JPH03287094A - Tank type fast breeder - Google Patents

Tank type fast breeder

Info

Publication number
JPH03287094A
JPH03287094A JP2088584A JP8858490A JPH03287094A JP H03287094 A JPH03287094 A JP H03287094A JP 2088584 A JP2088584 A JP 2088584A JP 8858490 A JP8858490 A JP 8858490A JP H03287094 A JPH03287094 A JP H03287094A
Authority
JP
Japan
Prior art keywords
coolant
reactor
wall
peripheral wall
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2088584A
Other languages
Japanese (ja)
Inventor
Kenji Ogura
小倉 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2088584A priority Critical patent/JPH03287094A/en
Publication of JPH03287094A publication Critical patent/JPH03287094A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To simplify the construction around the cooling flow passages of reactor walls and to assure the soundness of the construction of the inner peripheral wall at the time of tripping of the reactor by communicating the region between the inner peripheral wall and the outer peripheral wall to a coolant stagnating space. CONSTITUTION:The inner peripheral wall 11A is disposed between the outer peripheral wall 11B and the upper half part 5A of a high-temp. coolant housing container 5. The bottom end thereof is connected and supported to the wall 11B. A return hole 23 is provided at the bottom end of the wall 11A and the region between the walls 11A and 11B is communicated to the coolant stagnating space 14. A return flow passage 24 is provided in the peripheral edge part of the partition wall 13 and a primary coolant 3 in the space 14 is returned to a low-temp. coolant housing space 15. The temp. in the gas space formed in the upper region of the wall 11A falls below the temp. of the coolant 3 and the temp. difference in the upper region at the time of tripping of the reactor decreases according to this constitution. The earthquake resistant design is simplified in this way and the thermal stress in the upper part of the inner peripheral wall at the time of tripping of the reactor is relieved and the soundness of the construction form is assured.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は炉容器の健全性を確保するための冷却構造を備
えたタンク型高速増殖炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a tank-type fast breeder reactor equipped with a cooling structure for ensuring the integrity of the reactor vessel.

(従来の技術) 一般に高速増殖炉は、炉容器内に炉心及び−次冷却材(
通常、液体ナトリウム)が収容されており、この−次冷
却材は炉心を通して循環され、炉心における核燃料の核
反応により加熱される。この加熱された一次冷却材を中
間熱交換器へ導いて二次冷却材(これも通常、液体ナト
リウム)と熱交換し、さらにその二次冷却材を蒸発器へ
導いて水と熱交換し、ここで得られた過熱蒸気を発電機
駆動用のタービンへ送り込むように構成されている。
(Prior art) In general, a fast breeder reactor has a core and a secondary coolant (
This secondary coolant is circulated through the reactor core and heated by the nuclear reaction of the nuclear fuel in the reactor core. The heated primary coolant is guided to an intermediate heat exchanger to exchange heat with a secondary coolant (also typically liquid sodium), and the secondary coolant is further guided to an evaporator to exchange heat with water. The superheated steam obtained here is configured to be sent to a turbine for driving a generator.

ところで、この種の高速増殖炉にあっては、炉容器が高
温に耐えるように配慮した設計を行なう必要がある。ま
た炉心を通過した高温の一次冷却材を、温度を低下させ
ないように中間熱交換器へ導く必要もある。
By the way, in this type of fast breeder reactor, it is necessary to design the reactor vessel in such a way that it can withstand high temperatures. It is also necessary to guide the high temperature primary coolant that has passed through the core to an intermediate heat exchanger so as not to lower the temperature.

そこで、近年では第3図に示すような構成の高速増殖炉
が開発されている。
Therefore, in recent years, a fast breeder reactor having a configuration as shown in FIG. 3 has been developed.

第3図はタンク型高速増殖炉の概略構成を示すもので、
図中1は炉心2及び−次冷却材(通常液体ナトリウム)
3を収容した炉容器であり、この炉容器1の上部開口は
ルーフスラブ4によって遮蔽されている。また炉容器1
の内部には高温冷却材収容容器5が炉心2を支持する炉
心支持構体6に支持されて配置されている。この収容容
器5は、上半部5Aと炉容器1の内周面との間に隙間7
を存在させ、下半部5Bを小径としてその最下端を炉心
支持構体6に取着し、上半部5Aと下半部5Bとの間に
は中心方向へ向って下り勾配となる円錐部5Cを有する
ように構成されている。
Figure 3 shows the schematic configuration of a tank-type fast breeder reactor.
1 in the figure is the core 2 and secondary coolant (usually liquid sodium)
The upper opening of the furnace vessel 1 is shielded by a roof slab 4. Also, furnace vessel 1
A high-temperature coolant storage container 5 is disposed inside the reactor core 2 while being supported by a core support structure 6 that supports the reactor core 2 . This storage container 5 has a gap 7 between the upper half 5A and the inner peripheral surface of the furnace container 1.
The lower half 5B has a small diameter and its lowermost end is attached to the core support structure 6, and a conical part 5C slopes downward toward the center between the upper half 5A and the lower half 5B. It is configured to have.

