JPH03287574A - Production of cumene hydroperoxide - Google Patents

Production of cumene hydroperoxide

Info

Publication number
JPH03287574A
JPH03287574A JP2084840A JP8484090A JPH03287574A JP H03287574 A JPH03287574 A JP H03287574A JP 2084840 A JP2084840 A JP 2084840A JP 8484090 A JP8484090 A JP 8484090A JP H03287574 A JPH03287574 A JP H03287574A
Authority
JP
Japan
Prior art keywords
cumene
reaction
weight
oxidation
liquid phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2084840A
Other languages
Japanese (ja)
Other versions
JP3061394B2 (en
Inventor
Yuzo Ono
有三 小野
Harushige Sugawara
菅原 晴茂
Takashi Okawa
尚 大川
Takehiko Takagi
岳彦 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP2084840A priority Critical patent/JP3061394B2/en
Publication of JPH03287574A publication Critical patent/JPH03287574A/en
Application granted granted Critical
Publication of JP3061394B2 publication Critical patent/JP3061394B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To safely obtain in high selectivity with side reactions suppressed the title compound useful as an oxidizing agent etc., by liquid phase oxidation of cumene in the presence of alkali metal etc., with the pH of the reaction fluid specified. CONSTITUTION:A liquid phase oxidation of cumene is performed at 80-130 deg.C under a pressure of 10kg/cm<2> in the presence of O2 or O2-contg. gas. In this case, the pH of the reaction fluid is regulated to 3-6 and the reaction is made in the presence of <=10 equivalents per ton of the cumene of alkali metal and/or alkaline earth metal, thus giving the objective compound. Side reactions such as organic acid formation and the inhibition of the oxidation due to phenol will be suppressed, leading to no significant drop-off of the oxidation rate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クメンを液相酸化してクメンハイドロパーオ
キサイド(以下CHP と称する)を製造する方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing cumene hydroperoxide (hereinafter referred to as CHP) by liquid phase oxidation of cumene.

〔従来技術〕[Prior art]

クメンを酸化してCHPを台底する反応は、クメン法フ
ェノールプロセスの重要な工程であり、又COP も各
種反応の酸化剤として多く利用されていクメンの酸化は
、液相状態で酸素又は、酸素含有ガスの存在下に、好ま
しくは散気圧の加圧下で行われる0反応により生成する
物質はCHP以外では、ジメチルフェニルカルビノール
(以下C’nolと称する)とアセトフェノン(以下A
’noneと称する)が大半を占めるが、ギ酸、酢酸等
の有機酸も一部副生ずる。 CHPは酸性領域では分解
し易い物質であり、有機酸の生成による反応液pl+の
低下は、反応収率上好ましくないと言われていた。又、
アルカリ領域に於いてもCUPは分解する。それ故、ク
メンの液相酸化反応は中性〜弱アルカリ性域に於いて行
われるのが一般的である。そこで、従来の方法に於いて
は、炭酸ナトリウム、炭酸カリウム等のアルカリ塩類を
添加する事により、反応液を中性〜弱アルカリ性域に保
った状態で反応が行われていた。
The reaction of oxidizing cumene to the bottom of CHP is an important step in the cumene process phenol process, and COP is also often used as an oxidizing agent in various reactions. Other than CHP, the substances produced by the zero reaction carried out in the presence of a containing gas, preferably under diffused pressure, are dimethylphenylcarbinol (hereinafter referred to as C'nol) and acetophenone (hereinafter referred to as A).
'none) accounts for the majority, but some organic acids such as formic acid and acetic acid are also produced as by-products. CHP is a substance that easily decomposes in an acidic region, and it has been said that a decrease in the reaction solution pl+ due to the production of organic acids is unfavorable in terms of reaction yield. or,
CUP decomposes even in the alkaline region. Therefore, the liquid phase oxidation reaction of cumene is generally carried out in a neutral to slightly alkaline range. Therefore, in conventional methods, the reaction was carried out in a state where the reaction solution was kept in a neutral to slightly alkaline range by adding alkali salts such as sodium carbonate and potassium carbonate.

