JPH03288330A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPH03288330A
JPH03288330A JP9081290A JP9081290A JPH03288330A JP H03288330 A JPH03288330 A JP H03288330A JP 9081290 A JP9081290 A JP 9081290A JP 9081290 A JP9081290 A JP 9081290A JP H03288330 A JPH03288330 A JP H03288330A
Authority
JP
Japan
Prior art keywords
magnetic
orientation
magnetic particles
magnetic layer
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9081290A
Other languages
Japanese (ja)
Inventor
Hiroshi Suzuki
宏 鈴木
Masaki Hirosachi
正樹 廣幸
Tosaku Nishiyama
東作 西山
Tsumoru Ohata
積 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9081290A priority Critical patent/JPH03288330A/en
Priority to DE1991613306 priority patent/DE69113306T2/en
Priority to EP19910302974 priority patent/EP0450956B1/en
Publication of JPH03288330A publication Critical patent/JPH03288330A/en
Priority to US07/933,006 priority patent/US5229173A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To attain high-frequency characteristics with the coating type intra-surface recording medium by applying and forming a magnetic layer on a nonmagnetic base, then subjecting the layer to a nonorienting treatment which does not apply magnetic fields and two stages of orienting treatments varying in conditions. CONSTITUTION:The main constitution of an orienting device consists of the 1st orienting stage consisting of a permanent magnet 1, the same poles of which face each other, and the 2nd orienting stage arrayed with 10 pieces of electromagnets 2 in a longitudinal direction. The magnetic layer essentially consisting of acicular or particulate magnetic particles and a resin binder is first applied on the nonmagnetic base. The magnetic layer is then subjected to the nonorienting stage which does not apply the magnetic fields from the outside for >=2 to <=7 seconds. The magnetic layer is thereafter subjected to the 1st orienting stage which applies the DC magnetic fields within the coated surface and in the longitudinal direction having the max. magnetic field of >=3 times and <=5 times the coercive force HC of the magnetic particles. The magnetic layer is subjected to the 2nd orienting stage in which the DC magnetic fields within the coated surface and in the longitudinal direction having the min. magnetic field of >=1/2 the coercive force HC of the magnetic particles continue for at least >=0.7 second. The magnetic recording medium of an excellent coating type having the excellent orientability in the coated surface is produced while the ultra-smooth surface is attained without impairing the surface characteristics of the magnetic layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、映像機器、音響関連機器、情報関連機器等に
用いる塗布型の磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a coated magnetic recording medium used in video equipment, audio-related equipment, information-related equipment, and the like.

従来の技術 映像機器分野における高画質化や、音響機器分野でのデ
ジタル信号処理化、またはコンピュータ周辺機器の小型
化・高速処理化等に伴い、これらの外部メモリとして広
く一般に使用されてきた塗布型の磁気記録媒体は、高密
度記録領域における録再特性の向上が重要となってきた
Conventional technology With the advancement of higher image quality in the field of video equipment, digital signal processing in the field of audio equipment, and miniaturization and faster processing of computer peripheral equipment, the coated type has been widely used as external memory for these devices. For magnetic recording media, it has become important to improve recording and reproducing characteristics in high-density recording areas.

現在主流を威している面内磁気記録方式に則った磁気テ
ープの分野においては、Co元素を被着させ抗磁力の向
上を図った酸化鉄磁性粒子や飽和磁化および抗磁力の高
いメタル磁性粒子を記録素子として採用する流れにある
In the field of magnetic tapes based on the currently mainstream in-plane magnetic recording method, iron oxide magnetic particles coated with Co to improve coercive force and metal magnetic particles with high saturation magnetization and coercive force are used. There is a trend to adopt these as recording elements.

そして、さらに記録密度を高めるため下記のような手段
がとられている。
In order to further increase the recording density, the following measures have been taken.

■ 磁性粒子を微粒子化・低軸比化し、磁性層中の粒子
充填密度を上げることにより磁気特性の向上を図る。
■ Improve magnetic properties by making magnetic particles finer, lowering the axial ratio, and increasing the particle packing density in the magnetic layer.

■ 磁性粒子の整列方向を可能な限り記録方向である長
尺方向に配向処理し、磁気特性の残留磁化強度を高める
■ The magnetic particles are aligned as much as possible in the longitudinal direction, which is the recording direction, to increase the residual magnetization strength of the magnetic properties.

■ 磁性層の表面粗さを可能な限り小さくし、記録・再
生時における磁性層−ヘッド間の空隙による磁気的損失
を抑える。
■ Minimize the surface roughness of the magnetic layer as much as possible to suppress magnetic loss due to the gap between the magnetic layer and the head during recording and reproduction.