炉容器1の内側には、炉容器1の内面に沿って流路形成
板8が配設され、炉容器1内面と流路形成板8との間に
は低温冷却材流路9が形成されている。流路形成板8は
炉心2の直下位置に流通口10を有し、かつ周壁上部を
内周壁11A、外周壁11. Bからなる二重壁11て
構成される円環領域(ダウンカマ)12を低温冷却+4
収容空間15へ開口させている。
A flow passage forming plate 8 is disposed inside the furnace vessel 1 along the inner surface of the furnace vessel 1, and a low temperature coolant flow passage 9 is formed between the inner surface of the furnace vessel 1 and the flow passage forming plate 8. ing. The flow path forming plate 8 has a flow port 10 located directly below the core 2, and the upper part of the peripheral wall is connected to an inner peripheral wall 11A, an outer peripheral wall 11. The annular region (downcomer) 12 composed of the double wall 11 made of B is cooled at a low temperature +4
It is opened to the accommodation space 15.

また流路形成板8の二重壁部下端と炉心支持構体6との
間には、炉心2を中心とする環状の隔壁13が取着され
ている。この隔壁13は高温冷却材収容容器5の外側に
位置して高温冷却材収容容器5の円錐部5Cとの間に環
状の冷却材滞留空間14を形成するとともに、炉容器1
との間には炉心4の下端部に連通する低温冷却材収容空
間15を形成するものである。
Further, an annular partition wall 13 centered on the core 2 is attached between the lower end of the double wall of the flow path forming plate 8 and the core support structure 6. This partition wall 13 is located outside the high-temperature coolant container 5 and forms an annular coolant retention space 14 between it and the conical portion 5C of the high-temperature coolant container 5.
A low-temperature coolant storage space 15 communicating with the lower end of the core 4 is formed between the two.

さらに、ルーフスラブ4には一次冷却材循環ボンブ16
・・・及び中間熱交換器17・・・が支持されている。
Furthermore, a primary coolant circulation bomb 16 is installed in the roof slab 4.
... and intermediate heat exchanger 17... are supported.

これらの循環ポンプ16・・・及び熱交換器17・・・
は炉心2を中心とする円周上に交互に配置されている。
These circulation pumps 16... and heat exchangers 17...
are arranged alternately on the circumference around the core 2.

一次冷却材循環ポンブ16は、冷却材滞留空間14に連
通して円錐部5C上に設けられた筒体18の内部を通し
、さらに隔壁13を貫通して低温冷却材収容空間15内
に導入されている。そして吸入側を冷却材滞留空間14
に連通させ、かつ吐出側を低温冷却材収容空間15に連
通させて、冷却材滞留空間14内の一次冷却材3を低温
冷却材収容空間15へ送り込むように構成されている。
The primary coolant circulation pump 16 communicates with the coolant retention space 14 and is introduced into the low-temperature coolant storage space 15 through the inside of a cylinder 18 provided on the conical portion 5C, and further through the partition wall 13. ing. And the suction side is the coolant retention space 14
The primary coolant 3 in the coolant retention space 14 is sent into the low temperature coolant storage space 15 by communicating with the low temperature coolant storage space 15 on the discharge side.

また、中間熱交換器17は一次冷却亭イ流入側を高温冷
却材収容容器5内に位置させるとともに、−次冷却材流
出側を低温冷却材収容空間15に連通させて、高温冷却
材収容容器5内の一次冷却材3を低温冷却材収容空間1
5へ流通させるように構成されている。
Further, the intermediate heat exchanger 17 has an inflow side of the primary cooling bow located in the high temperature coolant storage container 5, and a secondary coolant outflow side communicated with the low temperature coolant storage space 15. The primary coolant 3 in 5 is transferred to the low temperature coolant storage space 1.
It is configured to be distributed to 5.