一方、アルカリ塩類の添加は、反応収率上有利でないと
も言われており、特公昭54−9185にはアルカリ塩
類の添加を行わない方法が記載されている、又、特公昭
55−8502にはpH3〜6の範囲で反応を行う方法
が記載されているが、この方法もアルカリ塩類の添加を
行っていない。
On the other hand, it is said that the addition of alkali salts is not advantageous in terms of reaction yield, and Japanese Patent Publication No. 54-9185 describes a method in which no alkali salts are added. A method is described in which the reaction is carried out in a pH range of 3 to 6, but this method also does not involve the addition of alkali salts.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らの検討によると、アルカリ塩類の添加を行わ
ない方法に於いては従来法に比べてCHPの選択性は向
上するが、有機酸やフェノール等の両生が多く、これら
の物質が酸化反応を阻害するためか酸化速度が従来法に
比べて低い11%に20重量%以上のCUP壊皮下での
反応に於いてこの傾向が強い、この事は反応器の容積効
率が低下する事につながり、工業的に好ましくない。
According to studies conducted by the present inventors, CHP selectivity is improved compared to conventional methods in a method that does not add alkali salts, but there are many amphibians such as organic acids and phenols, and these substances are oxidized. This tendency is strong in reactions under CUP necrosis of 11% to 20% by weight or more, where the oxidation rate is lower than in the conventional method, perhaps because it inhibits the reaction, and this results in a decrease in the volumetric efficiency of the reactor. connection, which is industrially undesirable.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは上記問題点につき鋭意検討した結果、本発
明を完成するに至った。
The present inventors have diligently studied the above-mentioned problems, and as a result, have completed the present invention.

即ち、本発明のクメンハイドロパーオキサイドの履造方
法はクメンを酸素又は酸素含有ガスの存在下に、液相酸
化してクメンハイドロパーオキサイドを製造する方法に
於いて、反応液の水素イオン濃度(pH)が3〜6の範
囲であり、かつアルカリ金属及び/又は、アルカリ土類
金属の存在下に反応を行う事を特徴とし、C’nolや
A’none等の主要副生物及び有機酸やフェノールの
副生が少なく、かつ酸化速度の低下の少ないクメンの酸
化方法を提供するものである。
That is, the method for producing cumene hydroperoxide of the present invention is a method for producing cumene hydroperoxide by oxidizing cumene in the liquid phase in the presence of oxygen or an oxygen-containing gas. pH) is in the range of 3 to 6, and the reaction is carried out in the presence of alkali metals and/or alkaline earth metals, and main by-products such as C'nol and A'none, as well as organic acids and The object of the present invention is to provide a method for oxidizing cumene that produces less phenol by-product and less decreases in oxidation rate.

ここで言うpHは、反応液と水をl:l〜l:2の割合
で混合し、十分振とうして後、オイル相から分離した水
相中のpHを意味するものであり、又、有機酸は遊離し
ている有機酸と上記金凰塩の合計量を示す。
The pH here refers to the pH of the aqueous phase separated from the oil phase after mixing the reaction solution and water at a ratio of 1:1 to 1:2 and shaking thoroughly, and The organic acid indicates the total amount of free organic acid and the above-mentioned gold oxide salt.

本発明の方法によると、反応液のpHは3〜6、好まし
くは3.5〜5.5が良い、又、添加する金属は、ナト
リウム、カリウム等のアルカリ金属、及び/又はカルシ
ウム、マグネシウム等のアルカリ土類金属であり、一般
的にはこれら金属の炭酸塩や水酸化物等のアルカリ性物
質が用いられる。又、この場合は水溶液として添加され
るのが通常である。これら金属の添加量は通常はクメン
1トン当たりlOダラム当量以下、好ましくは0.1〜
6グラム当量が良い。
According to the method of the present invention, the pH of the reaction solution is 3 to 6, preferably 3.5 to 5.5, and the metal added is an alkali metal such as sodium and potassium, and/or calcium, magnesium, etc. Alkaline earth metals, and alkaline substances such as carbonates and hydroxides of these metals are generally used. In this case, it is usually added as an aqueous solution. The amount of these metals added is usually less than 1 O Durham equivalent per ton of cumene, preferably 0.1 to
6 gram equivalent is good.