発明が解決しようとする課題 しかしながらそれぞれの取り組みにおいて、■ 高抗磁
力・低軸比の超微粒子磁性体を精度良く整列させながら
充填度を上げる配向システムの能力上の課題 ■ 超微粒子の磁性粒子間の反発相互作用(配向戻り)
に打ち勝つ初期配向・配向整列の技術■ 整列させた磁
性粒子を配向戻りさせない配向固定方法 といった配向技術上に課題が顕在化してきており、これ
に対処するために、 ・高磁界印加による高抗磁力・低軸比での配向性向上 ・高粘度塗料の塗膜形成による配向戻りの抑制・塗膜乾
燥における粘度上昇による配向戻りの抑制 といった検討が取り組まれている。
Problems to be Solved by the Invention However, in each approach, ■ Challenges in the ability of the alignment system to increase the filling degree while aligning ultrafine magnetic particles with high coercive force and low axial ratio with precision ■ Between the magnetic particles of ultrafine particles repulsive interaction (reorientation)
Initial orientation/orientation alignment technology that overcomes problems ■ Issues have emerged in orientation technology, such as an orientation fixing method that does not cause the aligned magnetic particles to reorient. - Improvement of orientation at low axial ratios - Suppression of reorientation due to coating film formation with high viscosity paint - Suppression of reorientation due to increased viscosity during coating drying are being studied.

しかしながらこれらの対策では、 ・高磁界に伴う磁性粒子粗動(塗膜の流動)による配向
面荒れ ・高粘度塗工による初期配向性の低下・塗膜レベリング
性の低下 ・乾燥に伴う表面荒れ など、表面性や配向挙動のバランスの面で問題を抱えて
いる。
However, with these countermeasures, ・Roughness of the oriented surface due to magnetic particle coarse movement (flowing of the coating film) caused by high magnetic fields ・Decrease in initial orientation due to high viscosity coating ・Decrease in leveling ability of the coating film ・Surface roughness due to drying, etc. However, there are problems with the balance of surface properties and orientation behavior.

本発明は、上記課題を解決し、磁性金属薄膜を磁性層に
持つ媒体と同レベルの高域特性を塗布型面内記録媒体で
実現することを目的とする。
It is an object of the present invention to solve the above-mentioned problems and to realize a coated longitudinal recording medium with high-frequency characteristics on the same level as a medium having a magnetic metal thin film as a magnetic layer.

課題を解決するための手段 本発明は上記目的を遠戚するために、非磁性支持体上に
針状もしくは粒状の磁性粒子と樹脂系バインダを主剤と
する磁性層を塗布形成したのち、2秒以上7秒以下の外
部から磁界を加えない無配向処理工程と、最大磁場が磁
性粒子の抗磁力(’Hc>の3倍以上5倍以下である塗
布面内かつ長尺方向の直流磁界を加える第一配向工程と
、最小磁場が磁性粒子の抗磁力の1/2以上である塗布
面内かつ長尺方向の直流磁界が少なくとも0.7秒以上
続く第二配向工程とを有し、磁性粒子を塗布面内長尺方
向に整列させるものである。
Means for Solving the Problems In order to achieve the above-mentioned object, the present invention coats and forms a magnetic layer containing acicular or granular magnetic particles and a resin binder as main ingredients on a non-magnetic support, and then coats the magnetic layer on a non-magnetic support for 2 seconds. A non-orientation treatment step in which no external magnetic field is applied for 7 seconds or less, and a DC magnetic field in the longitudinal direction within the coated surface whose maximum magnetic field is 3 times or more and 5 times or less than the coercive force ('Hc>) of the magnetic particles. a first orientation step; and a second orientation step in which a direct current magnetic field in the coated surface and in the longitudinal direction in which the minimum magnetic field is 1/2 or more of the coercive force of the magnetic particles continues for at least 0.7 seconds, and the magnetic particles are aligned in the longitudinal direction within the coating surface.

さらに非磁性支持体上に針状もしくは粒状の磁性粒子と
樹脂系バインダを主剤とする磁性層の塗布形成で、磁性
粒子と樹脂系バインダを主剤とする磁性塗料が固形分率
25%以上45%以下の構成とすることにより、その効
果をより有効なものとするものである。
Furthermore, by coating a magnetic layer containing acicular or granular magnetic particles and a resin binder as main ingredients on a non-magnetic support, a magnetic paint containing magnetic particles and a resin binder as main ingredients can be produced with a solid content of 25% to 45%. The following configuration makes the effect more effective.

また、非磁性支持体上に塗布形成する磁性層が軸比5以
上14以下の針状メタル磁性粒子と樹脂系バインダを主
剤とすることにより、効果を一層有効なものとするもの
である。
Further, the effect is made even more effective by using the magnetic layer formed by coating on the non-magnetic support mainly consisting of acicular metal magnetic particles having an axial ratio of 5 or more and 14 or less and a resin binder.

作用 本発明は上記1威により以下の3つの作用を有している
Effects The present invention has the following three effects based on the above-mentioned power.