また、内周壁11Aと外周壁11Bとの間には、第3図
および第4図(a)、  (b)に示すように、その上
端領域内にバッフル板1つが配置され、原子炉トリップ
直後における内周q11Aの構造健全性を確保している
。これについては、後に詳述する。
Furthermore, between the inner circumferential wall 11A and the outer circumferential wall 11B, as shown in FIGS. 3 and 4(a) and (b), one baffle plate is disposed in the upper end area, and immediately after the reactor trips, The structural soundness of the inner circumference q11A is ensured. This will be detailed later.

次に、以上の如く構成されたタンク型高速増殖炉の作用
を説明する。
Next, the operation of the tank-type fast breeder reactor configured as described above will be explained.

今、−次冷却+4fi環ポンプ16により低iRh却材
収容空間15内の一次冷却材3は加圧されると、低温冷
却材収容空間15内の一次冷却材3は、炉心2を矢印a
の如く通過し、炉心2におけるウラン燃料の核反応によ
って生ずる熱により加熱されて高温冷却材収容容器5内
に至り、中間熱交換器】7内に矢印すの如く流入する。
Now, when the primary coolant 3 in the low-iRh coolant storage space 15 is pressurized by the -secondary cooling +4fi ring pump 16, the primary coolant 3 in the low-temperature coolant storage space 15 moves along the arrow a in the core 2.
It passes through the reactor core 2 as shown by the arrow, is heated by the heat generated by the nuclear reaction of the uranium fuel in the reactor core 2, reaches the high-temperature coolant container 5, and then flows into the intermediate heat exchanger 7 as shown by the arrow.

二こで、−次冷却材3は二次冷却材への熱伝達を行ない
、[1らは冷却されて矢印Cの如く低温冷却材収容空間
15に流出され、再び炉心2を通して高温冷却材収容容
器5内への循環を繰返す。
At this point, the secondary coolant 3 transfers heat to the secondary coolant, and is cooled and flows out into the low-temperature coolant accommodation space 15 as shown by arrow C, and passes through the core 2 again to accommodate the high-temperature coolant. The circulation into the container 5 is repeated.

一方、−次冷却材循環ボンプ16により加圧された、低
温冷却材収容空間〕5内の一次冷却材3は、低温冷却材
流路9を矢印dの如く上昇し、二重壁部の外周壁11B
を矢印eの如く乗越えて内・外周壁11A、IIB間に
流入し、さらに低温冷却材収容空間15に流出する〇 ところで、以上の如く構成されたタンク型高速増殖炉に
おいて、炉心2を通過して加熱された高温−次冷却材は
高温冷却材収容容器5内に収容され、炉容器1には炉心
2を通過する前の低温−次冷却材が接触するようになる
ので、炉容器1は比較的低温に保たれることになる。従
って炉容器1の設計を容易にすることができる。また高
温冷却材収容容器5の外側には隔壁13を設けて冷却材
滞留空間14を形成しているので、この空間14に存在
する一次冷却材が高温冷却材収容容器5内の高温−次冷
却材と低温冷却材収容空間15の低温−次冷却材との間
の遮熱材として機能し、高温冷却材収容容器5内の冷却
材3の温度低下を防止している。
On the other hand, the primary coolant 3 in the low-temperature coolant storage space] 5 pressurized by the secondary coolant circulation pump 16 rises in the low-temperature coolant flow path 9 as shown by the arrow d, and rises around the outer periphery of the double wall portion. Wall 11B
As shown by arrow e, the liquid flows between the inner and outer peripheral walls 11A and IIB, and then flows out into the low-temperature coolant storage space 15. In the tank-type fast breeder reactor configured as described above, the The heated high-temperature secondary coolant is stored in the high-temperature coolant container 5, and the low-temperature secondary coolant before passing through the reactor core 2 comes into contact with the reactor vessel 1. It will be kept at a relatively low temperature. Therefore, the design of the furnace vessel 1 can be facilitated. Furthermore, a partition wall 13 is provided on the outside of the high-temperature coolant container 5 to form a coolant retention space 14, so that the primary coolant present in this space 14 is used for high-temperature-secondary cooling in the high-temperature coolant container 5. It functions as a heat shield between the cooling material and the low-temperature secondary coolant in the low-temperature coolant storage space 15, and prevents the temperature of the coolant 3 in the high-temperature coolant storage container 5 from decreasing.