一般に水は、上記添加物を反応液中へ分散する目的で添
加されているが、水の蒸発による反応熱の除去にも利用
される。しかし、過刺水の添加はCHPの選択率を低下
する事につながり、好ましくない0本発明の方法による
と、供給する水の量は、反応器中で蒸発した後の反応液
中の水の濃度が1.5重量%以下、好ましくは0.1〜
1.0重量%が良い、ここで言う水とは、クメン、CO
P等からなるオイル相中に溶解している水及び未溶解で
オイル相中に分散している水の合計量をさす0反応温度
は80〜130℃、好ましくは90〜120℃が良く、
これより低いと酸化速度が極めて遅くなり、逆に高くな
ると副生物の生成量が多くなる0反応圧力は一般的には
10kg/−以下で行われる0反応液中のCIIP 1
1度は、次の段階で行われるCOPの環線に要するエネ
ルギーを考えると、工業的には高い程好ましい、しかし
、高濃度CHP下での反応はCHP選択率の低下につな
がり、一般的には40重量%以下が好ましい、特にアル
カリ金属及び/又はアルカリ土類金属の添加を行わない
方法に於いては、同じpH域においても酸化速度が低い
事に加えて25・〜30重量%CUP濃度の所から酸化
速度の低下が見られる。しかし、本発明の方法では、2
5〜35重量%のCHP濃度に於いても、酸化速度の低
下は殆ど見られず、かつ有機酸やフェノールの副生が少
ない。
Generally, water is added for the purpose of dispersing the above-mentioned additives into the reaction solution, but it is also used to remove reaction heat by evaporating water. However, the addition of excessive water leads to a decrease in the selectivity of CHP, which is undesirable.According to the method of the present invention, the amount of water supplied is determined by controlling the amount of water in the reaction solution after evaporation in the reactor. Concentration is 1.5% by weight or less, preferably 0.1~
1.0% by weight is good; water here refers to cumene, CO
The reaction temperature is 80 to 130°C, preferably 90 to 120°C, which refers to the total amount of water dissolved in the oil phase consisting of P etc. and undissolved water dispersed in the oil phase.
If it is lower than this, the oxidation rate will be extremely slow, and if it is higher, the amount of by-products will increase.The reaction pressure is generally 10 kg/- or less.CIIP 1 in the reaction solution
Considering the energy required for the ring line of COP in the next step, higher degrees are preferable from an industrial perspective.However, reactions under high concentration of CHP lead to a decrease in CHP selectivity, and generally A CUP concentration of 40% by weight or less is preferable, especially in a method in which no alkali metal and/or alkaline earth metal is added. A decrease in the oxidation rate can be seen from some places. However, in the method of the present invention, 2
Even at a CHP concentration of 5 to 35% by weight, there is hardly any decrease in the oxidation rate, and little organic acid or phenol by-product is produced.

〔実施例〕〔Example〕

以下実施例により、本発明の方法を更に具体的に説明す
る。尚、説明の中で用いる酸化速度及び、酸化効率は、
次式で定義される。
The method of the present invention will be explained in more detail with reference to Examples below. The oxidation rate and oxidation efficiency used in the explanation are as follows:
It is defined by the following formula.

反応器内液相の容積 生1aCHP、C’nol、^’ noneのモル数の
和実施例1 内径301、液深2.7mのステンレス製反応器に、C
HPを2重量%含有したクメンを毎時36kg、 1重
量%の炭酸ナトリウム水溶液を毎時0.4 kgの速度
で連続的に供給した。又、流出ガス中の酸素濃度が5モ
ル%になる様に空気を連続的に供給し105℃、7kg
/dゲージ圧力の下で反応を行った0反応液中のplは
、4.8であり、水、CHP、有機酸及びフェノールの
濃度はそれぞれ、0.3重量%、25重量%、50重量
pp−及び1重量pp■であった。又、この時の酸化速
度は、41kg/rrr−Hrであり、酸化効率は92
%であった。
Volume of liquid phase in reactor 1a Sum of moles of CHP, C'nol, ^' none Example 1 In a stainless steel reactor with an inner diameter of 301 and a liquid depth of 2.7 m, C
Cumene containing 2% by weight of HP was continuously fed at a rate of 36 kg/hour, and a 1% by weight aqueous sodium carbonate solution was continuously fed at a rate of 0.4 kg/hour. In addition, air was continuously supplied so that the oxygen concentration in the outflow gas was 5 mol%, and the temperature was 7 kg at 105°C.
The pl in the reaction solution, which was reacted under /d gauge pressure, was 4.8, and the concentrations of water, CHP, organic acid, and phenol were 0.3% by weight, 25% by weight, and 50% by weight, respectively. pp- and 1 pp-by weight. Also, the oxidation rate at this time was 41 kg/rrr-Hr, and the oxidation efficiency was 92
%Met.

実施例2 クメンの供給速度を毎時30kg、炭酸ナトリウム水溶
液の供給速度を、毎時0.35kgとした以外は、実施
例1と同じ方法で反応を行った。
Example 2 The reaction was carried out in the same manner as in Example 1, except that the cumene feed rate was 30 kg/hour and the sodium carbonate aqueous solution feed rate was 0.35 kg/hour.