(1)  第一配向工程の前乙こ、2秒以上7秒以下の
外部から磁界を加えない無配向処理工程を導入すること
によって、初期配向性は損なわずかつ磁性塗膜自身のレ
ベリング性を最大限に生かし、かつ第一配向工程の作用
とバランスをとった磁性粒子粗動による表面荒れ(配向
表面荒れ)を抑える作用を生み出す。
(1) Before the first orientation step, by introducing a non-orientation treatment step in which no external magnetic field is applied for 2 seconds or more and 7 seconds or less, the initial orientation is not impaired and the leveling property of the magnetic coating film itself is improved. It produces an effect that suppresses surface roughness (orientation surface roughness) caused by coarse movement of magnetic particles by maximizing the effect and balancing with the effect of the first alignment process.

ここで無配向工程として必要な時間は塗膜形成時の塗料
の固形分率・樹脂材料の分子量など乙こよって調整を必
要とする。しかしながら本発明にかかわる塗工技術・材
料技術から考えられる塗膜形成時の塗料特性↓こおいて
は、上記作用は2秒以上7秒以下の無配向処理工程を与
えることで十分得られる。
Here, the time required for the non-orientation process needs to be adjusted depending on the solid content of the paint and the molecular weight of the resin material during coating film formation. However, in view of the paint properties during coating film formation considered from the coating technology and material technology related to the present invention, the above effects can be sufficiently obtained by applying a non-orientation treatment step of 2 seconds or more and 7 seconds or less.

(2)第一配向工程は初期配向として超微粒子でかつ高
抗磁力・低軸比の磁性体を長尺方向に高配向させるため
に高磁界を加えることを前提とし、適切な磁界として磁
性粒子の抗磁力(Hc)の3倍以上5倍以下である直流
最大磁場を塗布面内かつ長尺方向に印加する。ここで配
向前の初期状態で磁性粒子の磁化困難軸が磁界方向を向
いていると、最大磁場が抗磁力の3倍未満では有効な配
向挙動が始まらない。また最大磁場が抗磁力の5倍超で
は、磁性塗膜自体が磁性流体のように移動を始め、レベ
リング性によって得た塗膜の平滑性・均質性が損なわれ
、結果として表面性の悪い磁性層となってしまう。
(2) The first orientation step is based on the premise that a high magnetic field is applied as an initial orientation to highly orient the ultrafine particles, high coercive force, and low axial ratio magnetic material in the longitudinal direction, and an appropriate magnetic field is applied to the magnetic particles. A DC maximum magnetic field that is 3 times or more and 5 times or less the coercive force (Hc) of is applied within the coated surface and in the longitudinal direction. Here, if the hard magnetization axis of the magnetic particles is oriented in the direction of the magnetic field in the initial state before orientation, effective orientation behavior will not start if the maximum magnetic field is less than three times the coercive force. In addition, if the maximum magnetic field is more than 5 times the coercive force, the magnetic coating itself begins to move like a magnetic fluid, and the smoothness and homogeneity of the coating obtained by leveling properties are impaired, resulting in a magnetic coating with poor surface properties. It becomes a layer.

以上のことから、配向に用いる塗布面内かつ長尺方向の
直流磁界として最大磁場が磁性粒子の抗磁力の3倍以上
5倍以下であることが磁性層の表面性を損なわず磁性粒
子の初期配向を高めるように作用する。
From the above, it has been found that the maximum magnetic field of the DC magnetic field in the longitudinal direction within the coated surface used for orientation is 3 times or more and 5 times or less than the coercive force of the magnetic particles, without impairing the surface properties of the magnetic layer and at the initial stage of the magnetic particles. Acts to enhance orientation.

(3)さらに(1)、(2)によって初期配向性・表面
性をともに実現した磁性塗膜の粒子整列を固定させるた
めに設けた第二配向工程では、 ・最小磁場が磁性粒子の抗磁力の1/2以上であること
により、配向後の粒子間反発力を抑え込み整列を維持で
きる。
(3) Furthermore, in the second orientation process provided to fix the particle alignment of the magnetic coating film that has achieved both initial orientation and surface properties through (1) and (2), the minimum magnetic field is the coercive force of the magnetic particles. When the particle size is 1/2 or more, the repulsion between particles after orientation can be suppressed and alignment can be maintained.

・塗布面内かつ長尺方向の直流磁界が少なくとも0.7
秒以上続くことにより、初期配向で確実に整列しきれな
かった磁性粒子の配向状態を補正でき、塗膜の表面荒れ
を起こす強乾燥を行わすとも配向状態固定を可能とする
・DC magnetic field within the coating surface and in the longitudinal direction is at least 0.7
By continuing for more than a second, it is possible to correct the orientation state of the magnetic particles that could not be reliably aligned in the initial orientation, and it is possible to fix the orientation state even if strong drying is performed, which may cause surface roughness of the coating film.

といった作用を持つ。その結果、平滑な表面性を確保し
ながら高抗磁力・低軸比の磁性粒子の高配向状態を維持
・固定できる。
It has such an effect. As a result, the highly oriented state of the magnetic particles with high coercive force and low axial ratio can be maintained and fixed while ensuring smooth surface properties.