次に、バッフル板19の機能について説明する。Next, the function of the baffle plate 19 will be explained.

第4図(a)は定常運転時の、また第4図(b)は原子
炉トリップ直後の炉壁流路周りの状態をそれぞれ示すも
ので、定常運転時は、領域jは、次冷却材とほぼ同様の
温度(〜530℃)、領域pは、低温冷却材流路9の冷
却材温度から若干上昇した温度(〜380℃)となって
いる。この領域gの液位は、原子炉トリップ時には急上
昇するため、仮にバッフル板19がないと仮定すると、
原子炉トリップ直後の内周壁11A上部の肉厚方向に、
急激に約150℃(−530℃−380℃)の温度差を
生じ、この内周壁11Aの構造健全性確保の上で問題を
生じる。一方、バッフル板1つを設置した場合には、内
周壁11Aとの間に領域kが形成され、この領域には、
通常時は約430℃となっているので、原子炉トリップ
時の内周壁11A上部の肉厚方向の温度差を約50℃に
低減させることができる。
Figure 4 (a) shows the state around the reactor wall passage during steady operation, and Figure 4 (b) shows the state around the reactor wall flow path immediately after a reactor trip. The temperature in region p is approximately the same (~530°C), and the temperature in region p is slightly higher than the coolant temperature in the low-temperature coolant channel 9 (~380°C). Since the liquid level in this region g rises rapidly during a reactor trip, assuming that there is no baffle plate 19,
In the thickness direction of the upper part of the inner peripheral wall 11A immediately after the reactor trip,
A sudden temperature difference of about 150°C (-530°C - 380°C) occurs, which poses a problem in ensuring the structural integrity of the inner peripheral wall 11A. On the other hand, when one baffle plate is installed, a region k is formed between it and the inner peripheral wall 11A, and in this region,
Since the temperature is normally about 430°C, the temperature difference in the thickness direction of the upper part of the inner circumferential wall 11A during a reactor trip can be reduced to about 50°C.

(発明が解決しようとする課題) 前記従来のタンク型高速増殖炉においては、内周壁11
Aの原子炉トリップ時における構造健全性を確保するた
め、内周壁11Aと外周壁11Bとの間にバッフル板1
9を設置するようにしているので、炉壁冷却流路周りの
構造が、内周壁11A1外周壁11B、バッフル板19
および高温冷却材収容容器上半部5Aの4枚の薄肉構造
物で構成されることになり、物量が増加するとともに、
耐震設計が複雑になるという問題がある。
(Problem to be Solved by the Invention) In the conventional tank-type fast breeder reactor, the inner peripheral wall 11
In order to ensure structural integrity during reactor trip of A, a baffle plate 1 is installed between the inner circumferential wall 11A and the outer circumferential wall 11B.
9 is installed, the structure around the furnace wall cooling flow path includes the inner peripheral wall 11A, the outer peripheral wall 11B, and the baffle plate 19.
The upper half of the high-temperature coolant storage container 5A is composed of four thin-walled structures, and the amount of material increases.
There is a problem that seismic design becomes complicated.

本発明は、このような点を考慮してなされたもので、炉
壁冷却流路周りの構造を簡素化し、しかも原子炉トリッ
プ時における内周壁の構造健全性を充分に確保すること
ができるタンク型高速増殖炉を提供することを目的とす
る。
The present invention has been made in consideration of these points, and provides a tank that simplifies the structure around the reactor wall cooling flow path and can sufficiently ensure the structural integrity of the inner peripheral wall during a reactor trip. The purpose is to provide a type fast breeder reactor.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は、前記目的を達成する手段として、炉心および
一次冷却材を収容する炉容器と、この炉容器の内側にそ
の内面との間に所要の間隙を有し・ で配置され炉容器
との間に冷却材滞留空間を形成するとともに炉心を通過
した高温冷却材を収容する高温冷却材収容容器と、炉容
器の内面に沿って配置され炉容器との間に形成される冷
却材流路に炉心を通過する前の低温冷却材を導いて炉壁
を冷却する外周壁と、この外周壁と高温冷却材収容容器
との間に配置され外周壁との間の領域に冷却材流路の上
端から溢流した冷却材が導かれる内周壁とを具備するタ
ンク型高速増殖炉において、内周壁の下端部を、冷却材
滞留空間内で外周壁に連結して外周壁で支持するととも
に、この連結部に、内周壁と外周壁との間の領域を冷却
材滞留空間に連通させる開口を設けるようにしたことを
特徴とする。
(Means for Solving the Problems) As a means for achieving the above object, the present invention provides a reactor vessel that accommodates a reactor core and a primary coolant, and a required gap between the inside of the reactor vessel and its inner surface. A high-temperature coolant storage vessel that is arranged along the inner surface of the reactor vessel and forms a coolant retention space between the reactor vessel and the high-temperature coolant storage vessel that stores the high-temperature coolant that has passed through the reactor core; An outer peripheral wall that cools the reactor wall by guiding the low-temperature coolant before passing through the reactor core into a coolant flow path formed in In a tank type fast breeder reactor, the lower end of the inner peripheral wall is connected to the outer peripheral wall within the coolant retention space. It is characterized in that it is supported by the outer circumferential wall and that the connecting portion is provided with an opening that communicates the area between the inner circumferential wall and the outer circumferential wall with the coolant retention space.