反応液中のpHは3.8であり、水、CHP 、有機酸
及びフェノールの濃度はそれぞれ0.4重置%、29重
量%、120重量ppm 、 12重量pp−であった
。又、この時の酸化速度は40kg/nfBrであり、
酸化効率は90%であった。
The pH in the reaction solution was 3.8, and the concentrations of water, CHP, organic acid, and phenol were 0.4% by weight, 29% by weight, 120 ppm by weight, and 12 ppm by weight, respectively. Also, the oxidation rate at this time was 40 kg/nfBr,
The oxidation efficiency was 90%.

比較例1 クメンの供給速度を毎時33kgとし、供給する炭酸ナ
トリウム水溶液の濃度及び供給速度を0.7重量%及び
毎時1.5 kgとした以外は、実施例1と同じ方法で
反応を行った。
Comparative Example 1 The reaction was carried out in the same manner as in Example 1, except that the feed rate of cumene was 33 kg/hour, and the concentration and feed rate of the aqueous sodium carbonate solution were 0.7% by weight and 1.5 kg/hour. .

反応液中のpHは、8.5であり、水、CHP 、有機
酸及びフェノールの濃度はそれぞれ1.4重量%、28
重量%、110重量pp−及び4重量PPMであった、
又、この時の酸化速度は42kg/rrr−Hr、酸化
効率は87.5%であった。
The pH in the reaction solution was 8.5, and the concentrations of water, CHP, organic acid, and phenol were 1.4% by weight and 28% by weight, respectively.
% by weight, 110 ppm by weight and 4 ppm by weight.
Further, the oxidation rate at this time was 42 kg/rrr-Hr, and the oxidation efficiency was 87.5%.

比較例2 クメンの供給速度を毎時27kgとし、炭酸ナトリウム
水溶液の供給を行わなかった以外は実施例1と同じ方法
で反応を行った0反応液のpHは3.2であり、cup
 、有機酸及びフェノールの濃度はそれぞれ28重量%
、500重量pp−及び70重量ppmであった。又、
この時の酸化速度は34kg/ nf −Or、酸化効
率は90%であった。
Comparative Example 2 The reaction was carried out in the same manner as in Example 1, except that the cumene supply rate was 27 kg/hour and the sodium carbonate aqueous solution was not supplied. The pH of the reaction solution was 3.2, and
, the concentration of organic acid and phenol was 28% by weight each.
, 500 ppm by weight and 70 ppm by weight. or,
The oxidation rate at this time was 34 kg/nf-Or, and the oxidation efficiency was 90%.

(発明の効果) 本発明の方法によると、副生ずる有機酸やフェノールに
よる酸化反応の阻害が抑制され、酸化速度の大きな低下
もなく、クメンハイドロパーオキサイドの選択率を向上
させる事が可能となる。又、有機酸の蓄積は、クメンハ
イドロパーオキサイドの酸分解の危険性を含んでいるが
、本方法によると反応液中の有機酸量は、従来の方法と
大差は見られない、これ故、安全性の面に於いても、ア
ルカリ塩類を添加しない方法に比べてはるかに改善され
る。
(Effects of the Invention) According to the method of the present invention, inhibition of the oxidation reaction by by-produced organic acids and phenols is suppressed, and the oxidation rate does not decrease significantly, making it possible to improve the selectivity of cumene hydroperoxide. . Furthermore, accumulation of organic acids involves the risk of acid decomposition of cumene hydroperoxide, but according to this method, the amount of organic acids in the reaction solution is not much different from that of conventional methods. In terms of safety, this method is also much improved compared to methods that do not add alkali salts.

Claims (1)

【特許請求の範囲】[Claims] クメンを酸素又は酸素含有ガスの存在下に、液相酸化し
てクメンハイドロパーオキサイドを製造する方法に於い
て、反応液の水素イオン濃度(pH)が3〜6の範囲で
あり、かつアルカリ金属及び/又は、アルカリ土類金属
の存在下に反応を行う事を特徴とするクメンハイドロパ
ーオキサイドの製造方法。
In the method for producing cumene hydroperoxide by liquid phase oxidation of cumene in the presence of oxygen or an oxygen-containing gas, the hydrogen ion concentration (pH) of the reaction solution is in the range of 3 to 6, and the alkali metal and/or a method for producing cumene hydroperoxide, characterized in that the reaction is carried out in the presence of an alkaline earth metal.
JP2084840A 1990-04-02 1990-04-02 Method for producing cumene hydroperoxide Expired - Lifetime JP3061394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2084840A JP3061394B2 (en) 1990-04-02 1990-04-02 Method for producing cumene hydroperoxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2084840A JP3061394B2 (en) 1990-04-02 1990-04-02 Method for producing cumene hydroperoxide

