JPH03288346A - Optical recording medium - Google Patents

Optical recording medium

Info

Publication number
JPH03288346A
JPH03288346A JP8813090A JP8813090A JPH03288346A JP H03288346 A JPH03288346 A JP H03288346A JP 8813090 A JP8813090 A JP 8813090A JP 8813090 A JP8813090 A JP 8813090A JP H03288346 A JPH03288346 A JP H03288346A
Authority
JP
Japan
Prior art keywords
optical recording
layer
recording medium
magneto
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8813090A
Other languages
Japanese (ja)
Inventor
Kazutomi Suzuki
鈴木 和富
Tadanori Nakatani
中谷 忠則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP8813090A priority Critical patent/JPH03288346A/en
Publication of JPH03288346A publication Critical patent/JPH03288346A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical recording medium with satisfactory C/N and satisfactory durability by forming a metal reflection layer by AgAl alloy in the optical recording medium equipped with the metal reflection layer. CONSTITUTION:The metal reflection layer is composed of the AgAl alloy including Al in Ag. In such a case, there is tendency that a reflection factor is lowered and the C/N is lowered when the additive amount of the Al in the AgAl alloy is increased. On the other hand, when the additive amount is too much reduced, an effect to be exerted upon the durability is made small. From this point of view, as the additive amount of the Al, 3-60 atom % is preferable and especially, 10-40 atom % is further preferable. Moreover, by including any specified element into this AgAl alloy, recording sensitivity can be improved, namely, heat conductivity can be lowered and durability can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、レーザーなどの光により情報の記録、再生、
消去などを行う光記録媒体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides information recording, reproducing, and
It relates to optical recording media that perform erasing, etc.

さらに詳細には、金属反射層を有する光記録媒体に関し
、なかでも記録層が光磁気記録層である光磁気記録媒体
に特に好ましく適用できるものに関する。
More specifically, the present invention relates to an optical recording medium having a metal reflective layer, and is particularly applicable to a magneto-optical recording medium in which the recording layer is a magneto-optical recording layer.

〔従来の技術〕[Conventional technology]

光記録媒体については、高密度・大容量の情報記録媒体
として種々の研究開発が行われている。
Various research and developments are being conducted on optical recording media as high-density, large-capacity information recording media.

特に、情報の消去可能な光磁気記録媒体は、応用分野が
広く種々の材料・システムが発表されており、その実用
化が待望されている。
In particular, various materials and systems for erasable information on magneto-optical recording media have been announced for a wide range of application fields, and their practical application is eagerly awaited.

光磁気記録材料としては、例えば特開昭52−3170
3号公報記載のFeTb、特開昭56126907号公
報記載のFeTbGd、特開昭58−73746号公報
記載のFeTbCo、FeCoDy、特開昭61−16
5846号公報記載のFeNdなとすでに多くの提案が
ある。
As a magneto-optical recording material, for example, JP-A-52-3170
FeTb described in JP-A No. 3, FeTbGd as described in JP-A-56126907, FeTbCo and FeCoDy as described in JP-A-58-73746, JP-A-61-16
There have already been many proposals such as FeNd described in No. 5846.

しかし、これらの情報の消去可能な光磁気記録媒体の実
用化には、記録、再生特性のより一層の向上が必要であ
る。
However, in order to put these information erasable magneto-optical recording media into practical use, it is necessary to further improve recording and reproducing characteristics.

これに対し、光磁気記録層上、もしくはその上に誘導体
層を介して金属反射層を設ける方法が提案されている。
In contrast, a method has been proposed in which a metal reflective layer is provided on the magneto-optical recording layer or thereon via a dielectric layer.

この方式は、カー効果とファラデー効果の併用により高
いC/Nを得る点で優れている。従来、この金属反射層
として、A1.を用いたもの(特開昭58−83346
号公報、特開昭59−132434号公報)、Cuを用
いたもの(特開昭59−8150号公報)、A12系合
金を用いたもの(特開昭62−137743号公報)、
ステンレスを用いたもの(特開昭59−171054号
公報)、Teを用いたもの(特開昭62−52744号
公報)、非晶質金属膜を用いたもの(特開昭61−57
053号公報)などが提案されている。
This method is excellent in that a high C/N can be obtained by using both the Kerr effect and the Faraday effect. Conventionally, as this metal reflective layer, A1. (Japanese Unexamined Patent Publication No. 58-83346)
(Japanese Patent Application Laid-Open No. 59-132434), those using Cu (Japanese Patent Application Laid-open No. 59-8150), those using A12 alloy (Japanese Patent Application Laid-open No. 62-137743),
Those using stainless steel (JP-A-59-171054), those using Te (JP-A-62-52744), and those using an amorphous metal film (JP-A-61-57).
No. 053) and the like have been proposed.

しかしながら、高反射率のAg、Aj!、Cuなどを用
いた場合には、その高熱伝導性のため記録感度が大幅に
低下し、一方比較的熱伝導性の低いステンレス、Teを
用いた場合には、記録感度は向上するが反射率が低いた
め、充分なC/N比が得られないという問題を有する。
However, Ag with high reflectance, Aj! When materials such as , Cu, etc. are used, the recording sensitivity decreases significantly due to their high thermal conductivity.On the other hand, when stainless steel and Te, which have relatively low thermal conductivity, are used, recording sensitivity improves but the reflectance decreases. Since the C/N ratio is low, there is a problem that a sufficient C/N ratio cannot be obtained.

また、高温多湿下での記録層の劣化があり、これら金属
層で記録層を保護する必要があった。
Furthermore, the recording layer deteriorates under high temperature and high humidity, and it is necessary to protect the recording layer with these metal layers.

これらの問題に対し、A12へのTa添加(特開昭64
−4938号公報) 、Au、、Ag、A12゜Cuへ
のTi、Mg、希土類添加(特開昭59−38781号
公報)、AlへのCu−Mg合金、Mg−3i合金、C
r、Sn、Mgの添加(特開昭62−239349号公
報)、A/l!へのTi添加(特開昭62−13774
3号公報、特開昭64−66847号公報)などの各種
合金膜が提案されている。しかし、これらの従来の合金
膜により、高反射率を保持したままで熱伝導率を改善す
ることは可能であるが、高温多湿下での耐久性を改善す
るには、添加元素をかなりの量添加する必要があり、こ
れに必要な量添加すると反射層として必要な高反射率を
保持することはできず、反射層と保護層の両機能を満足
するものが得られない 〔発明が解決しようとする課題〕 本発明は、かかる現状に鑑みなされたもので、金属反射
層の改良により高感度で高C/N比の特性を有し、かつ
耐久性に優れた光記録媒体を提供することを目的とする
To solve these problems, Ta addition to A12 (Japanese Unexamined Patent Publication No. 1983
-4938 publication), Au, Ag, Ti, Mg, rare earth addition to A12°Cu (JP-A-59-38781 publication), Cu-Mg alloy to Al, Mg-3i alloy, C
Addition of r, Sn, Mg (Japanese Unexamined Patent Publication No. 62-239349), A/l! Addition of Ti to (JP-A-62-13774
Various alloy films have been proposed, such as those disclosed in Japanese Patent Application Laid-Open No. 64-66847 (Japanese Patent Application Laid-Open No. 64-66847). However, although it is possible to improve thermal conductivity while maintaining high reflectance with these conventional alloy films, it is necessary to add significant amounts of additive elements to improve durability under high temperature and high humidity conditions. If it is added in the required amount, it will not be possible to maintain the high reflectance required for the reflective layer, and it will not be possible to obtain a layer that satisfies both the functions of a reflective layer and a protective layer. [Problem to be solved] The present invention was made in view of the current situation, and an object of the present invention is to provide an optical recording medium that has characteristics of high sensitivity and high C/N ratio and excellent durability by improving the metal reflective layer. With the goal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、金属反射層を有する光記録媒体において、該
金属反射層がAgにAfを3〜6o原子%含有せしめた
AgAj2合金からなることを特徴とする光記録媒体で
ある。
The present invention is an optical recording medium having a metal reflective layer, characterized in that the metal reflective layer is made of an AgAj2 alloy in which Ag contains 3 to 6 atomic percent of Af.

本発明は、以下のようにしてなされたものである。すな
わち、本発明らは、前記欠点を克服すべく鋭意検討した
結果、金属反射層をAgにAfを含有せしめたAgAl
合金とすることにより、C/N比が良好でさらに耐久性
にも優れた光記録媒体が得られることを見出し本発明に
到達した。
The present invention was made as follows. That is, as a result of intensive studies to overcome the above-mentioned drawbacks, the present inventors have developed a metal reflective layer using AgAl, which is Ag containing Af.
The present invention was achieved by discovering that by forming an alloy, an optical recording medium with a good C/N ratio and excellent durability can be obtained.

以下、これについて詳細に説明する。This will be explained in detail below.

本発明のAgAl合金におけるAI!の添加量は、増加
すると反射率が低下しC/Nが低下する傾向がみられる
。一方、少なすぎると耐久性向上に及ぼす効果が少ない
。この観点からA/2の添加量は3〜60原子%が好ま
しく、とりわけ10〜40原子%がさらに好ましい。
AI in the AgAl alloy of the present invention! As the amount of addition increases, there is a tendency for the reflectance to decrease and the C/N to decrease. On the other hand, if it is too small, the effect on improving durability will be small. From this point of view, the amount of A/2 added is preferably 3 to 60 atomic %, particularly preferably 10 to 40 atomic %.

さらに、このAgAl合金に特定の元素を含有せしめる
ことにより、記録感度向上すなわち熱伝導率低下、耐久
性向上が得られることを見出した。
Furthermore, it has been found that by incorporating a specific element into this AgAl alloy, recording sensitivity can be improved, that is, thermal conductivity can be lowered, and durability can be improved.

この特定の元素は、Ti、Ta、Zr、Y、Reなどの
遷移金属、In、Sn、Zn、Mgの群から選ばれた少
なくとも1種の元素であり、中でもTi、Ta、Zr、
Yの少なくとも1種が好ましい。この中でもAgにA/
2を3〜60原子%含有せしめ、さらに前記特定の元素
の少なくとも1種を0.3〜8.0原子%含有せしめた
AgA/!合金が、記録感度、高温多湿下での耐久性、
C/N、コストの4点で優れている点で好ましい。
This specific element is at least one element selected from the group of transition metals such as Ti, Ta, Zr, Y, and Re, In, Sn, Zn, and Mg, and among them, Ti, Ta, Zr,
At least one type of Y is preferred. Among these, Ag is A/
AgA/! contains 3 to 60 atomic percent of 2 and further contains 0.3 to 8.0 atomic percent of at least one of the above-mentioned specific elements. The alloy improves recording sensitivity, durability under high temperature and humidity,
It is preferable because it is excellent in four points: C/N and cost.

なお、これらの金属反射層の膜厚は、100〜2000
人が好ましい。100人未満では反射膜の反射率が低下
しC/Nが劣化し、一方2,000人を超えると感度が
低下する。
In addition, the film thickness of these metal reflective layers is 100 to 2000
People are preferred. If the number of participants is less than 100, the reflectance of the reflective film decreases and the C/N ratio deteriorates, while if the number of participants exceeds 2,000, the sensitivity decreases.

金属反射層の膜厚は、媒体権威、誘電体層などの種類、
膜厚によって適宜選択される。
The thickness of the metal reflective layer depends on the media, type of dielectric layer, etc.
It is selected appropriately depending on the film thickness.

これら金属反射層の形成方法としては、公知の真空蒸着
法、スパッタリング法、イオンビームスパッタリング法
、CVD法などが考えられるが、下地層との接着性、合
金組成の制御性、組成分布などの点でスパッタリング法
が好ましい。
Possible methods for forming these metal reflective layers include well-known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, and CVD methods; A sputtering method is preferred.

また、膜の堆積速度、スパッタガス圧などは、生産性、
膜応力を考慮し、適宜選択される。
In addition, the film deposition rate, sputtering gas pressure, etc.
It is selected appropriately in consideration of membrane stress.

本発明の光記録媒体としては、前述の光磁気記録媒体の
ほか、周知のコンパクトディスク、ビデオディスクなど
反射膜を用いるものであれば特に限定されないことは本
発明の趣旨から明らかである。なかでも、酸化しやすい
希土類元素を記録層として用いる光磁気記録媒体に特に
好ましく適用できる。
It is clear from the spirit of the present invention that the optical recording medium of the present invention is not particularly limited to the above-mentioned magneto-optical recording medium, as long as it uses a reflective film, such as well-known compact disks and video disks. Among these, it can be particularly preferably applied to a magneto-optical recording medium that uses a rare earth element that is easily oxidized as a recording layer.

ところで、この光磁気記録媒体は、記録層としては、光
磁気効果により記録できるものであればよく、公知の、
膜面に垂直な方向に磁化容易方向を有し、磁気光学効果
の大きい磁性金属薄膜、例えば前述のFeTb合金、F
eTbCo合金、FeTbGd合金およびNdDyCo
合金などの希土類元素−遷移金属元素の非晶質合金が代
表例として挙げられる。
By the way, in this magneto-optical recording medium, the recording layer may be of any type as long as it can record by the magneto-optical effect.
A magnetic metal thin film having an easy magnetization direction perpendicular to the film surface and having a large magneto-optic effect, such as the aforementioned FeTb alloy, F
eTbCo alloy, FeTbGd alloy and NdDyCo
Typical examples include amorphous alloys of rare earth elements and transition metal elements, such as alloys.

光磁気記録層の膜厚は、100〜1,000人が好まし
く、150〜500人がさらに好ましい。
The thickness of the magneto-optical recording layer is preferably 100 to 1,000, more preferably 150 to 500.

また、その積層権威は、その金属反射層が光磁気記録層
の光入射面と反対側に形成される点を除いてその槽底は
特に限定されない、なかでも、金属反射層と光磁気記録
層間に透明誘電体層を設ける権威は、感度、C/N、耐
久性の向上面より好ましい、さらに、基板と光磁気記録
層間にも誘電体層を設けた権威、つまり光磁気記録層を
誘電体層で挟んだ権威は、−層のC/N向上、透湿防止
などの効果による耐久性向上が得られさらに好ましい。
In addition, the lamination authority is not particularly limited to the bottom of the tank except that the metal reflective layer is formed on the side opposite to the light incident surface of the magneto-optical recording layer. It is preferable to provide a transparent dielectric layer between the substrate and the magneto-optical recording layer in terms of improved sensitivity, C/N, and durability. The material sandwiched between layers is more preferable because it improves durability due to effects such as improving the C/N of the negative layer and preventing moisture permeation.

一方、金属反射層を光磁気記録層上に接して設けた権威
でも、本発明のAgl!合金からなる金属反射層は実用
上充分な性能を示す。この権威は、透明誘電体層が不要
となるので、生産性と媒体コストの観点より好ましい。
On the other hand, even in the case where a metal reflective layer is provided in contact with the magneto-optical recording layer, the Agl! A metal reflective layer made of an alloy exhibits sufficient performance for practical use. This authority is preferable from the viewpoint of productivity and medium cost since a transparent dielectric layer is not required.

これらの各権威は、目的に応して選択される。Each of these authorities is selected depending on the purpose.

前記槽底に用いる基板側、金属反射層側の両透明誘電層
としては、その目的により光干渉効果、カー効果エンハ
ンスメントなどの効果を奏することが必要で、ある程度
以上の高屈折率を有することが好ましい。また、使用す
るレーザー光に透明であることが必要であり、透明誘電
体層としては公知のとおり金属の酸化物、チッ化物、硫
化物、炭化物、フッ化物もしくはこれらの複合体が適用
できる。具体的には、酸化ケイ素、酸化インジウム、酸
化タンタル、酸化アルミニウム、チッ化ケイ素、チッ化
アルくニウム、チッ化チタン、硫化亜鉛、フッ化マグネ
シウム、フッ化アルξニウム、炭化ケイ素およびこれら
の複合物が挙げられるが、これに限定されないことはい
うまでもない。
Both the transparent dielectric layers on the substrate side and the metal reflective layer side used in the tank bottom need to have effects such as optical interference effect and Kerr effect enhancement depending on their purpose, and must have a high refractive index above a certain level. preferable. Furthermore, it is necessary to be transparent to the laser beam used, and as the transparent dielectric layer, metal oxides, nitrides, sulfides, carbides, fluorides, or composites thereof can be used as known. Specifically, silicon oxide, indium oxide, tantalum oxide, aluminum oxide, silicon nitride, aluminum nitride, titanium nitride, zinc sulfide, magnesium fluoride, aluminum ξnium fluoride, silicon carbide, and composites thereof. Examples include things, but it goes without saying that it is not limited to these.

これらの誘電体は、膜中に金属元素を含んだものでもよ
い。また、パリレン、ポリイ〔ド、パラフィンなど有機
物も適用できる。これら透明誘電体は、複層構造でもよ
い。
These dielectrics may contain metal elements in their films. Organic materials such as parylene, polyide, and paraffin can also be used. These transparent dielectrics may have a multilayer structure.

光磁気記録層などの酸化されやすい記録層に接する透明
誘電体としては、酸化劣化防止面からチッ化物などの酸
素を含まないものが好ましい。
The transparent dielectric material in contact with a recording layer that is easily oxidized, such as a magneto-optical recording layer, is preferably a material that does not contain oxygen, such as a nitride, from the viewpoint of preventing oxidative deterioration.

なかでも、チッ化アルミニウム、チッ化シリコン、アル
ミニウム・シリコンチッ化物、チッ化タンタルなどが、
膜応力、膜質面から好ましく適用される。
Among them, aluminum nitride, silicon nitride, aluminum/silicon nitride, tantalum nitride, etc.
It is preferably applied from the viewpoint of film stress and film quality.

これら透明誘電体層の膜厚は、媒体権威、屈折率により
最適値が変化する。例えば、前記透明誘電体層で光磁気
記録層を挟んだ権威では、基板と光磁気記録層との間の
透明誘電体層の膜厚によって、光磁気記録層と金属反射
層との間の透明誘電体層の最適膜厚も変化するので、一
義的に決めることはできないが、通常は、基板と光磁気
記録層との間の透明誘電体膜厚が300〜1,600人
程度、光磁気記録層と金属反射層との間の透明誘電体膜
厚が30〜600人が好適に用いられる。
The optimum thickness of these transparent dielectric layers varies depending on the medium quality and refractive index. For example, according to the authority that sandwiched the magneto-optical recording layer between the transparent dielectric layers, depending on the thickness of the transparent dielectric layer between the substrate and the magneto-optical recording layer, the thickness of the transparent dielectric layer between the magneto-optical recording layer and the metal reflective layer The optimal thickness of the dielectric layer varies, so it cannot be determined unambiguously, but usually the thickness of the transparent dielectric between the substrate and the magneto-optical recording layer is about 300 to 1,600, A transparent dielectric film having a thickness of 30 to 600 mm between the recording layer and the metal reflective layer is preferably used.

しかしもちろん、これらの膜厚範囲に限定されるもので
はない。
However, of course, the film thickness is not limited to these ranges.

これら透明誘電体層は、常法により形成される。These transparent dielectric layers are formed by conventional methods.

例えば、前記無機物よりなるものは公知の真空蒸着法、
スパッタリング法、イオンビームスパ。
For example, the material made of the inorganic material can be formed using a known vacuum evaporation method.
Sputtering method, ion beam spa.

クリング法、CVD法などで作製される。It is produced by the Kling method, CVD method, etc.

また、基板としては、ガラス、アクリル樹脂、ポリカー
ボネート樹脂、エポキシ樹脂、4−メチルペンテン樹脂
およびそれらの変性品などが好適に用いられるが、機械
的強度、価格、耐候性、耐熱性、透湿量の点でポリカー
ボネート樹脂が好ましい。
In addition, glass, acrylic resin, polycarbonate resin, epoxy resin, 4-methylpentene resin, modified products thereof, etc. are preferably used as the substrate, but mechanical strength, price, weather resistance, heat resistance, moisture permeability, etc. Polycarbonate resin is preferred from this point of view.

前記構成の金属反射層上に無機材料からなる無機保護層
を設けることにより、高温多湿下や、耐ガス性などの耐
久性がさらに改善され、より好ましい。特に、AgA4
2合金では、H,Sガスなどにより劣化し、特性が低下
する場合があるが、この無機保護層によりそれを著しく
改善することができる。この無機保護層としては、耐透
湿性、ガスバリヤ性のよいものであれば特に限定されな
いが、記録特性、耐久性面より熱伝導率が低く、それ自
身耐久性に優れているものが好ましく適用される。かか
る無機保護層としては、金属膜と誘電体膜が挙げられる
By providing an inorganic protective layer made of an inorganic material on the metal reflective layer having the above structure, durability such as resistance to high temperature and humidity and gas resistance is further improved, which is more preferable. In particular, AgA4
2 alloy may be degraded by H, S gas, etc., resulting in a decrease in characteristics, but this inorganic protective layer can significantly improve this. This inorganic protective layer is not particularly limited as long as it has good moisture permeability and gas barrier properties, but in terms of recording properties and durability, it is preferably applied that has a low thermal conductivity and is itself excellent in durability. Ru. Such inorganic protective layers include metal films and dielectric films.

この金属膜は、それ自身の耐久性が充分高く、かつ媒体
の記録感度を低下させないために熱伝導率が低いことが
必要である。そのような特性を有する金属であれば特に
限定する必要はないが、なかでもTi、Cr、Niおよ
びこれらの合金からなる金属膜は特に好ましい。なお、
金属膜の膜厚は前記諸点より10〜300人が好ましく
、さらに好ましくは30〜250人である。
This metal film itself needs to have sufficiently high durability and low thermal conductivity so as not to reduce the recording sensitivity of the medium. Any metal having such characteristics does not need to be particularly limited, but metal films made of Ti, Cr, Ni, and alloys thereof are particularly preferred. In addition,
The thickness of the metal film is preferably 10 to 300 people, more preferably 30 to 250 people, from the above points.

一方、誘電体膜は、熱伝導率が低く膜厚が厚くても記録
特性への影響が小さく、充分な保護ができない点で優れ
ている。かかる誘電体膜には、前記エンハンス層などと
して公知の透明誘電体がそのまま適用できるが、特に耐
透湿性もよいという点でチン化アルくニウム、チン化シ
リコン、アルミニウム・シリコンチッ化物のチッ化物膜
、酸化シリコン、酸化チタンの酸化物膜が好ましく、な
かでもチッ化物膜が酸素が関係しない点で好ましい、誘
電体膜の膜厚は、その材料の熱伝導度、生産性、耐久性
改善に及ぼす効果によって決められる。一義的には言え
ないが、10〜500人、好ましくは50〜300人が
好適に用いられる。
On the other hand, dielectric films are superior in that they have low thermal conductivity, have little effect on recording characteristics even if they are thick, and cannot provide sufficient protection. For such a dielectric film, known transparent dielectrics can be used as they are for the enhancement layer, but nitrides such as aluminum tinide, silicon tinide, and aluminum/silicon nitride can be used because they have particularly good moisture permeation resistance. Oxide films such as silicon oxide and titanium oxide are preferred, and nitride films are particularly preferred because oxygen is not involved.The thickness of the dielectric film is determined to improve the thermal conductivity, productivity, and durability of the material. It is determined by the effect it has. Although it cannot be said unambiguously, 10 to 500 people, preferably 50 to 300 people are suitably used.

また、この無機保護層は、光記録層、金属反射層の上面
だけでなく、それらの端部を覆うことによりその効果は
一層顕著になる。
Moreover, this inorganic protective layer is more effective when it covers not only the upper surfaces of the optical recording layer and the metal reflective layer but also the edges thereof.

前記金属反射層および無機保護層の形成方法としては、
公知の真空蒸着法、スパッタリング法、イオンビームス
パッタリング法、CVD法などが考えられるが、下地層
との接着性、合金組成の制御性、組成分布などの点でス
パッタリング法が好ましい、また、膜の堆積速度、ガス
圧などは、生産性、膜応力などを考慮し、適宜選択され
る。
The method for forming the metal reflective layer and the inorganic protective layer includes:
Known vacuum evaporation methods, sputtering methods, ion beam sputtering methods, CVD methods, etc. can be considered, but the sputtering method is preferable in terms of adhesion with the underlying layer, controllability of alloy composition, composition distribution, etc. The deposition rate, gas pressure, etc. are appropriately selected in consideration of productivity, film stress, etc.

さらに、通常はこの無機保護層上に、機械的保護、さら
なる耐久性の向上などの目的で有機の光および熱硬化性
樹脂からなる有機保護層を設けるのが一般的である。
Furthermore, it is common to provide an organic protective layer made of an organic photo- and thermosetting resin on this inorganic protective layer for the purpose of mechanical protection, further improvement of durability, and the like.

以上の構成の光記録媒体は、公知のとおり前記構成のま
まで、さらに保護平板、保護フィルムなど必要な保護を
付加して片面記録媒体として、あるいはその2枚を金属
反射層側で貼り合わせた両面記録媒体として使用される
As is well known, the optical recording medium with the above structure can be used as a single-sided recording medium by adding necessary protection such as a protective flat plate or a protective film, or by bonding the two sheets together with the metal reflective layer side. Used as a double-sided recording medium.

〔実施例] 以下、本発明を光磁気記録媒体の実施例に基づいて説明
するが、本発明は以下の実施例に限定されるものではな
い。
[Examples] The present invention will be described below based on examples of magneto-optical recording media, but the present invention is not limited to the following examples.

実施例中、最適記録レーザーパワー(mw)およびピン
ホールは、下記のようにして測定した。
In the examples, the optimum recording laser power (mw) and pinhole were measured as follows.

レーザーパ −mw 光磁気記録再生装置(ナカミチ■製○MS1000型)
を用い、下記条件で記録パワーを変化させ、再生信号の
二次高調波が最小となる時を最適記録レーザーパワーと
した。
Laser par-mw magneto-optical recording/reproducing device (Nakamichi ○MS1000 type)
was used, and the recording power was varied under the following conditions, and the optimum recording laser power was defined as the time when the second harmonic of the reproduced signal was minimized.

〔記録条件] ディスク回転速度:1.80Orpm 記録トラック位置二半径30an位置 記録周波数:3.7MHz 記録時の印加磁界: 300エルステッドduty:5
0% 〔再生条件〕 ティスフ回転速度:1,80Orpm 読出しレーザーパワー:l、2mw ピンホール 暗室中でフジカラーライトポ・ンクス(フジカラー販売
■製)上に光磁気ディスクをおき、それを通してもれて
くる光の数を数えてピンホール数とした。
[Recording conditions] Disk rotation speed: 1.80 Orpm Recording track position: 30 ann radius Recording frequency: 3.7 MHz Magnetic field applied during recording: 300 Oe duty: 5
0% [Reproduction conditions] Tisf rotation speed: 1,80 rpm Readout laser power: 1, 2 mw A magneto-optical disk is placed on Fujicolor Light Ponx (manufactured by Fujicolor Sales ■) in a pinhole darkroom, and the light is leaked through it. The number of lights was counted and determined as the number of pinholes.

実施例1 基板上に透明誘電体層、光磁気記録層、透明誘電体層、
金属反射層を順次積層した構成の光磁気ディスクを以下
のように作製した。
Example 1 A transparent dielectric layer, a magneto-optical recording layer, a transparent dielectric layer,
A magneto-optical disk having a structure in which metal reflective layers were sequentially laminated was fabricated as follows.

すなわち、直径130mm、厚さ1.2閣の円盤で1.
6μmピッチのグループを有するポリカーボネート樹脂
(PC)製のディスク基板を、3ターゲツト設置可能な
高周波マグネトロンスフく、2り装置(アネルバ■製5
PF−430H型)の真空槽内に配置し、4X10−’
Torrになるまで排気した。
In other words, a disk with a diameter of 130 mm and a thickness of 1.2 mm is 1.
A disk substrate made of polycarbonate resin (PC) having groups with a pitch of 6 μm was installed as a high-frequency magnetron disk capable of installing 3 targets, and 2 devices (manufactured by Anelva ■5) were installed.
PF-430H type) placed in a vacuum chamber of 4X10-'
Exhaust the air until it reaches Torr.

次に、Ar、Nzの混合ガス(A r : Nt =7
0 : 30voi!%)を真空槽内に導入し、圧力1
0mTorrになるようにAr/N、混合ガス流量を調
整した。ターゲットとしては直径100閣、厚さ5■の
/1.。Si7°(以下、添数字は組成「原子%」を示
す)の焼結体からなる円盤を用い、放電電力500w、
放電周波数13.56MHzで高周波スパッタリングを
行い、PC基板を回転(自転)させながら、透明誘電層
としてA15iN膜を1,200人堆積した。
Next, a mixed gas of Ar and Nz (A r : Nt = 7
0: 30voi! %) into the vacuum chamber and the pressure is 1
The Ar/N and mixed gas flow rates were adjusted to 0 mTorr. The target is a diameter of 100mm and a thickness of 5mm/1. . Using a disk made of a sintered body of Si7° (hereinafter, the subscript indicates the composition "atomic %"), the discharge power was 500 W,
High-frequency sputtering was performed at a discharge frequency of 13.56 MHz, and 1,200 A15iN films were deposited as a transparent dielectric layer while the PC board was rotated (rotated).

続いて、光磁気記録層として、Tb□Fet+COm合
金ターゲットを用い、Arガス圧2mTo r r、放
電電力150Wの条件で高周波スパッタリングを行い、
約225人のTbFeCo合金膜を堆積した。引き続い
て、前記透明誘電層と同じAj!SiN  膜を350
人設けた。
Next, using a Tb□Fet+COm alloy target as the magneto-optical recording layer, high-frequency sputtering was performed under the conditions of Ar gas pressure of 2 mTorr and discharge power of 150 W.
Approximately 225 TbFeCo alloy films were deposited. Subsequently, the same Aj! as the transparent dielectric layer! SiN film 350
I set up a person.

さらに引き続いて、Agターゲット上に3閣口のAfお
よびTiチップを配置し、Arガス圧2mTorr、放
電電力100wの条件で高周波スパッタリングを行い、
金属反射層として400人のA g ysA l to
T i s Illを作製した。
Subsequently, three-sized Af and Ti chips were placed on the Ag target, and high-frequency sputtering was performed under the conditions of Ar gas pressure of 2 mTorr and discharge power of 100 W.
400 AgysA l to as metal reflective layer
T is Ill was created.

得られた光磁気ディスクの初期特性を測定するとともに
、温度80″C1相対湿度85%の条件で2.000時
間の耐久性試験を行い、C/Nを測定するとともにピン
ホールの増加数を測定した。
In addition to measuring the initial characteristics of the obtained magneto-optical disk, a durability test was conducted for 2,000 hours at a temperature of 80'' C1 and a relative humidity of 85% to measure the C/N and increase in the number of pinholes. did.

結果を第1表に示す。The results are shown in Table 1.

実施例2 光磁気記録層の上のAj!SiN膜を400人とし、金
属反射層を400人のA g ?。Al、。膜とするほ
かは、実施例1と同様にして光磁気ディスクを作製し、
実施例1と同様に評価した。
Example 2 Aj! on the magneto-optical recording layer! 400 people for the SiN film and 400 people for the metal reflective layer. . Al,. A magneto-optical disk was prepared in the same manner as in Example 1 except for forming a film.
Evaluation was made in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

比較例1 金属反射層を400人のAg膜とするほかは、実施例1
と同様にして光磁気ディスクを作製し、実施例1と同様
に評価した。結果を第1表に示す。
Comparative Example 1 Example 1 except that the metal reflective layer was a 400 Ag film.
A magneto-optical disk was prepared in the same manner as in Example 1, and evaluated in the same manner as in Example 1. The results are shown in Table 1.

比較例2 金属反射膜を600人のAI!qbTiaとするほかは
、実施例1と同様にして光磁気ディスクを作製し、実施
例1と同様に評価した。
Comparative Example 2 600 AIs on metal reflective film! A magneto-optical disk was produced in the same manner as in Example 1, except for using qbTia, and evaluated in the same manner as in Example 1.

結果を第1表に示す。The results are shown in Table 1.

第1表 〔発明の効果〕 本発明は、高感度で高C/N比の特性を有し、かつ耐久
性に優れた光記録媒体を提供することができる。
Table 1 [Effects of the Invention] The present invention can provide an optical recording medium having characteristics of high sensitivity and high C/N ratio and excellent durability.

