JPH03285470A - Video camera - Google Patents

Video camera

Info

Publication number
JPH03285470A
JPH03285470A JP2087216A JP8721690A JPH03285470A JP H03285470 A JPH03285470 A JP H03285470A JP 2087216 A JP2087216 A JP 2087216A JP 8721690 A JP8721690 A JP 8721690A JP H03285470 A JPH03285470 A JP H03285470A
Authority
JP
Japan
Prior art keywords
circuit
signal
gradation
brightness
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2087216A
Other languages
Japanese (ja)
Inventor
Nobuo Hashimoto
信雄 橋本
Hiroaki Kubo
広明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP2087216A priority Critical patent/JPH03285470A/en
Priority to US07/677,140 priority patent/US5221963A/en
Publication of JPH03285470A publication Critical patent/JPH03285470A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the reproducibility of a high luminance part in the background by controlling a compression starting point for compressing the gradation of the high luminance part by using average luminance difference between the central lower part of a picture and the entire picture. CONSTITUTION:A knee correction circuit 5 calculates a knee correction starting voltage Vknee by an arithmetic circuit 26 according to the average luminance signal of the entire picture and the average luminance signal of the central lower part of the picture. The knee correction starting voltage Vknee obtained by this calculation is outputted to a knee correction circuit 15 after receiving A/D conversion in an A/D circuit 31, and gradation compression correction is executed. In the case of backlight or reverse backlight, since there is large luminance difference between the background and a main object, the reproducibility of the light luminance part is improved by fastening the starting point of the gradation compression and extending a luminance range, which gradation is compressed, on a high luminance side. Thus, since gradation compressability is made variable, the reproducibility of the high luminance part is more improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ビデオカメラの逆光撮影時の補正に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to correction for backlight photography with a video camera.

(従来の技術) ビデオカメラは、輝度の再現性を良くするために、広い
ダイナミックレンジ内の輝度差を、テレビで映写できる
狭いダイナミックレンジ内の輝度差に圧縮しているもの
がある。その圧縮方法としては、ニー補正回路で、高輝
度領域の1II11を圧縮するようにしているが、得ら
れる映像信号の輝度差は撮影状態によって異なっており
、輝度差によって圧縮方法を変更するのが望ましい、し
かし、従来のニー補正回路の階調圧縮方法は、例えば、
第3図に示すように、入力信号強度が100%の時にニ
ー補正回路が働き、入力信号強度100%〜300%ま
での範囲を、出力信号強度を100%〜120%までの
範囲に圧縮するように設定しており、階調圧縮開始点及
び圧縮率が固定されている。或は、映像信号のピーク値
が上がるにつれて、階調圧縮開始点を下げるという階調
圧縮方法も知られている。しかし、被写界状況によって
、背景と主被写体との輝度差が大きく巽なっており、同
一の圧縮方法では、再現1!1調補正が難しく、再現階
調が損なわれると云う問題があった。特に逆光時、逆逆
光時に問題があった6 (発明が解決しようとする課題) 本発明は、逆光撮影時における背景の高輝度部或は逆逆
光時の主被写体の画像が白くとんでしまうのを解消し、
映像の再現性を良くすることを目的とする。
(Prior Art) In order to improve the reproducibility of brightness, some video cameras compress brightness differences within a wide dynamic range to brightness differences within a narrow dynamic range that can be projected on a television. The compression method uses a knee correction circuit to compress 1II11 in the high brightness area, but the brightness difference in the resulting video signal varies depending on the shooting condition, so it is best to change the compression method depending on the brightness difference. Desirable, but conventional knee correction circuit tone compression methods e.g.
As shown in Figure 3, the knee correction circuit operates when the input signal strength is 100%, compressing the input signal strength range from 100% to 300% to the output signal strength range from 100% to 120%. The gradation compression start point and compression rate are fixed. Alternatively, there is also known a gradation compression method in which the gradation compression start point is lowered as the peak value of the video signal increases. However, depending on the scene situation, the difference in brightness between the background and the main subject can vary greatly, and with the same compression method, it is difficult to correct 1:1 tone reproduction, resulting in the problem of loss of reproduction tone. . In particular, there were problems when shooting against the light.6 (Problems to be solved by the invention) The present invention solves the problem of high-brightness parts of the background when shooting against the light, or images of the main subject when shooting against the backlight. Eliminate the
The purpose is to improve the reproducibility of images.