Publications (2)

Publication Number Publication Date
JPH03287574A true JPH03287574A (en) 1991-12-18
JP3061394B2 JP3061394B2 (en) 2000-07-10

Family

ID=13841992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2084840A Expired - Lifetime JP3061394B2 (en) 1990-04-02 1990-04-02 Method for producing cumene hydroperoxide

Country Status (1)

Country Link
JP (1) JP3061394B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708603A1 (en) * 1993-08-06 1995-02-10 Rhone Poulenc Chimie Process for the preparation of cumene hydroperoxide.
US6043399A (en) * 1994-08-08 2000-03-28 Rhodia Chimie Process for the preparation of cumene hydroperoxide
WO2004074241A1 (en) * 2003-02-14 2004-09-02 Shell Internationale Research Maatschappij B.V. Process for producing alkylbenzene hydroperoxides
US7282613B2 (en) 2003-02-14 2007-10-16 Shell Oil Company Process for producing phenol and methyl ethyl ketone
US7312365B2 (en) 2003-02-14 2007-12-25 Shell Oil Company Process for low temperature cleavage of an oxidation mixture comprising hydroperoxides
JP2010528116A (en) * 2007-06-27 2010-08-19 エイチ アール ディー コーポレーション High shear process for producing cumene hydroperoxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2708603A1 (en) * 1993-08-06 1995-02-10 Rhone Poulenc Chimie Process for the preparation of cumene hydroperoxide.
WO1995004717A1 (en) * 1993-08-06 1995-02-16 Rhone-Poulenc Chimie Process for the preparation of cumene hydroperoxide
EP0712392A1 (en) * 1993-08-06 1996-05-22 Rhone-Poulenc Chimie Process for the preparation of cumene hydroperoxide
US6043399A (en) * 1994-08-08 2000-03-28 Rhodia Chimie Process for the preparation of cumene hydroperoxide
WO2004074241A1 (en) * 2003-02-14 2004-09-02 Shell Internationale Research Maatschappij B.V. Process for producing alkylbenzene hydroperoxides
JP2006517968A (en) * 2003-02-14 2006-08-03 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Method for producing alkylbenzene hydroperoxide
US7141703B2 (en) 2003-02-14 2006-11-28 Shell Oil Company Process for producing phenol and ketone using neutralizing base
US7282613B2 (en) 2003-02-14 2007-10-16 Shell Oil Company Process for producing phenol and methyl ethyl ketone
US7312365B2 (en) 2003-02-14 2007-12-25 Shell Oil Company Process for low temperature cleavage of an oxidation mixture comprising hydroperoxides
JP2010528116A (en) * 2007-06-27 2010-08-19 エイチ アール ディー コーポレーション High shear process for producing cumene hydroperoxide

Also Published As

Publication number Publication date
JP3061394B2 (en) 2000-07-10

Similar Documents

Publication Publication Date Title
EP0473559B1 (en) Process for the production of chlorine dioxide
CA1333519C (en) Process for the production of chlorine dioxide
WO1993025469A1 (en) Hydrogen peroxide-based chlorine dioxide process
JP4913057B2 (en) Method for producing chlorine dioxide
FI94950B (en) Process for the production of chlorine dioxide
EP1594838A1 (en) Process for producing alkylbenzene hydroperoxides
JPH03287574A (en) Production of cumene hydroperoxide
US3312736A (en) Method of making polymethylol-alkanoic acids
JP2007217399A (en) Method for producing alkyl aromatic hydroperoxide
JPH01308245A (en) Production of benoic acid and salt thereof
US4008286A (en) Process for preparing glycols
JPS6137267B2 (en)
US4857295A (en) Process for the manufacture of iodine
JP3107409B2 (en) Method for producing cumene hydroperoxide
US4288637A (en) Process for preparation of aromatic hydroperoxides
CA1149824A (en) Process for preparation of hydroperoxides
US3202717A (en) Method of oxidizing mono-olefins
US3950440A (en) Process for oxidizing olefins
US3202715A (en) Method of oxidizing mono-olefins
JP2004155666A (en) Method for producing ellagic acid
JPS6383041A (en) Production of glyoxylic acid
JPS60255745A (en) Production of 2,3,5-trimethylbenzoquinone
GB2088374A (en) Process for preparation of glyoxylic acid
JPS60255746A (en) Production of 2,3,5-trimethylbenzoquinone
JPS5939858A (en) Preparation of oxamide

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

EXPY Cancellation because of completion of term