(作 用) 本発明に係るタンク型高速増殖炉においては、内周壁と
外周壁との間の領域が、内周壁と高温冷却材収容容器と
の間の領域と連通しているため、原子炉トリップ時にお
いても国領域の液位はほぼ同一となり、内周壁と高温冷
却材収容容器との間の領域の上部がガス空間となる。こ
のため、内周壁上部の温度か一次冷却材温度よりも低く
なり、バッフル板を設けなくても、内周壁土部の肉厚方
向温度差を低減させることが可能となる。
(Function) In the tank-type fast breeder reactor according to the present invention, since the region between the inner peripheral wall and the outer peripheral wall communicates with the region between the inner peripheral wall and the high-temperature coolant storage container, the reactor Even during a trip, the liquid level in the country area remains almost the same, and the upper part of the area between the inner peripheral wall and the high-temperature coolant storage container becomes a gas space. Therefore, the temperature at the upper part of the inner peripheral wall becomes lower than the primary coolant temperature, and it is possible to reduce the temperature difference in the thickness direction of the inner peripheral wall soil portion without providing a baffle plate.

(実施例) 以下、本発明の一実施例を図面を参照して説明する。(Example) Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図は、本発明に係るタンク型高速増殖炉の一例を示
すもので、図中、符号1は炉容器であり、この炉容器1
内には、炉心2および−次冷却材(通常は液体ナトリウ
ム)3が収容され、その上端開口部は、ルーフスラブ4
によって閉塞されている。
FIG. 1 shows an example of a tank-type fast breeder reactor according to the present invention, and in the figure, reference numeral 1 indicates a reactor vessel.
A core 2 and a secondary coolant (usually liquid sodium) 3 are housed inside, and the upper end opening is connected to a roof slab 4.
is blocked by.

この炉容器1の内部には、第1図に示すように、高温冷
却材収容容器5が、炉心2を支持する炉心支持構体6に
支持されて配置されている。この高温冷却材収容容器5
は、上半部5Aと炉容器1の内周面との間に隙間7を存
在させ、下半部5Bを小径としてその最下端を炉心支持
構体6に取着し、上半部5Aと下半部5Bとの間には中
心方向に向かって下り勾配となる円錐部5Cを有するよ
うに構成されている。
Inside the reactor vessel 1, as shown in FIG. 1, a high-temperature coolant storage vessel 5 is disposed so as to be supported by a core support structure 6 that supports the reactor core 2. As shown in FIG. This high temperature coolant storage container 5
A gap 7 exists between the upper half 5A and the inner circumferential surface of the reactor vessel 1, and the lower half 5B has a small diameter and its lowermost end is attached to the core support structure 6, and the upper half 5A and the lower A conical portion 5C having a downward slope toward the center is provided between the half portion 5B and the conical portion 5C.

炉容器1の内側には、第1図に示すように、炉容器1の
内面に沿って流路形成板8が配設されるとともに、この
流路形成板8の上端縁に連続して外周壁11Bが配置さ
れ、炉容器1と流路形成板8および外周壁11Bとの間
には、低温冷却材流路9が形成されている。そしてこの
低温冷却材流路9には、炉心2直下の低温冷却材が導か
れ、炉壁を冷却するようになっている。
Inside the furnace vessel 1, as shown in FIG. A wall 11B is disposed, and a low-temperature coolant flow path 9 is formed between the furnace vessel 1, the flow path forming plate 8, and the outer peripheral wall 11B. The low-temperature coolant directly below the reactor core 2 is guided into the low-temperature coolant channel 9 to cool the reactor wall.