(課題を解決するための手段) ビデオカメラにおいて、全画面の平均輝度信号レベルを
検出する第1の検出部と、画面中央下部の平均輝度信号
レベルを検出する第2の検出部と、上記2つの検出部の
出力信号の差を算出する演算部と、同演算部の出力信号
により高輝度部の階調圧縮の開始レベルを調整する高輝
度部階調圧縮回路とを具備した。
(Means for Solving the Problems) In a video camera, a first detection section detects the average luminance signal level of the entire screen, a second detection section detects the average luminance signal level at the lower center of the screen, and the second detection section described above. The present invention includes a calculation section that calculates the difference between the output signals of the two detection sections, and a high-brightness section gradation compression circuit that adjusts the start level of gradation compression of the high-brightness section based on the output signal of the calculation section.

(作用) 本発明は、高輝度部階調圧縮回路(ニー補正回路)にお
いて、階調圧縮開始点を制御できるようにし、その制御
信号として輝度差信号を用いるものであり、画面の輝度
差の評価方法として、画面全体と画面中央下部領域との
平均輝度信号を検出し、その2つの輝度信号の差を求め
るようにした、階調圧縮開始点を第3図の点線に示すよ
うに移動すると、圧縮率を同じ1/10にした場合、従
来は入力信号100〜300が出力信号100〜120
に変換されていたが、圧縮開始点を入力80に移動する
と、入力信号80〜480が出力信号80〜120に圧
縮されることになり、従来、レンジオーバーして単に白
く表示されていた入力信号300〜480の信号が、出
力信号102〜120で階調表示されるので、高輝度部
の階調表現できる範囲が大幅に拡大される0画面全体の
輝度のダイナミックレンジとしては、画面の一番明るい
所と一番暗い所の輝度差を検出する方法もあるが、一番
明るい所と一番暗い所が、何れも画面の重要部分の中に
あるとは限らず、従って、このような輝度差を基準にす
ると、画面の主要部分について、適正な調整ができない
0本発明では、画面全体の平均輝度と、画面中央下部の
平均輝度の差を検出しているが、一般に主要被写体が画
面中央から下部の領域に置かれるので、この方法による
と、主要部分と背景との明るさの差を、調整の規準とし
ていることになり、主要被写体と背景との輝度差によっ
て上記調整が行われ、常に調和のとれた画像を得ること
が可能となる。
(Function) The present invention makes it possible to control the gradation compression start point in a high-brightness area gradation compression circuit (knee correction circuit), and uses a luminance difference signal as the control signal. As an evaluation method, the average luminance signal of the entire screen and the lower center area of the screen is detected, and the difference between the two luminance signals is determined.If the gradation compression start point is moved as shown by the dotted line in Figure 3, , when the compression ratio is set to the same 1/10, conventionally an input signal of 100 to 300 becomes an output signal of 100 to 120.
However, if you move the compression start point to input 80, the input signals 80 to 480 will be compressed to the output signals 80 to 120, and the input signals that conventionally would have exceeded the range and were simply displayed in white. Since the signal from 300 to 480 is displayed in gradation as the output signal 102 to 120, the range in which gradations can be expressed in high brightness areas is greatly expanded. There is a method to detect the brightness difference between the brightest place and the darkest place, but the brightest place and the darkest place are not necessarily in important parts of the screen. If the difference is used as a standard, proper adjustment cannot be made for the main parts of the screen.In the present invention, the difference between the average brightness of the entire screen and the average brightness of the lower center of the screen is detected, but generally the main subject is in the center of the screen. According to this method, the difference in brightness between the main subject and the background is used as the criterion for adjustment, and the above adjustment is performed based on the difference in brightness between the main subject and the background. It is possible to always obtain a harmonious image.