固形分率が25%以上45%以下であるような磁性塗料
を用いて塗膜形成すること、および軸比5以上14以下
の針状メタル磁性粒子と樹脂系バインダを主剤とする磁
気記録媒体を本発明に基づいて作成することにより、従
来方法では実現できなかった長尺方向配向性と表面性と
もに優れた磁気記録媒体を得ることができる。
Forming a coating film using a magnetic paint with a solid content of 25% or more and 45% or less, and a magnetic recording medium whose main ingredients are acicular metal magnetic particles with an axial ratio of 5 or more and 14 or less and a resin binder. By producing a magnetic recording medium based on the present invention, it is possible to obtain a magnetic recording medium with excellent longitudinal orientation and surface properties, which could not be achieved using conventional methods.

実施例 以下、本発明の実施例と従来例の比較について図面を参
照しながら説明する。
EXAMPLE Hereinafter, a comparison between an example of the present invention and a conventional example will be explained with reference to the drawings.

本発明に基づく配向装置について具体的な構成を第1図
に示す。
FIG. 1 shows a specific configuration of an orientation apparatus based on the present invention.

配向装置の主たる構成は、同極対向の希土類永久磁石1
による第一配向工程と導線をソレノイド状に巻いて作っ
た電磁石2を長尺方向に10個並べた第二配向工程から
なる。ここでこれら第一・第二配向工程の構成物は非磁
性支持体の走行系の両脇に走行面と平行に設置された配
向装置設置用ガイドレール3の上に磁石設置台4によっ
て設置され、塗膜形成装置(塗布装置)5からの距離が
任意に変えられるような構造になっている。
The main configuration of the orientation device is rare earth permanent magnets 1 with the same polarity facing each other.
It consists of a first orientation step in which 10 electromagnets 2 made by winding a conducting wire into a solenoid shape are arranged in the longitudinal direction. Here, the components of the first and second alignment steps are installed by a magnet installation stand 4 on alignment device installation guide rails 3 installed on both sides of the non-magnetic support running system parallel to the running surface. The structure is such that the distance from the coating film forming device (coating device) 5 can be changed arbitrarily.

このような配向装置を用いて、本発明に基づ〈実施例1
〜6のサンプルテープを作成した。これらの配向条件を
第1表に示す。
Using such an orientation device, <Example 1> based on the present invention
~6 sample tapes were created. These orientation conditions are shown in Table 1.

本配向装置を用いて第1表の配向処理方法を行うには、 ■ 無配向処理時間: 配向装置の設定位置をガイドレ
ール状で前後させて ■ ■ ■ 第一配向工程の: 最大磁場 第二配向工程の: 最小磁場 第二配向工程の: 印加時間 調節する。
To perform the orientation processing method shown in Table 1 using this orientation device, ■ Non-orientation processing time: Move the setting position of the orientation device back and forth in a guide rail shape. ■ ■ ■ First orientation process: Maximum magnetic field Second Orientation step: Minimum magnetic field Second orientation step: Adjust application time.

同極対向の永久磁石間の 距離によって調節する。Between opposite permanent magnets with the same polarity Adjust according to distance.

ソレノイド状電磁石に与 える電流値によって、各位 百聞で落ち込んだ磁場の値 を制御する。Applied to the solenoid-like electromagnet Depending on the current value, The value of the magnetic field that has fallen after hearing a thousand words control.

10個のソレノイド状電磁 石に塗布装置側から電流を 流し、磁場長を制御する。10 solenoid-like electromagnetic Electric current is applied to the stone from the applicator side. flow and control the magnetic field length.

第1表 この実施例については、非磁性支持体として厚み10μ
mのポリエチレンテレフタレートフィルム(以下、PE
Tフィルムと略す)を用い、その表面に厚み3.0μm
磁性層を連続塗布形威し、裏面に厚み0.5μmのバッ
クコート層を形成した8m5VTR用テープとして試料
を作った。
Table 1 For this example, the thickness of the non-magnetic support is 10 μm.
m polyethylene terephthalate film (hereinafter referred to as PE
(abbreviated as T film) with a thickness of 3.0 μm on its surface.
A sample was prepared as an 8m5 VTR tape in which the magnetic layer was continuously coated and a back coat layer with a thickness of 0.5 μm was formed on the back surface.

以下に試料の作成方法を詳細に説明する。The method for preparing the sample will be explained in detail below.

(1)磁性層を形成する材料 磁性層を形成する材料およびその比率は以下の通りであ
る。
(1) Materials forming the magnetic layer The materials forming the magnetic layer and their ratios are as follows.

メタル磁性体 :100重量部 樹脂系パインダニ20重量部 アルミナ   :  7重量部 カーボン   :  3重量部 脂肪族系潤滑剤:  4重量部 硬化剤    =  5重量部 メタル磁性体は従来のVTR用としては比較的軸比の低
く、配向性の確保に困難なものを選んだ。
Metal magnetic material: 100 parts by weight Resin-based pine mites 20 parts by weight Alumina: 7 parts by weight Carbon: 3 parts by weight Aliphatic lubricant: 4 parts by weight Hardening agent = 5 parts by weight Metal magnetic material is relatively small for conventional VTR use. We selected a material with a low axial ratio, making it difficult to ensure orientation.

第2表にその特性を示す。Table 2 shows its characteristics.

第2表 樹脂系バインダは、第3表に示す樹脂を混合しVTR用
テープのバインダとして標準的な構成とした。
The resin binders in Table 2 were made by mixing the resins shown in Table 3 to form a standard composition as a binder for VTR tapes.

第3表 配合比率:磁性粉重量を100とした重量比。Table 3 Blending ratio: weight ratio with magnetic powder weight as 100.

各々の量は、バインダ樹脂系での塗膜の引っ張り試験お
よび、磁性塗膜のスクラッチ強度試験の結果から最も優
れた比率としている。
Each amount is determined to be the most excellent ratio based on the results of a tensile test of a coating film using a binder resin system and a scratch strength test of a magnetic coating film.

樹脂dは、アル旦すを前処理するために選択した。Resin d was selected for pre-treating the alchemist.

アルミナは、粒径が0.10〜0.30 p mでBE
T比表面積が9〜15rrf/gの一般的なものを用い
、樹脂d:1重量部によってあらかしめξル分散機を用
いて適度な粘度にて分散処理した。
Alumina has a particle size of 0.10-0.30 pm and has BE
A general material having a T specific surface area of 9 to 15 rrf/g was used, and it was pretreated with 1 part by weight of resin d, and dispersed at an appropriate viscosity using a ξru dispersion machine.

残りのバインダ19重量部については、磁性粉の混練・
前分散のときに添加した。
For the remaining 19 parts by weight of the binder, mix the magnetic powder and
It was added during pre-dispersion.

カーボンについては、−次粒子の粒径が200〜300
Åのものを用いた。
Regarding carbon, the particle size of the -order particles is 200 to 300
Å was used.

脂肪族系潤滑剤には、磁気記録媒体でよく使われている
3種類を選び、以下の配合比にて混入した。
Three types of aliphatic lubricants commonly used in magnetic recording media were selected and mixed in the following blending ratio.

CI4 1重量部 C18:1重量部 Cl8−C4: 1重量部 硬化剤には、一般によく用いられるイソシアネト化合物
を使った。
CI4: 1 part by weight C18: 1 part by weight Cl8-C4: 1 part by weight A commonly used isocyanate compound was used as a curing agent.

(2)  VA性塗料の作成 磁性塗料の作成は次のようにして行った。(2) Creation of VA paint The magnetic paint was prepared as follows.

メタル磁性粉とカーボンおよびメチルエチルケトン:ト
ルエン:シクロへキサノン=3 : 3 : 1のl昆
合溶剤をミキサに加えながら一時間撹はんして粉体を溶
剤に十分湿潤させたのち、樹脂a・樹脂b・樹脂Cと不
足分の前記混合溶剤をミキサに加えながら5時間攪はん
して粉体増粒を行った。その後塗料粘度を調節しながら
混線処理を4時間行った。
A mixture of metal magnetic powder, carbon and methyl ethyl ketone: toluene: cyclohexanone = 3:3:1 was added to a mixer and stirred for one hour to thoroughly wet the powder with the solvent, and then the resin a. While adding Resin B, Resin C and the remaining amount of the mixed solvent to a mixer, the mixture was stirred for 5 hours to increase the powder size. Thereafter, crosstalk treatment was performed for 4 hours while adjusting the viscosity of the paint.

この磁性混練物を希釈した後、通常塗料分散によ(使わ
れるサンドミルによって分散を進めた。
After diluting this magnetic kneaded material, dispersion was carried out using a sand mill, which is commonly used for paint dispersion.

サンドミル−次分散の終了とともに樹脂dによって別分
散を施したアルミナペーストを添加・攪はんし、再びサ
ンドミルにて二次分散処理した。
Upon completion of sand mill secondary dispersion, alumina paste which had been separately dispersed with resin d was added and stirred, and secondary dispersion treatment was performed again using a sand mill.

このようにして得たメタル磁性塗料原液に、塗工直前に
潤滑剤溶液と硬化剤を添加−攪はんして磁性塗料の調合
を終了した。
Immediately before coating, a lubricant solution and a curing agent were added and stirred to the metal magnetic paint stock solution obtained in this manner to complete the preparation of the magnetic paint.

このときの塗料固形分率(N、ν、)は、30.0%と
した。
The solid content of the paint (N, ν,) at this time was 30.0%.

(3)磁性層の形成方法 磁性層の形成方法は、調合・分散の終了した磁性塗料を
グラビアコータに7PPTフイルム上に連続的に塗工し
、塗工直後に本発明における配向処理として第1表に示
す処理を施した。その後本乾燥工程を経た後にカレンダ
処理を施して鏡面仕上げを行い、これを硬化炉中にて硬
化反応させた。
(3) Formation method of magnetic layer The method of forming the magnetic layer is to continuously coat the prepared and dispersed magnetic paint onto the 7PPT film using a gravure coater, and immediately after coating, the first orientation treatment in the present invention is performed. The treatments shown in the table were performed. Thereafter, after passing through a main drying step, a calender treatment was performed to give a mirror finish, and this was subjected to a curing reaction in a curing furnace.