流路形成板8の内側には、第1図に示すように、外周壁
11B下端と炉心支持構体6との間を結ぶ隔壁13が、
炉心2を中心として環状に設けられており、この隔壁1
3により、高温冷却材収容容器5の外周側が、冷却材滞
留空間14と低温冷却材収容空間15とに区分され、低
温冷却材収容空間15は、炉心4の下端部に連通してい
る。
As shown in FIG. 1, inside the flow path forming plate 8, there is a partition wall 13 that connects the lower end of the outer peripheral wall 11B and the core support structure 6.
It is provided in an annular shape around the core 2, and this partition wall 1
3, the outer peripheral side of the high-temperature coolant storage vessel 5 is divided into a coolant retention space 14 and a low-temperature coolant storage space 15, and the low-temperature coolant storage space 15 communicates with the lower end of the core 4.

ルーフスラブ4には、第1図に示すように、次冷却材循
環ポンプ16・・・および中間熱交換器17・・・か支
持されており、これらは、炉心2を中心とする円周上に
交互に配置されている。
As shown in FIG. 1, the roof slab 4 supports secondary coolant circulation pumps 16 and intermediate heat exchangers 17, which are arranged on the circumference around the core 2. are arranged alternately.

各−次冷却材詰環ポンブ16は、第1図に示すように、
冷却材滞留空間14に連通して円錐部5C上に設けられ
た筒体18の内部を通し、さらに隔壁13を貫通して低
温冷却材収容空間15内に導入されている。そして、吸
入側を冷却材滞留空間14に連通させ、かつ吐出側を低
温冷却材収容空間15に連通させて、冷却材滞留空間1
4内の一次冷却材3を低温冷却材収容空間15に送り込
むようになっている。
As shown in FIG. 1, each secondary coolant ring pump 16 is
The coolant is introduced into the low-temperature coolant storage space 15 through the interior of a cylinder 18 provided on the conical portion 5C in communication with the coolant retention space 14, and further through the partition wall 13. The suction side is communicated with the coolant retention space 14, and the discharge side is communicated with the low temperature coolant storage space 15, so that the coolant retention space 1
The primary coolant 3 in 4 is sent into the low temperature coolant storage space 15.

また、各中間熱交換器17は、第1図に示すように、−
次冷却材流入側を高温冷却材収容容器5内に位置させる
とともに、−次冷却材流出側を低温冷却材収容空間15
に連通させて、高温冷却材収容容器5内の一次冷却材3
を低温冷却材収容空間15へ流通させるように構成され
ており、各中間熱交換器17の外周部には、冷却材滞留
空間14を低温冷却材収容空間15および高温冷却材収
容容器5内部から隔離するためのマノメータシール20
が設置されている。
Moreover, each intermediate heat exchanger 17 has -
The next coolant inflow side is located in the high temperature coolant storage container 5, and the second coolant outflow side is located in the low temperature coolant storage space 15.
The primary coolant 3 in the high temperature coolant storage container 5 is communicated with the
The coolant retention space 14 is configured to flow into the low-temperature coolant storage space 15 from the inside of the low-temperature coolant storage space 15 and the high-temperature coolant storage container 5 at the outer periphery of each intermediate heat exchanger 17. Manometer seal 20 for isolation
is installed.

外周壁11Bと高温冷却材収容容器5の上半部5Aとの
間には、第1図および第2図(a)。
1 and 2(a) between the outer peripheral wall 11B and the upper half 5A of the high temperature coolant container 5.

(b)に示すように、内周ullAが配設されており、
その下端部は、外周壁11Bに連結されて外周壁11B
に支持されているとともに、上端部は、連通孔21aを
有する連結板21により高温冷却材収容容器5の上半部
5A上端に連結され、内部にカバーガスか導入されるガ
ス空間22が形成されるようになっている。
As shown in (b), the inner circumference ullA is arranged,
The lower end portion is connected to the outer peripheral wall 11B and the outer peripheral wall 11B is connected to the outer peripheral wall 11B.
The upper end portion is connected to the upper end of the upper half portion 5A of the high-temperature coolant container 5 by a connecting plate 21 having a communication hole 21a, and a gas space 22 into which cover gas is introduced is formed. It has become so.