(実施例) 第1図にCCD2個用いた2板式ビデオカメラに本発明
を用いた一実施例のブロック図を示す。
(Embodiment) FIG. 1 shows a block diagram of an embodiment in which the present invention is applied to a two-plate video camera using two CCDs.

第1図における15が本発明の主要部のニー補正回路で
、撮像素子の出力信号を増幅するもので、黒レベルクラ
ンプ、ホワイトバランス、ペデスタル調整した後の段階
に挿入されており、第2図にその一例を示す0図におい
て、入力電圧Vi n。
Reference numeral 15 in Fig. 1 is the knee correction circuit, which is the main part of the present invention, and is used to amplify the output signal of the image sensor, and is inserted at the stage after the black level clamp, white balance, and pedestal adjustment. In Figure 0, an example of which is shown, the input voltage Vin.

ニー補正開始電圧Vknee、出力電圧VOとすると、
ダイオードDiは、oPアンプlに接続されイマジナリ
−ショートになっているので、Viが低い問は、Dfは
オフで、OPアンプ1の増幅度Aloは、A1o=−R
f (R1+R2+Rs)/Rs (R1+R2>であ
り、ダイオードDiの両端に加わる電圧は、入力電圧V
inがVin=[(R1+R2)/R2]Vkneeの
ときゼロになり、これ以上の入力電圧ではダイオードは
オンし、増幅度A1はA1=−Rf/Rsとなる、OP
7ン72はゲインA 2 = −R4/ R3(1)反
転アンプである。従って、 Vi n< [(R1+R2)/R2] XVknee
の時は Vo−[1/ (R1+R2)+1/Rs]xRfX 
 (R4/R3)xvi  n=kl xVi n  
(k+は定数)Vin≧ [(Rt+R2)/R2] 
 XVkneeの時は Vo= (Rf/Rs)X (R4/R3)X V i
 n =に2XVin (kzは定数でに+>kz> になる。
Assuming that the knee correction start voltage Vknee and the output voltage VO are,
The diode Di is connected to the op amplifier 1 and is imaginary shorted, so when Vi is low, Df is off and the amplification degree Alo of the OP amplifier 1 is A1o=-R.
f (R1+R2+Rs)/Rs (R1+R2>, and the voltage applied across the diode Di is the input voltage V
When in becomes zero when Vin=[(R1+R2)/R2]Vknee, the diode turns on when the input voltage is higher than this, and the amplification degree A1 becomes A1=-Rf/Rs.OP
7 72 is an inverting amplifier with a gain of A 2 = -R4/R3 (1). Therefore, Vin< [(R1+R2)/R2] XVknee
When , Vo-[1/ (R1+R2)+1/Rs]xRfX
(R4/R3)xvi n=kl xVi n
(k+ is a constant) Vin≧ [(Rt+R2)/R2]
When using XVknee, Vo= (Rf/Rs)X (R4/R3)X V i
n = 2XVin (kz is a constant and becomes +>kz>.