(4)バック・コート層の形成方法 バック・コート層は、磁性層を形成・硬化後にカーボン
・ブラックを主成分とする専用の塗料をグラビアコータ
にて連続塗布形成した。
(4) Method of Forming Back Coat Layer The back coat layer was formed by continuously applying a special paint containing carbon black as a main component using a gravure coater after forming and curing the magnetic layer.

以上のようにして作成した試料は8■幅にスリットした
後、以下に記述した比較例との違いを調べた。
The sample prepared as described above was slit into a width of 8 cm, and then the difference from the comparative example described below was examined.

比較例 実施例で記述した配向装置を用いて第4表に示す配向処
理により比較例を作成した。
Comparative Examples Comparative examples were prepared using the alignment apparatus described in Examples and the alignment treatment shown in Table 4.

(以下余白) 第4表 これらの比較例については、材料組成・磁性塗料作成方
法とも実施例と同様にして試料を作成した。
(Margins below) Table 4 For these comparative examples, samples were prepared using the same material composition and magnetic coating preparation method as in the examples.

このようにして作成したそれぞれの試料を8−幅にスリ
ットした後、その特性について実施例と比較検討した。
Each of the samples thus prepared was slit into 8-width slits, and its properties were compared with those of Examples.

各試料について、 ■ テープ角形比(Br/Bm)の面内長手成分■ 磁
性層の表面粗度 について評価を行った。
For each sample, (1) the in-plane longitudinal component of the tape squareness ratio (Br/Bm) (2) and the surface roughness of the magnetic layer were evaluated.

以下、評価結果について順を追って説明する。The evaluation results will be explained step by step below.

第5表は実施例・比較例の各試料についてテープ長尺方
向の角形比と平均表面粗度を、配向条件によって整理し
て示したものである。角形比は掃引磁場10 k Oe
にて振動型磁化測定装置で、平均表面粗度は光干渉式非
接触3次元表面粗さ計で測定したものである。
Table 5 shows the squareness ratio in the longitudinal direction of the tape and the average surface roughness of each sample of the Examples and Comparative Examples, organized according to orientation conditions. Squareness ratio is swept magnetic field 10 k Oe
The average surface roughness was measured using an optical interference type non-contact three-dimensional surface roughness meter using a vibrating magnetization measuring device.

第5表から明らかなように、下記に示す実施例の条件、 (1)無配向時間=2.0秒〜7.0秒(2)第一配向
工程の最大磁場強度:磁性粉抗磁力の3〜5倍 (3)第二配向工程の最小磁場強度:VA磁性粉抗磁力
1/2以上 (4)第二配向工程の印加時間:0.7秒以上を全て満
たす試料は、テープ長尺方向において0.86以上の高
い角形比と平均表面粗度6n+m台の優れた表面性が両
立している。
As is clear from Table 5, the conditions of the examples shown below: (1) Non-orientation time = 2.0 seconds to 7.0 seconds (2) Maximum magnetic field strength in the first orientation step: magnetic powder coercive force 3 to 5 times (3) Minimum magnetic field strength in the second orientation process: VA magnetic powder coercive force 1/2 or more (4) Application time in the second orientation process: 0.7 seconds or more A sample that satisfies all of the following is a tape long A high squareness ratio of 0.86 or more in the direction and excellent surface properties of an average surface roughness of 6n+m are both compatible.

高配向性と超平滑性が両立できない比較例をみると、上
記(1)〜(4)の条件を満たしていないため以下の現
象を引き起こしている。
Looking at comparative examples in which high orientation and ultra-smoothness are not compatible, the following phenomena occur because conditions (1) to (4) above are not satisfied.

・比較例1:無配向時間が短いために、配向工程後配向
戻りが起きている。
Comparative Example 1: Because the non-orientation time was short, the orientation returned after the orientation process.

・比較例2:無配向時間が長すぎ、配向工程中で向きき
らない内に配向が固まってい る。
Comparative Example 2: The non-orientation time was too long, and the orientation was fixed before the orientation was completed during the orientation process.

・比較例3:第一配向工程の最大磁場が低いために、軸
比の低い磁性粒子は配向しき れていない。
Comparative Example 3: Because the maximum magnetic field in the first orientation step was low, magnetic particles with a low axial ratio were not fully oriented.

・比較例4:非常に高い角形比が得られているが、第一
配向工程の最大磁場が高すぎる ために磁性粒子が流動を起こし、表 面粗度が悪くなっている。
Comparative Example 4: Although a very high squareness ratio was obtained, the maximum magnetic field in the first orientation step was too high, causing the magnetic particles to flow, resulting in poor surface roughness.

・比較例5:第二配向工程の最小磁場が低すぎるため、
この区間では磁性粒子の配向 戻りを抑えきれず、第一配向工程で 作った配向度が落ちている。
・Comparative Example 5: Because the minimum magnetic field in the second orientation step was too low,
In this section, the reorientation of the magnetic particles cannot be suppressed, and the degree of orientation created in the first orientation step decreases.

・比較例6:第二配向工程の印加時間が短すぎるため、
配向工程後配向戻りを起こし ている。
・Comparative Example 6: The application time of the second alignment step was too short, so
After the orientation process, the orientation returns.

このように配向のしにくい軸比の小さい磁性粒子を用い
ると比較例の配向方法では、配向処理上の条件が高精度
に配向させるための設定より外れているために高配向性
を得ることが出来ない。たとえ、高配向性を確保できた
としても磁性層表面が荒れてしまい、結果として短波長
域での電磁変換特性が損なわれてしまう。
In this way, when using magnetic particles with a small axial ratio that are difficult to align, the orientation method of the comparative example cannot achieve high orientation because the conditions for the orientation treatment are outside the settings for highly accurate orientation. Can not. Even if a high degree of orientation can be ensured, the surface of the magnetic layer will become rough, and as a result, the electromagnetic conversion characteristics in the short wavelength range will be impaired.

これに対し実施例では、本発明による表面粗度を維持し
つつ高配向性が得られる最適の配向方法を用いているた
め、明らかに比較例よりも優れたテープ特性が得られて
いる。
On the other hand, in the Examples, tape characteristics clearly superior to those in the Comparative Examples were obtained because the optimum orientation method of the present invention was used to obtain high orientation while maintaining the surface roughness.

上記本実施例においては配向装置として希土類永久磁石
とソレノイド型電磁石の組合せを用いているが、本発明
による配向処理方法を実現できるものであれば永久磁石
のみまたは電磁石のみでも良く、電磁石の形もソレノイ
ド状である必要もない また磁性層の構成材料や塗料化・テープ化の手法につい
ても本発明を限定するものではなく、塗布型磁気テープ
を作成できる材料・塗料化方法・塗布方法などであれば
どのようなものを用いても、本発明の効果が得られる。
In this embodiment, a combination of a rare earth permanent magnet and a solenoid type electromagnet is used as the alignment device, but it is also possible to use only a permanent magnet or only an electromagnet, and the shape of the electromagnet may also be used as long as the alignment processing method according to the present invention can be realized. It does not have to be solenoid-like, and the present invention is not limited to the constituent materials of the magnetic layer or the methods of making it into paint or tape, and any material, method of making it into paint, application method, etc. that can make a coated magnetic tape can be used. The effects of the present invention can be obtained no matter what kind of material is used.

(以下余白) 第5表 発明の効果 以上の実施例から明らかなように本発明によれば、磁性
層の表面性を損なわず超平滑な表面を実現させながら塗
布面内配向性に優れた塗布型の磁気記録媒体を連続的に
しかも安定して製造することができ、その電磁変換特性
は高密度記録領域においても秀れた録再特性を示すもの
である。
(The following is a blank space) Table 5 Effects of the Invention As is clear from the above examples, according to the present invention, a coating with excellent in-plane orientation can be achieved while achieving an ultra-smooth surface without impairing the surface properties of the magnetic layer. type magnetic recording media can be manufactured continuously and stably, and its electromagnetic conversion characteristics exhibit excellent recording and reproducing characteristics even in high-density recording areas.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するに当たって使用した配向装置
の一例を示す概略構成図である。 I・・・・・・同極対向の希土類永久磁石、2・・・・
・・ソレノイド状電磁石、3・・・・・・配向装置設置
用ガイドレール、4・・・・・・磁石設置台、5・−・
・・・塗膜形成装置。
FIG. 1 is a schematic configuration diagram showing an example of an orientation apparatus used in carrying out the present invention. I... Rare earth permanent magnet with the same poles facing each other, 2...
... Solenoid-shaped electromagnet, 3 ... Guide rail for installing orientation device, 4 ... Magnet installation stand, 5 ...
...Coating film forming device.

Claims (3)