この内周壁11Aの下端部には、第1図および第2図(
a)、  (b)に示す−うに、低温冷却材流路9上端
から溢流する冷却材が導かれる内周壁11Aと外周壁1
1Bとの間の領域を、冷却材滞留空間14に連通させる
戻り孔23が設けられており、また隔913の周縁部に
は、冷却材滞留空間〕4内の一次冷却材3を低温冷却材
収容空間】]5に戻すための戻し流路24が設けられて
いる。
At the lower end of this inner circumferential wall 11A, there is a
As shown in a) and (b), the inner circumferential wall 11A and the outer circumferential wall 1 to which the coolant overflowing from the upper end of the low-temperature coolant flow path 9 are guided.
A return hole 23 is provided at the periphery of the partition 913 to communicate the area between the space 1B and the coolant retention space 14 to the coolant retention space 14. A return flow path 24 is provided for returning the storage space to the storage space]]5.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

第2図(a)は定常運転時の、また第2図(b)は原子
炉トリップ直後の炉壁伶却流路周りの状態をそれぞれ示
すものであり、定常運転時には、領域nは約380℃、
領域mは約450’Cとなっている。
Figure 2 (a) shows the state around the reactor wall cooling channel during steady operation, and Figure 2 (b) shows the state around the reactor wall cooling channel immediately after a reactor trip. °C,
Region m is approximately 450'C.

ここて、領域nと領域mとは、戻り孔23を介して連通
しているので、周領域n、mの液位はほぼ同一となって
いる。このため、内周壁1′IAの上部領域pにはガス
空間22が形成され、前記上部領域pの温度は、−次冷
却材温度(約530’C)ヨリモ低い約り50℃〜48
0℃程度になるものと推定される。
Here, since the region n and the region m communicate with each other via the return hole 23, the liquid levels in the circumferential regions n and m are almost the same. Therefore, a gas space 22 is formed in the upper region p of the inner circumferential wall 1'IA, and the temperature of the upper region p is about 50°C to 48°C, which is lower than the second coolant temperature (about 530'C).
It is estimated that the temperature will be around 0°C.

二のため、原子炉トリップ時の上部領域pの肉厚方向温
度差は、約70℃〜100℃程度となり、第3図に示す
従来の高速原子炉からバッフル板19を省略した場合よ
りも、大幅な温度差低減効果が得られる。しかも、バッ
フル板19を設ける場合よりも、構造を簡素化すること
ができる。
For this reason, the temperature difference in the thickness direction of the upper region p during a reactor trip is about 70°C to 100°C, which is greater than when the baffle plate 19 is omitted from the conventional fast reactor shown in FIG. A significant temperature difference reduction effect can be obtained. Furthermore, the structure can be made simpler than when the baffle plate 19 is provided.

〔発明の効果〕 以上説明したように本発明によれば、炉壁冷却流路周り
の構造を、高温冷却材収容容器、内周壁および外FR壁
の3枚構造にすることができるので、物量の削減および
耐震設計の簡素化を図ることができ、しかも原子炉トリ
ップ時における内周壁土部の熱応力を緩和することがで
き、構造形態の健全性を確保することができる。
[Effects of the Invention] As explained above, according to the present invention, the structure around the furnace wall cooling flow path can be made into a three-layer structure of the high-temperature coolant storage container, the inner circumferential wall, and the outer FR wall. It is possible to reduce the amount of damage and simplify the seismic design, and in addition, it is possible to alleviate the thermal stress of the inner peripheral wall soil during a reactor trip, and to ensure the soundness of the structure.

の状態を示す説明図、第3図は従来のタンク型高速増殖
炉を示す縦断面図、第4図(a)はその定常運転時にお
ける炉壁冷却流路周りの状態を示す説明図、第4図(b
)は原子炉トリップ直後の同様の状態を示す説明図であ
る。
3 is a longitudinal sectional view showing a conventional tank-type fast breeder reactor, FIG. 4(a) is an explanatory drawing showing the state around the reactor wall cooling channel during steady operation, Figure 4 (b
) is an explanatory diagram showing a similar state immediately after a nuclear reactor trip.

1・・・炉容器、2・・・炉心、3・・・−次冷却材、
5・・・高温冷却材収容容器、7・・・隙間、9・・・
低温冷却材流路、IIA・・・内周壁、IIB・・・外
周壁、14・・・冷却材滞留空間、15用低温冷却材収
容空間、22・・・ガス空間、23川戻り孔、24・・
・戻し流路。
1... Reactor vessel, 2... Reactor core, 3... -Secondary coolant,
5... High temperature coolant storage container, 7... Gap, 9...
Low-temperature coolant flow path, IIA...inner circumferential wall, IIB...outer circumferential wall, 14... coolant retention space, low-temperature coolant accommodation space for 15, 22... gas space, 23 river return hole, 24・・・
・Return flow path.