このようなニー補正回路15は、第3図に示すような入
出力特性を有し、高輝度部の階調を圧縮しているが、本
実施例では、上記ニー補正開始電圧Vkneeを画面全
体の平均輝度信号と画面中央下部の平均輝度信号より演
算回路26で演算している。つまり、画面全体の平均輝
度信号(検波電圧)と画面中央下部の平均輝度信号(検
波電圧)との差電圧をΔEとすると、ニー補正開始電圧
Vkneeは、所定の関数Fkneeによって、Vkn
ee=Fknee (ΔE)として得られる。この演算
で得られたニー補正開始電圧VkneCは、A/D回路
31でA/D変換され、ニー補正回路15へ出力され、
階調圧縮補正を行う、逆光或は逆逆光の場合は、背景と
主被写体との輝度差が大きいので、点線に示すように、
階調圧縮の開始点を早くして、階調圧縮される輝度範囲
を高輝度側で延長して、高輝度部の再現性を高めている
。また、画面全体の平均輝度と画面中央下部の平均輝度
信号との差に応じて、ニー補正開始電圧を変えるだけで
なく、上記差に応じて階調圧縮率を変えることも可能で
ある。つまり、差の量に応じて、所定の抵抗の抵抗値を
変えることにより、階調圧縮率は変化する。このように
階調圧縮率を可変とすることにより、高輝度部の再現性
はさらに高くなる。
The knee correction circuit 15 has input/output characteristics as shown in FIG. 3, and compresses the gradation of high brightness areas. The arithmetic circuit 26 calculates the average brightness signal from the average brightness signal and the average brightness signal at the lower center of the screen. In other words, if the difference voltage between the average luminance signal (detected voltage) of the entire screen and the average luminance signal (detected voltage) at the lower center of the screen is ΔE, the knee correction start voltage Vknee is determined by the predetermined function Fknee.
It is obtained as ee=Fknee (ΔE). The knee correction start voltage VkneC obtained by this calculation is A/D converted by the A/D circuit 31 and output to the knee correction circuit 15.
In the case of backlighting or backlighting where gradation compression correction is performed, there is a large brightness difference between the background and the main subject, so as shown in the dotted line,
The starting point of gradation compression is set earlier, and the luminance range to which gradation compression is applied is extended on the high-brightness side, improving the reproducibility of high-brightness areas. Furthermore, it is possible not only to change the knee correction start voltage according to the difference between the average brightness of the entire screen and the average brightness signal at the lower center of the screen, but also to change the gradation compression ratio according to the difference. In other words, by changing the resistance value of a predetermined resistor according to the amount of difference, the gradation compression rate changes. By making the gradation compression rate variable in this way, the reproducibility of high-brightness areas is further improved.

第1図に示されたビデオカメラの回路全般について説明
する0図において、1はレンズ、2は赤外カットフィル
ターで、人間の目に感応せず、ノイズだけを生じさせ、
撮影にとって邪魔な赤外光をカットする。3は絞り、4
はG透過プリズムでグリーン(G)の光だけを透過する
。5はマゼンダ透過プリズムで、G透過プリズム4を透
過したマゼンタ光を透過する。6はG−CCDで、G透
過プリズム4を透過した光が入射し、全画素でGの輝度
信号を検出する。7はR,B−CCDで、マゼンダ透過
プリズム5の透過光が入射し、レッド(R)とブルー(
B)の2光を個々に対応した画素で検出し、RとBを別
々の信号として出力している。CCD6.7で検出され
たG、R,Bの信号は、良く知られているCDS回路(
Correlation  Double  Samp
lfng)8で個々に雑音が低減され、G、R,Hの映
像信号となる。その後G、R,Hの映像信号はLPF(
ローパスフィルター)回路9で更に雑音が除去され、A
GC(オートゲインコントロール)回路10で適当な強
度に増幅され、クランプ回路11でクランプされる。1
2はホワイトバランス回路で、R,Bチャンネルのゲイ
ン調整によってホワイトバランス調整を行う。
In Figure 0, which explains the overall circuit of the video camera shown in Figure 1, 1 is a lens, 2 is an infrared cut filter, which is not sensitive to the human eye and only produces noise.
Cuts out infrared light that is a hindrance to photography. 3 is aperture, 4
is a G-transmitting prism that transmits only green (G) light. A magenta transmission prism 5 transmits the magenta light that has passed through the G transmission prism 4. 6 is a G-CCD, into which light transmitted through the G-transmitting prism 4 is incident, and G luminance signals are detected in all pixels. 7 is an R, B-CCD, into which the transmitted light from the magenta transmission prism 5 enters, red (R) and blue (
The two lights (B) are detected by individually corresponding pixels, and R and B are output as separate signals. The G, R, and B signals detected by CCD6.7 are processed by the well-known CDS circuit (
Correlation Double Samp
lfng) 8, the noise is individually reduced to become G, R, and H video signals. After that, the G, R, and H video signals are processed through the LPF (
Low-pass filter) circuit 9 further removes noise, and A
The signal is amplified to an appropriate strength by a GC (auto gain control) circuit 10 and clamped by a clamp circuit 11. 1
Reference numeral 2 denotes a white balance circuit, which performs white balance adjustment by adjusting the gains of the R and B channels.

13はペデスタル調整回路で、映像信号の黒レベルを一
定規準(帰線消去レベル)になるように調整する回路で
あり、具体的には、入力信号にバイアス電圧を重畳し、
通常入力信号が0の時、出力信号が0となるような調整
を行う。
13 is a pedestal adjustment circuit that adjusts the black level of the video signal to a certain standard (blanking level); specifically, it superimposes a bias voltage on the input signal,
Normally, when the input signal is 0, adjustments are made so that the output signal is 0.

ガンマ補正回路14は、受像機の特性に合わせてガンマ
値を補正する回路で、本実施例ではガンマ0.45に補
正している。
The gamma correction circuit 14 is a circuit that corrects the gamma value in accordance with the characteristics of the receiver, and in this embodiment, the gamma value is corrected to 0.45.

16はマトリクス回路で、R,B、G映像信号から輝度
信号1色差信号を形成する0色差信号は平衡変調されて
色信号となり、同期信号を付加した輝度信号と混合され
、複合映像信号になる。
16 is a matrix circuit, which forms a luminance signal and 1 color difference signal from R, B, and G video signals.The 0 color difference signal is balanced modulated to become a color signal, which is mixed with a luminance signal to which a synchronization signal has been added to form a composite video signal. .

18は第4図に示すようなNAM (非加算ミクシング
)回路で、CDS回路8の出力信号をRlB、G各チャ
ンネル共入力し、R,B、G信号の内最大値の信号を出
力する。
Reference numeral 18 denotes a NAM (non-additive mixing) circuit as shown in FIG. 4, which inputs the output signal of the CDS circuit 8 for both RlB and G channels, and outputs the maximum value signal among the R, B, and G signals.

19は非線形補正回路で、第6図に示すような入出力特
性を有し、一定輝度レベル範囲内の入力信号の増幅率を
上げて、ハイライト部を強調する共に、一定輝度レベル
以上はクリップして、出力信号強度の最大値を抑制する
回路で、第5図にその実施例の一例を示す。
Reference numeral 19 denotes a nonlinear correction circuit, which has input/output characteristics as shown in Figure 6, and increases the amplification factor of input signals within a certain brightness level range to emphasize highlights, and clips signals above a certain brightness level. FIG. 5 shows an example of a circuit for suppressing the maximum value of the output signal strength.

検波回路(Def>20は、非線形補正回路19の出力
信号を検波して平均化し、全画面平均検波電圧V a 
vを出力する。上記全画面平均検波電圧Vavがアイリ
ス駆動回路21に送られ、アイリス駆動回路21におい
て、上記検波電圧Vavが所定値に近づくように絞りを
制御している。
The detection circuit (Def>20 detects and averages the output signal of the nonlinear correction circuit 19, and calculates the entire screen average detection voltage V a
Output v. The entire screen average detected voltage Vav is sent to the iris drive circuit 21, and the iris drive circuit 21 controls the aperture so that the detected voltage Vav approaches a predetermined value.

このように非線形補正回路19で時定輝度レベル以上を
クリップしているので、画面中に非常に明るい所があっ
ても、それに引かれて絞りが絞り込まれ、画面全体が暗
くなると云う現象が防がれる。
In this way, the nonlinear correction circuit 19 clips the brightness above the fixed brightness level, so even if there is a very bright spot on the screen, the phenomenon that the aperture is narrowed down and the entire screen becomes dark can be prevented. I can escape.

22はA/D回路で検波回路20の出力である全画面平
均検波電圧Vavのアナログ信号をデジタル信号に変換
し、演算回路26に入力させる。
22 is an A/D circuit that converts the analog signal of the entire screen average detected voltage Vav, which is the output of the detection circuit 20, into a digital signal and inputs it to the arithmetic circuit 26.

23はパルス発生回路36からの制御信号により制御さ
れ、撮影画面の中央下部に対応した非線形補正回路17
の出力信号だけを通過させるアナログスイッチである。
23 is a nonlinear correction circuit 17 that is controlled by a control signal from a pulse generation circuit 36 and corresponds to the lower center of the photographing screen.
This is an analog switch that allows only the output signal to pass through.

検波回路24はアナログスイッチ23を通過した画面中
央下部に対応した非線形補正回路17の出力信号を検波
し、中央下部平均検波電圧Vaを出力する。A/D回路
25は同信号Vaをデジタル信号に変換し、演算回路2
6に入力させる。
The detection circuit 24 detects the output signal of the nonlinear correction circuit 17 corresponding to the lower center portion of the screen that has passed through the analog switch 23, and outputs the lower center average detected voltage Va. The A/D circuit 25 converts the signal Va into a digital signal, and the arithmetic circuit 2
6.

演算回路26は、上述したように、上記検波電圧Vav
とVaの差(ΔE)から得られた逆光補正のための絞り
補正信号をD/A回路28に、AGC回路10補正信号
をD/A回路32に、ペデスタル調整回路13補正信号
をD/A回路30に、ニー補正回路15補正信号をD/
A回路31に出力して行う。
As described above, the arithmetic circuit 26 calculates the detected voltage Vav
The aperture correction signal for backlight correction obtained from the difference (ΔE) between The knee correction circuit 15 correction signal is input to the circuit 30.
This is done by outputting to the A circuit 31.

36はパルス発生回路で、第7図にその一実施例を、第
8図に信号図を示す、カウンター36Aで水平同期信号
HDをカウントし、所定のカウント数になると、キャリ
ー信号でフリップフロップ36Dを反転し、出力信号C
を“H”レベルとする。垂直同期信号VDの入力により
、カウンター36Aとフリップフロップ36Dをリセッ
トし、出力信号Cを“L”とし、図に示すような、垂直
同期信号と同期した制御信号Cを送信する。モノマルチ
36Bは水平同期信号HDと同期し、1パルス間の中央
部が“H”レベルの制御信号りを発生し、モノマルチ3
6Cは水平同期信号HDと同期し、1パルス間の中央部
が信号Aより少し広い範囲でH”レベルとなる制御信号
Eを発生する、加算器36Eは制御信号Cと制御信号り
を加算し、両信号が“H″レベル時に“H”レベルとな
るWindowA(第9図参照)に対応する制御信号A
を発生する。加算器36Fは制御信号Cと制御信号りを
加算し、両信号が“H”レベルの時に“H”レベルとな
るWindowB(第9図参照)に対応する制御信号B
を発生する。
36 is a pulse generation circuit, an embodiment of which is shown in FIG. 7, and a signal diagram shown in FIG. and output signal C
is set to “H” level. By inputting the vertical synchronization signal VD, the counter 36A and the flip-flop 36D are reset, the output signal C is set to "L", and the control signal C synchronized with the vertical synchronization signal as shown in the figure is transmitted. The mono multi 36B is synchronized with the horizontal synchronizing signal HD, and the central part between one pulse generates a control signal of "H" level.
6C is synchronized with the horizontal synchronizing signal HD, and generates a control signal E whose central part between one pulse is at H'' level over a slightly wider range than signal A. Adder 36E adds control signal C and control signal RI. , a control signal A corresponding to Window A (see FIG. 9) that becomes "H" level when both signals are "H" level.
occurs. The adder 36F adds the control signal C and the control signal RI, and when both signals are at the "H" level, the control signal B corresponding to Window B (see FIG. 9) which becomes "H" level is added.
occurs.

この制御信号Aはアナログスイッチ23に送られ、制御
信号Aが“H”レベルの時にアナログスイッチ23をO
Nさせ、W i n d o w A領域に対応した非
線形補正回路19の出力信号を通過させる。Wi nd
owA、Bの選択は、カメラ使用者が被写体により手動
的に行う、従って、選択されたWindowA或はW 
i n d o w Bが、画面中央下部を定義するこ
とになる。
This control signal A is sent to the analog switch 23, and when the control signal A is at "H" level, the analog switch 23 is turned off.
N, and the output signal of the nonlinear correction circuit 19 corresponding to the window A region is passed. Wind
The selection of windows A and B is done manually by the camera user depending on the subject.
i indow B will define the bottom center of the screen.

34は18と同様なNAM回路で、ニー補正回路15の
出力信号をR,B、G各チャンネル共入力し、R,B、
G信号の内最大値の信号を出力する。
34 is a NAM circuit similar to 18, which inputs the output signal of the knee correction circuit 15 for each channel of R, B, and G.
The signal with the maximum value among the G signals is output.

35はゲイン切換器で、入力信号がWind。35 is a gain switch, and the input signal is Wind.

wAかW i n d o w Bかを判定し、W i
 n d o wAが選択されている時には、W i 
n d o w Bが選択されている時に比べて、AG
C回路10のゲインを大きくするようにしている。この
ことによって、WindowAが選択されている場合に
は、WindowBが選択されている場合に比べて、画
面中央下部の主要被写体像がより明るく撮影される。
Determine whether it is wA or W i n d o w B, and
When ndo wA is selected, W i
Compared to when n d o w B is selected, AG
The gain of the C circuit 10 is increased. As a result, when Window A is selected, the main subject image at the lower center of the screen is photographed brighter than when Window B is selected.

37は検波回路(Def>で、ゲイン切換器35で増幅
された映像信号を検波する。検波した信号によって、A
GC回路10を制御する。
37 is a detection circuit (Def>) that detects the video signal amplified by the gain switch 35.
Controls the GC circuit 10.

尚、上記実施例は2板式のビデオカメラに本発明を適用
したものであったが、本発明は単板式或は3板式のビデ
オカメラにも勿論適用することができる。
In the above embodiment, the present invention was applied to a two-panel type video camera, but the present invention can of course be applied to a single-panel type or three-panel type video camera.