【特許請求の範囲】[Claims] (1)非磁性支持体上に針状もしくは粒状の磁性粒子と
樹脂系バインダを主剤とする磁性層を塗布形成したのち
、2秒以上7秒以下の外部から磁界を加えない無配向処
理工程と、最大磁場が磁性粒子の抗磁力(Hc)の3倍
以上5倍以下である塗布面内かつ長尺方向の直流磁界を
加える第一配向工程と、最小磁場が磁性粒子の抗磁力の
1/2以上である塗布面内かつ長尺方向の直流磁界が少
なくとも0.7秒以上続く第二配向工程とを有し、磁性
粒子を塗布面内長尺方向に整列させることを特徴とする
磁気記録媒体の製造方法。
(1) After coating and forming a magnetic layer mainly composed of acicular or granular magnetic particles and a resin binder on a non-magnetic support, a non-orientation treatment step in which no external magnetic field is applied for 2 seconds or more and 7 seconds or less , a first alignment step in which a direct current magnetic field is applied in the longitudinal direction within the coated surface where the maximum magnetic field is 3 to 5 times the coercive force (Hc) of the magnetic particles, and a minimum magnetic field is 1/1/2 of the coercive force (Hc) of the magnetic particles. a second alignment step in which a direct current magnetic field in the longitudinal direction within the coating surface of 2 or more continues for at least 0.7 seconds, and magnetic particles are aligned in the longitudinal direction within the coating surface. Method of manufacturing media.
(2)非磁性支持体上に針状もしくは粒状の磁性粒子と
樹脂系バインダを主剤とする磁性層の塗布形成で、磁性
粒子と樹脂系バインダを主剤とする磁性塗料が固形分率
25%以上45%以下であることを特徴とする請求項(
1)記載の磁気記録媒体の製造方法。
(2) By coating and forming a magnetic layer containing acicular or granular magnetic particles and a resin binder as main ingredients on a non-magnetic support, the solid content of the magnetic paint containing magnetic particles and a resin binder as main ingredients is 25% or more. A claim characterized in that it is 45% or less (
1) The method for manufacturing the magnetic recording medium described above.
(3)非磁性支持体上に塗布形成する磁性層が軸比5以
上14以下の針状メタル磁性粒子と樹脂系バインダを主
剤とすることを特徴とする請求項(2)記載の磁気記録
媒体の製造方法。
(3) The magnetic recording medium according to claim (2), wherein the magnetic layer formed by coating on the non-magnetic support mainly comprises acicular metal magnetic particles with an axial ratio of 5 or more and 14 or less and a resin binder. manufacturing method.
JP9081290A 1990-04-05 1990-04-05 Production of magnetic recording medium Pending JPH03288330A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9081290A JPH03288330A (en) 1990-04-05 1990-04-05 Production of magnetic recording medium
DE1991613306 DE69113306T2 (en) 1990-04-05 1991-04-04 Process for the production of magnetic recording media.
EP19910302974 EP0450956B1 (en) 1990-04-05 1991-04-04 Method of producing magnetic recording media
US07/933,006 US5229173A (en) 1990-04-05 1992-08-21 Method of producing a magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9081290A JPH03288330A (en) 1990-04-05 1990-04-05 Production of magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH03288330A true JPH03288330A (en) 1991-12-18

Family

ID=14009012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9081290A Pending JPH03288330A (en) 1990-04-05 1990-04-05 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH03288330A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942999A (en) * 2020-05-26 2023-04-07 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented plate-like magnetic or magnetizable pigment particles

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971133A (en) * 1982-10-14 1984-04-21 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS6070532A (en) * 1983-09-27 1985-04-22 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS62175931A (en) * 1986-01-29 1987-08-01 Fuji Photo Film Co Ltd Method and device for manufacturing magnetic recording medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5971133A (en) * 1982-10-14 1984-04-21 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS6070532A (en) * 1983-09-27 1985-04-22 Fuji Photo Film Co Ltd Production of magnetic recording medium
JPS62175931A (en) * 1986-01-29 1987-08-01 Fuji Photo Film Co Ltd Method and device for manufacturing magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115942999A (en) * 2020-05-26 2023-04-07 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented plate-like magnetic or magnetizable pigment particles
CN115942999B (en) * 2020-05-26 2023-09-12 锡克拜控股有限公司 Magnetic assembly and method for producing an optical effect layer comprising oriented platelet-shaped magnetic or magnetizable pigment particles

Similar Documents

Publication Publication Date Title
EP0203002A2 (en) Longitudinal magnetic coated recording medium
JP2004103186A (en) Magnetic recording medium
JPS60124025A (en) Magnetic recording medium
KR930009640B1 (en) Magnetic recording medium
US4189508A (en) Process for the preparation of magnetic recording medium
JPH03288330A (en) Production of magnetic recording medium
JPS6343811B2 (en)
JPH0221050B2 (en)
JPS6341133B2 (en)
JP2632943B2 (en) Magnetic recording media
DE69113306T2 (en) Process for the production of magnetic recording media.
JPH07153074A (en) Manufacture for magnetic recording medium
JP2844553B2 (en) Manufacturing method of magnetic recording medium
JP2005222604A (en) Magnetic recording medium
JPH03295028A (en) Manufacture of magnetic recording medium
JPH0349025A (en) Magnetic recording medium
JPH04163715A (en) Magnetic tape and manufacture thereof
JPS6250888B2 (en)
JPH03295029A (en) Manufacture of magnetic recording medium
JPH02165414A (en) Magnetic recording medium
JPH0296924A (en) Manufacture of perpendicular magnetic recording medium
JPH0221049B2 (en)
JPH04109425A (en) Magnetic recording medium and its production
JPH0562152A (en) Magnetic tape
JPH0773445A (en) Magnetic recording medium and recording method