【図面の簡単な説明】[Brief explanation of the drawing]

Claims (1)

【特許請求の範囲】[Claims] 炉心および一次冷却材を収容する炉容器と、この炉容器
の内側にその内面との間に所要の間隙を有して配置され
炉容器との間に冷却材滞留空間を形成するとともに炉心
を通過した高温冷却材を収容する高温冷却材収容容器と
、前記炉容器の内面に沿って配置され炉容器との間に形
成される冷却材流路に炉心を通過する前の低温冷却材を
導いて炉壁を冷却する外周壁と、この外周壁と前記高温
冷却材収容容器との間に配置され外周壁との間の領域に
前記冷却材流路の上端から溢流した冷却材が導かれる内
周壁とを具備するタンク型高速増殖炉において、前記内
周壁の下端部を、前記冷却材滞留空間内で前記外周壁に
連結して外周壁で支持するとともに、この連結部に、内
周壁と外周壁との間の領域を冷却材滞留空間に連通させ
る開口を設けたことを特徴とするタンク型高速増殖炉。
A reactor vessel that accommodates the reactor core and primary coolant is arranged with a required gap between the inside of the reactor vessel and its inner surface, and a coolant retention space is formed between the reactor vessel and the reactor vessel, and the coolant passes through the reactor core. The low-temperature coolant before passing through the reactor core is guided into a coolant flow path formed between a high-temperature coolant container containing the high-temperature coolant and the reactor vessel, which is arranged along the inner surface of the reactor vessel. an outer circumferential wall that cools the furnace wall; and an inner wall that is disposed between the outer circumferential wall and the high-temperature coolant container, and in which the coolant overflowing from the upper end of the coolant flow path is guided into the area between the outer circumferential wall and the outer circumferential wall. In a tank-type fast breeder reactor comprising a peripheral wall, a lower end of the inner peripheral wall is connected to and supported by the outer peripheral wall in the coolant retention space, and the inner peripheral wall and the outer peripheral wall are connected to the connecting portion. A tank-type fast breeder reactor characterized by having an opening that communicates a region between the wall and a coolant retention space.
JP2088584A 1990-04-03 1990-04-03 Tank type fast breeder Pending JPH03287094A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2088584A JPH03287094A (en) 1990-04-03 1990-04-03 Tank type fast breeder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2088584A JPH03287094A (en) 1990-04-03 1990-04-03 Tank type fast breeder

Publications (1)

Publication Number Publication Date
JPH03287094A true JPH03287094A (en) 1991-12-17

Family

ID=13946893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2088584A Pending JPH03287094A (en) 1990-04-03 1990-04-03 Tank type fast breeder

Country Status (1)

Country Link
JP (1) JPH03287094A (en)

Similar Documents

Publication Publication Date Title
JPS5916238B2 (en) Nuclear reactor emergency cooling system
US4115192A (en) Fast neutron nuclear reactor
US4309252A (en) Nuclear reactor constructions
US3967591A (en) Steam generator for fast breeder reactor
JPH0322598B2 (en)
US4186049A (en) Heat exchanger integrated into the main vessel of a molten combustible salt reactor
US4382907A (en) Liquid metal cooled nuclear reactor
US4666661A (en) Means for cooling a heat-generating device
US4302296A (en) Apparatus for insulating hot sodium in pool-type nuclear reactors
JPH0326795B2 (en)
KR20210118626A (en) Passive residual heat removal system
US4671922A (en) Nuclear reactor cooled by a liquid metal
JPH03287094A (en) Tank type fast breeder
US3099616A (en) Steam cooled reactor and fuel channel
US4198271A (en) Liquid metal cooled nuclear reactor constructions
JPH03257398A (en) Tank type fast breeder reactor
JPH05172979A (en) Pressure suppression device for reactor container
GB2157880A (en) An improved nuclear reactor plant construction
US5289511A (en) Liquid-metal cooled nuclear reactor
JPS61791A (en) Fast neutron reactor
JPH0295299A (en) Nuclear reactor containment
JPH046492A (en) Tank-type fast breeder reactor
JPS6273197A (en) Fast breeder reactor
JPS60205278A (en) Fast breeder reactor
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor