固定側
、回転側となるロータリートランス用の円筒成形品をそ
れぞれ作成する際、これらコアが対向する面に各々コイ
ルが巻装されるための凹溝を底形によって作成するため
、内側コアの場合、外周に凹溝を形成するため、第7、
第8図に示すように凸部を有した4個の割り金型19に
上記造粒粉を適量充填し、3ton/dの圧力で加圧成
形しコイル用凹溝およびジットリング用凹溝を有した円
筒成形品を作成した。また外側コアの場合、内周の凹溝
形威は金型成形によって作成するのは困難なため、研削
加工を前提としてその内外径が所望の寸法より約1m以
上の余裕をもった凹溝なしの円筒型成形品を作成した。
(Example 2) 3 wt% of the same glass powder and 5 wt% of P as a binder were added to the same ferrite sintered powder used in the example process.
After adding 5 wt% of VA aqueous solution, mixing and granulating, when creating cylindrical molded products for rotary transformers on the fixed side and rotating side, coils are wound on the opposing sides of these cores. Since the groove is created by the bottom shape, in the case of an inner core, the groove is formed on the outer periphery, so the seventh,
As shown in Fig. 8, an appropriate amount of the above granulated powder is filled into four split molds 19 having convex portions, and pressure molded at a pressure of 3 tons/d to form grooves for the coil and grooves for the jit ring. A cylindrical molded product was created. In addition, in the case of the outer core, since it is difficult to create a concave groove shape on the inner circumference by molding, there is no concave groove whose inner and outer diameters are approximately 1 m or more larger than the desired dimensions, assuming grinding. A cylindrical molded product was created.

次にこうして得られた凹溝を有した内側コアと凹溝のな
い外側コアの成形品をそれぞれ電気炉内に個々に設置し
1200″C160分空気中で加熱処理しガラス結着型
の円筒型フェライトコアを得た。
Next, the molded products of the inner core with grooves and the outer core without grooves were individually placed in an electric furnace and heated in air at 1200"C for 160 minutes to form a glass-bonded cylindrical shape. Obtained a ferrite core.

次ぎに外側コアは内周面のコイル用およびショートリン
グ用凹溝を機械加工によって作成した。
Next, concave grooves for the coil and short ring on the inner peripheral surface of the outer core were created by machining.

こうして得られたコアのコイル用凹溝7にコイル9ある
いはショートリング用凹溝12にショートリング11を
巻装し、2個のコアを組み合わせて第2図に示すような
ロータリートランスを作成した。
The coil 9 was wound around the coil groove 7 of the core thus obtained, or the short ring 11 was wound around the short ring groove 12, and the two cores were combined to create a rotary transformer as shown in FIG.

上記実施例2の材料特性を第1表に示した。The material properties of Example 2 are shown in Table 1.

実施例2では、コアの収縮率が0.1%以下とほとんど
熱処理によるコア収縮がないため金型寸法どうりのもの
を得ることができ、固定側と回転側コア間の間隙は、5
0μm以下の極めて高精度のロータリートランス用フェ
ライトコアが実現でき、また磁気特性、トランス特性も
優れたものが得られた。
In Example 2, the shrinkage rate of the core is 0.1% or less, and there is almost no core shrinkage due to heat treatment, so it is possible to obtain a mold with the same dimensions as the core, and the gap between the fixed side and rotating side cores is 5.
A ferrite core for a rotary transformer with an extremely high precision of 0 μm or less was realized, and a core with excellent magnetic properties and transformer properties was also obtained.

また本実施例では外側コアの内周面の凹溝作成を加熱処
理後行ったが、コア収縮がほとんどないことを利用して
、加熱処理前の成形品を機械加工して凹溝形威し、その
後加熱処理して作成することもできるものである。
In addition, in this example, grooves were created on the inner peripheral surface of the outer core after heat treatment, but taking advantage of the fact that there is almost no core shrinkage, the molded product before heat treatment was machined to form grooves. , which can also be produced by subsequent heat treatment.

(比較例1) 実施例1と同一の配合&11Tli、をもった出発原料
の混合物に5wt%PVA水溶液を5wt%加え、この
造粒粉を1000℃、2時間で仮焼を行い、2〜5μm
に微粉砕し、造粒した後、実施例2と同様にして同サイ
ズの円筒型成形品をそれぞれ2個作製した。
(Comparative Example 1) 5 wt % of a 5 wt % PVA aqueous solution was added to a mixture of starting materials having the same formulation and 11 Tli as in Example 1, and this granulated powder was calcined at 1000°C for 2 hours to form a powder with a particle size of 2 to 5 μm.
After pulverization and granulation, two cylindrical molded products of the same size were produced in the same manner as in Example 2.

この成形品を電気炉内に設置し、1300℃、3時間空
気中で坑底した後、除冷しながら降温させNi−Zn−
Cu系フェライト焼結型の円筒型コアを得た。
This molded product was placed in an electric furnace and placed at the bottom of a pit in the air at 1300°C for 3 hours, and then slowly cooled to reduce the temperature of Ni-Zn-
A Cu-based ferrite sintered cylindrical core was obtained.

比較例1ではコア収縮率が10%以上になり低収縮率が
実現できないためコアの寸法が金型寸法と大幅にずれ、
所望の寸法の円筒型コアを得ることはできなかった。
In Comparative Example 1, the core shrinkage rate was 10% or more and a low shrinkage rate could not be achieved, so the core dimensions were significantly different from the mold dimensions.
It was not possible to obtain a cylindrical core of the desired dimensions.

(実施例3) 実施例1で用いた同一のフェライト本焼粉に対して同一
のガラス粉末を3wt%、バインダーとして5wt%P
VA水溶液を5wt%加えて混合、造粒した後、固定側
、回転側となるロータリートランス用の円筒成形品をそ
れぞれ作成する際、まずこれらコアが対向する面に各々
コイルが巻装されるための凹溝を底形によって作成する
ため、内側コアの場合、外周に凹溝を形成するため、実
施例2と同様に凸部を有した4個の割り金型19に上記
造ね粉を適量充填し、3ton/c+flの圧力で加圧
金型20を加圧し凹溝を有した円筒型成形品21を作成
した。また外側コアの場合、内周に凹溝を形成するため
、第9、第10図に示すように凸部を有した2個の割り
金型22に上記造粒粉を適量充填し、3ton/c4の
圧力で加圧金型23を加圧し凹溝を有した半円筒型成形
品24を作成した。次にこれら2個の外側コアである半
円筒型成形品24を第11第12図に示すように、それ
ぞれの接合面25に10wt%PVA水溶液を塗布し接
着した後、内側コアと外側コアの成形品をそれぞれ電気
炉内に個々に設置し1200°C160分空気中で加熱
処理しガラス結着型の円筒型フェライトコアを得た。
(Example 3) 3 wt% of the same glass powder and 5 wt% of P as a binder were added to the same ferrite sintered powder used in Example 1.
After adding 5 wt% of VA aqueous solution, mixing and granulating, when creating cylindrical molded products for rotary transformers on the fixed side and rotating side, coils are first wound around the opposing sides of these cores. In order to create grooves according to the bottom shape, in the case of the inner core, in order to form grooves on the outer periphery, an appropriate amount of the above batter was placed in four split molds 19 having convex portions as in Example 2. The mixture was filled, and the pressure mold 20 was pressurized with a pressure of 3 ton/c+fl to create a cylindrical molded product 21 having a groove. In the case of the outer core, in order to form grooves on the inner periphery, an appropriate amount of the granulated powder is filled into two split molds 22 having convex portions as shown in FIGS. The pressure mold 23 was pressed at a pressure of c4 to create a semi-cylindrical molded product 24 having a groove. Next, as shown in FIGS. 11 and 12, these two semi-cylindrical molded products 24, which are the outer cores, are bonded by applying a 10 wt% PVA aqueous solution to their joint surfaces 25, and then the inner and outer cores are bonded together. The molded products were individually placed in an electric furnace and heated in air at 1200° C. for 160 minutes to obtain a glass-bonded cylindrical ferrite core.

こうして得られたコアの凹溝にコイルあるいはショート
リングを巻装し、2個のコアを組み合わせてロータリー
トランスを作成した。
A coil or short ring was wound around the groove of the thus obtained core, and the two cores were combined to create a rotary transformer.

上記実施例3の材料特性を第1表に示した。The material properties of Example 3 are shown in Table 1.

実施例3では、コアの収縮率が0.1%以下とほとんど
熱処理によるコア収縮がないため金型寸法どうりのもの
を得ることができ、固定側と回転側コア間の間隙は、5
0μm以下の極めて高精度のロータリートランス用フェ
ライトコアが実現でき、また磁気特性、トランス特性も
優れたものが得られた。
In Example 3, the shrinkage rate of the core is 0.1% or less, and there is almost no core shrinkage due to heat treatment, so it is possible to obtain a mold with the same dimensions, and the gap between the fixed side and rotating side cores is 5.
A ferrite core for a rotary transformer with an extremely high precision of 0 μm or less was realized, and a core with excellent magnetic properties and transformer properties was also obtained.

また、本実施例3では半円筒型コアの接着をPVA水溶
液で行ったが、実施例1と同じガラス材料で構成された
ガラスペーストを塗布して接着した後、同様の加熱処理
をしてガラス結着型の円筒型フェライトコアを得ること
もできるものである。
In addition, in Example 3, the semi-cylindrical core was bonded using a PVA aqueous solution, but after applying and bonding a glass paste made of the same glass material as in Example 1, the same heat treatment was applied to the glass. It is also possible to obtain a bonded cylindrical ferrite core.

発明の効果 以上のように本発明によれば、ガラス結着型フェライト
コアは、寸法精度が良く、かつ磁気特性にも優れ、さら
には製造プロセスが簡単なため従来の焼結型フェライト
コアよりもはるかに安価で高品質なロータリートランス
が得られるものである。
Effects of the Invention As described above, according to the present invention, the glass-bonded ferrite core has good dimensional accuracy and excellent magnetic properties, and furthermore, the manufacturing process is simple, so it is superior to the conventional sintered ferrite core. This provides a much cheaper and higher quality rotary transformer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による円板型ロータリートランスの断面
図、第2図は本発明による円筒型ロータリートランスの
断面図、第3図は本発明によるロータリートランス用フ
ェライトコアの微細構造の模式図、第4図は本発明によ
るロータリートランスの製造工程を示す概略説明図、第
5図、第6図は本発明の実施例1における円板型ロータ
リートランス用コアのコイル溝成形金型の断面図、第7
図、第8図は本発明の実施例2における円筒型ロータリ
ートランスの内側コアのコイル溝成形金型の断面図、第
9図、第10図は本発明の実施例3における円筒型ロー
タリートランスの外側コア用の半円筒型コイル溝成形金
型の断面図、第11図、第12図は本発明の実施例3に
おける円筒型ロータリートランスの外側コア用の半円筒
型成形体の組み立て説明図、第13図は従来の円板型ロ
ータリートランスの断面図、第14図は従来の円筒型ロ
ータリートランスの断面図、第15図は従来方法による
ロータリートランスの製造工程を示す概略説明図である
。 1・・・・・・高結晶性フェライト磁性粉末、2・・・
・・・ガラス材、3・・・・・・空隙、4・・・・・・
ボア、5・・・・・・固定側コア、6・・・・・・回転
側コア、7,8.12・・・・・・凹溝、9.10・・
・・・・コイル、11・・・・・・ショートリング、1
922・・・・・・割り金型、13.16.20.23
・・・・・・加圧金型、15・・・・・・円板型成形品
、21・・・・・・円筒型成形品、24・・・・・・半
円筒型成形品、25・・・・・・接合面。
FIG. 1 is a cross-sectional view of a disc-type rotary transformer according to the present invention, FIG. 2 is a cross-sectional view of a cylindrical rotary transformer according to the present invention, and FIG. FIG. 4 is a schematic explanatory diagram showing the manufacturing process of a rotary transformer according to the present invention, FIGS. 5 and 6 are cross-sectional views of a mold for forming a coil groove of a core for a disk type rotary transformer in Example 1 of the present invention, 7th
8 are cross-sectional views of the coil groove molding mold for the inner core of the cylindrical rotary transformer according to the second embodiment of the present invention, and FIG. 9 and FIG. A sectional view of a semi-cylindrical coil groove forming mold for the outer core, FIGS. 11 and 12 are explanatory diagrams of assembly of a semi-cylindrical molded body for the outer core of a cylindrical rotary transformer in Example 3 of the present invention, FIG. 13 is a cross-sectional view of a conventional disc-type rotary transformer, FIG. 14 is a cross-sectional view of a conventional cylindrical rotary transformer, and FIG. 15 is a schematic explanatory diagram showing the manufacturing process of a rotary transformer by a conventional method. 1... Highly crystalline ferrite magnetic powder, 2...
...Glass material, 3...Gap, 4...
Bore, 5... Fixed side core, 6... Rotating side core, 7, 8.12... Concave groove, 9.10...
...Coil, 11 ...Short ring, 1
922・・・Split mold, 13.16.20.23
... Pressure mold, 15 ... Disc-shaped molded product, 21 ... Cylindrical molded product, 24 ... Semi-cylindrical molded product, 25・・・・・・Joint surface.

Claims (3)

【特許請求の範囲】[Claims] (1)対向する固定側コアと回転側コアをフェライト粉
末をガラス材で結着したガラス結着型フェライトコアで
構成したロータリートランス。
(1) A rotary transformer in which the opposing stationary side core and rotating side core are composed of glass bonded ferrite cores made by bonding ferrite powder with a glass material.
(2)高温焼成で十分にフェライト化が進んだ高結晶性
フェライト磁性粉末と、この焼成温度より低い軟化点を
もつガラス粉末との混合物を加圧成形して固定側コアと
回転側コアとを作成する際、これら2個のコアの対向す
る面に各々コイルが巻装されるための凹溝を少なくとも
1個のコアに成形により作成し、次にこの成形品を上記
ガラス粉末の軟化温度以上でかつ上記高結晶性フェライ
ト磁性粉末の焼成温度以下の温度範囲で加熱処理してガ
ラス結着型のフェライトコアを作成し、さらに2個のコ
アの各々の凹溝にコイルをそれぞれ巻装して、これらを
組み合わせるロータリートランスの製造方法。
(2) A fixed side core and a rotating side core are formed by pressure molding a mixture of highly crystalline ferrite magnetic powder that has been sufficiently ferrite-ized by high-temperature firing and glass powder with a softening point lower than this firing temperature. When producing the product, at least one core is molded with grooves for winding the coils on opposing surfaces of the two cores, and then this molded product is heated to a temperature higher than the softening temperature of the glass powder. A glass-bonded ferrite core is prepared by heat treatment at a temperature below the firing temperature of the highly crystalline ferrite magnetic powder, and further coils are wound in the grooves of each of the two cores. , a manufacturing method for a rotary transformer that combines these.
(3)高温焼成で十分にフェライト化が進んだ高結晶性
フェライト磁性粉末と、この焼成温度より低い軟化点を
もつガラス粉末との混合物を加圧成形して円筒型の固定
側コアと回転側コアとを作成する場合、これらコアが対
向し各々のコイルが巻装されるための凹溝を半円筒状に
加圧成形してそれぞれ2個づつ作成し、次にこれら固定
側コアと回転側コア用の半円筒状の成形体をそれぞれ円
筒状に組み合わせ接合した後、この成形品を上記ガラス
粉末の軟化温度以上でかつ上記高結晶性フェライト磁性
粉末の焼成温度以下の温度範囲で加熱処理してガラス結
着型のフェライトコアを作成し、さらに2個のコアの各
々の凹溝にコイルをそれぞれ巻装して、これらを組み合
わせるロータリートランスの製造方法。
(3) A mixture of highly crystalline ferrite magnetic powder that has been sufficiently ferrite-formed by high-temperature firing and glass powder with a softening point lower than this firing temperature is pressure-molded to create a cylindrical fixed side core and a rotating side core. When creating cores, these cores face each other, and grooves for winding each coil are pressure-formed into semi-cylindrical shapes to create two each. After the semi-cylindrical molded bodies for the core are combined into a cylindrical shape and joined together, this molded body is heat-treated in a temperature range above the softening temperature of the glass powder and below the firing temperature of the highly crystalline ferrite magnetic powder. A method for manufacturing a rotary transformer, in which a glass-bonded ferrite core is created, a coil is wound in the groove of each of the two cores, and these are combined.
JP2090834A 1990-04-05 1990-04-05 Rotary transformer and manufacture thereof Pending JPH03289106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2090834A JPH03289106A (en) 1990-04-05 1990-04-05 Rotary transformer and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2090834A JPH03289106A (en) 1990-04-05 1990-04-05 Rotary transformer and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH03289106A true JPH03289106A (en) 1991-12-19

Family

ID=14009618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2090834A Pending JPH03289106A (en) 1990-04-05 1990-04-05 Rotary transformer and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH03289106A (en)

Similar Documents

Publication Publication Date Title
US3819814A (en) Plural molded diamond articles and their manufacture from diamond powders under high temperature and pressure
US5120366A (en) Composite ferrite material
JPH03289106A (en) Rotary transformer and manufacture thereof
JPH03289112A (en) Manufacture of rotary transformer
JPH03289113A (en) Manufacture of rotary transformer
JPH023288B2 (en)
JP3039021B2 (en) Manufacturing method of rotary transformer
US5098619A (en) Process for forming high quality ferrite magnets
KR970011865B1 (en) Rotary transformer
JPH04307719A (en) Manufacture of rotary transformer
CN112614689A (en) Method for improving anisotropy of bonded permanent magnetic ferrite magnetic powder
JPH11256202A (en) Production of amorphous soft magnetic alloy powder molded body
JP3337154B2 (en) Manufacturing method of composite molded products
JP2762530B2 (en) Manufacturing method of ferrite magnetic material
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
JPS62188207A (en) Manufacture of magnetic core of rotary transformer in video tape recorder
JPH07115026A (en) Manufacture of rotating transformer
JPH05144644A (en) Manufacture of rotary transformer
JP2724740B2 (en) Manufacturing method of radial anisotropic bonded magnet
JPS62188303A (en) Manufacture of magnetic core of rotary transformer in video tape recorder
JPH05308026A (en) Manufacture of rotary transformer
JPH0350803A (en) Magnetic core
JPH02177511A (en) Ferrite magnetic material and manufacture thereof
JPS6337606A (en) Core for rotary transformer and manufacture thereof
JPS6351610A (en) Manufacture of magnetic core of rotary transformer in digital audio tape recorder