Claims (6)

【特許請求の範囲】[Claims] (1)金属反射層を有する光記録媒体において、該金属
反射層がAgにAlを3〜60原子%含有せしめたAg
Al合金からなることを特徴とする光記録媒体。
(1) In an optical recording medium having a metal reflective layer, the metal reflective layer is Ag containing 3 to 60 atomic percent of Al.
An optical recording medium characterized by being made of an Al alloy.
(2)AgAl合金がさらにTi、Ta、ZrおよびY
の群から選ばれた少なくとも1種の元素を含有するAg
Al合金である請求項1記載の光記録媒体。
(2) AgAl alloy further contains Ti, Ta, Zr and Y
Ag containing at least one element selected from the group of
The optical recording medium according to claim 1, which is an Al alloy.
(3)前記金属反射層が光記録層に接している請求項1
または2記載の光記録媒体。
(3) Claim 1, wherein the metal reflective layer is in contact with an optical recording layer.
Or the optical recording medium according to 2.
(4)金属反射層と光記録層間に透明誘電体層が設けら
れている請求項1または2記載の光記録媒体。
(4) The optical recording medium according to claim 1 or 2, wherein a transparent dielectric layer is provided between the metal reflective layer and the optical recording layer.
(5)光記録層の金属反射層と反対の側に透明誘電体層
が積層されている請求項1〜4のいずれか1項記載の光
記録媒体。
(5) The optical recording medium according to any one of claims 1 to 4, wherein a transparent dielectric layer is laminated on the side of the optical recording layer opposite to the metal reflective layer.
(6)光記録層が光磁気記録層である請求項1〜5のい
ずれか1項記載の光記録媒体。
(6) The optical recording medium according to any one of claims 1 to 5, wherein the optical recording layer is a magneto-optical recording layer.
JP8813090A 1990-04-04 1990-04-04 Optical recording medium Pending JPH03288346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8813090A JPH03288346A (en) 1990-04-04 1990-04-04 Optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8813090A JPH03288346A (en) 1990-04-04 1990-04-04 Optical recording medium

Publications (1)

Publication Number Publication Date
JPH03288346A true JPH03288346A (en) 1991-12-18

Family

ID=13934342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8813090A Pending JPH03288346A (en) 1990-04-04 1990-04-04 Optical recording medium

Country Status (1)

Country Link
JP (1) JPH03288346A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1607954A2 (en) * 2000-07-21 2005-12-21 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7291374B2 (en) 1998-06-22 2007-11-06 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314659B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7314657B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314660B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7374805B2 (en) 2000-07-21 2008-05-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7291374B2 (en) 1998-06-22 2007-11-06 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7384677B2 (en) 1998-06-22 2008-06-10 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
EP1607954A2 (en) * 2000-07-21 2005-12-21 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
EP1607954A3 (en) * 2000-07-21 2006-09-20 Target Technology Company, LLC. Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314659B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or semi-reflective layer of an optical storage medium
US7314657B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7314660B2 (en) 2000-07-21 2008-01-01 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7316837B2 (en) 2000-07-21 2008-01-08 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium
US7374805B2 (en) 2000-07-21 2008-05-20 Target Technology Company, Llc Metal alloys for the reflective or the semi-reflective layer of an optical storage medium

Similar Documents

Publication Publication Date Title
CA2017284C (en) Optical recording medium
US5633746A (en) Magneto-optical recording medium
EP0482606B1 (en) Magneto-optical recording medium
JP2968632B2 (en) Magneto-optical recording medium
JPS6157052A (en) Photo-electro-magnetic recording medium
JPH0325737A (en) Magneto-optical recording medium
US5512364A (en) Magneto-optical recording medium
JPH03288346A (en) Optical recording medium
JP2541677B2 (en) Optical recording medium
JPH03122845A (en) Optical recording medium
JP2507592B2 (en) Optical recording medium
JPH02223040A (en) Magneto-optical recording medium
JP2523180B2 (en) Optical recording medium and manufacturing method thereof
JP2528188B2 (en) Optical recording medium
JPH043350A (en) Magneto-optical recording medium
JP2559871B2 (en) Optical recording medium
JPH02128346A (en) Magneto-optical disk
JP2960470B2 (en) Magneto-optical recording medium
KR100194131B1 (en) Optical recording media
JPH03142728A (en) Optical recording medium
JP2550118B2 (en) Magneto-optical recording medium
JPH04305837A (en) Magneto-optical recording medium
JPH04263143A (en) Magneto-optical recording medium
JPH01245447A (en) Magneto-optical recording medium
JPH02308454A (en) Magneto-optical recording medium