(発明の効果) 本発明によれば、Ii画面中央下部全画面との平均輝度
差を用いて、高輝度部の階調圧縮の圧縮開始点を調整す
ることにより、背景の高輝度部の再現性を高めることが
できた。
(Effects of the Invention) According to the present invention, the high-brightness portion of the background is reproduced by adjusting the compression start point of gradation compression of the high-brightness portion using the average brightness difference with the entire screen at the lower center of the Ii screen. I was able to improve my sexuality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図はニー補正
回路図、第3図はニー補正回路の特性曲線、第4図はN
AM回路図、第5図は非線形補正回路図、第6図は非線
形補正回路の特性曲線、第7図はパルス発生回路図、第
8図はパルス発生回路の信号図、第9図は画面の枠決め
図である。 1・・・レンズ、2・・・赤外カットフィルター、3・
・・絞り、4・・・G透過プリズム、5・・・マゼンダ
透過プリズム、6・・・G−CCD、7・・・R,B−
CCD、8・・・CDS、9・・・LPF、10・・・
AGClll・・・クランプ回路、12・・・ホワイト
バランス回路、13・・・ペデスタル調整回路、14・
・・ガンマ補正回路、15・・・ニー補正回路、16・
・・マトリクス回路、17・・・MOD、I8・・・N
AM、19・・・非線形補正回路、20・・・検波回路
(Def)、21・・・アイリス駆動回路、22−・・
A/D回路、23・・・アナログスイッチ、24−De
f、25−A/D回路、26・・・演算回路、27・・
・CCD駆動回路、28・・・D/A[i]路、29・
・・加算回路、30・・・D/A回路、31・・・D/
A回路、32・・・D/A[i]路、33・・・加算回
路、34・・・NAM、35・・・ゲイン切替回路、3
6・・・パルス発生回路、37・・・Def。
Fig. 1 is a block diagram of an embodiment of the present invention, Fig. 2 is a knee correction circuit diagram, Fig. 3 is a characteristic curve of the knee correction circuit, and Fig. 4 is a diagram of the knee correction circuit.
AM circuit diagram, Fig. 5 is a nonlinear correction circuit diagram, Fig. 6 is a characteristic curve of the nonlinear correction circuit, Fig. 7 is a pulse generation circuit diagram, Fig. 8 is a signal diagram of the pulse generation circuit, and Fig. 9 is a screen diagram. This is a framing diagram. 1...Lens, 2...Infrared cut filter, 3.
...Aperture, 4...G transparent prism, 5...Magenta transparent prism, 6...G-CCD, 7...R, B-
CCD, 8...CDS, 9...LPF, 10...
AGClll...clamp circuit, 12...white balance circuit, 13...pedestal adjustment circuit, 14.
... Gamma correction circuit, 15... Knee correction circuit, 16.
...Matrix circuit, 17...MOD, I8...N
AM, 19... Nonlinear correction circuit, 20... Detection circuit (Def), 21... Iris drive circuit, 22-...
A/D circuit, 23...analog switch, 24-De
f, 25-A/D circuit, 26... arithmetic circuit, 27...
・CCD drive circuit, 28...D/A[i] path, 29.
...Addition circuit, 30...D/A circuit, 31...D/
A circuit, 32...D/A [i] path, 33... Addition circuit, 34... NAM, 35... Gain switching circuit, 3
6...Pulse generation circuit, 37...Def.

Claims (1)

【特許請求の範囲】[Claims] 全画面の平均輝度信号レベルを検出する第1の検出部と
、画面中央下部の平均輝度信号レベルを検出する第2の
検出部と、上記2つの検出部の出力信号の差を算出する
演算部と、同演算部の出力信号により高輝度部の階調圧
縮の開始レベルを調整する高輝度部階調圧縮回路とを具
備したことを特徴とするビデオカメラ。
A first detection section that detects the average luminance signal level of the entire screen, a second detection section that detects the average luminance signal level at the lower center of the screen, and a calculation section that calculates the difference between the output signals of the two detection sections. 1. A video camera comprising: a high-brightness section gradation compression circuit that adjusts a start level of gradation compression of a high-brightness section based on an output signal of the arithmetic unit.
JP2087216A 1990-03-31 1990-03-31 Video camera Pending JPH03285470A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2087216A JPH03285470A (en) 1990-03-31 1990-03-31 Video camera
US07/677,140 US5221963A (en) 1990-03-31 1991-03-29 Video camera having a video signal processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2087216A JPH03285470A (en) 1990-03-31 1990-03-31 Video camera

Publications (1)

Publication Number Publication Date
JPH03285470A true JPH03285470A (en) 1991-12-16

Family

ID=13908726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2087216A Pending JPH03285470A (en) 1990-03-31 1990-03-31 Video camera

Country Status (1)

Country Link
JP (1) JPH03285470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207092A (en) * 2008-02-29 2009-09-10 Canon Inc Photographic device, and setting method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009207092A (en) * 2008-02-29 2009-09-10 Canon Inc Photographic device, and setting method thereof
US8154618B2 (en) 2008-02-29 2012-04-10 Canon Kabushiki Kaisha Imaging apparatus and method for setting the same

Similar Documents

Publication Publication Date Title
US5221963A (en) Video camera having a video signal processing apparatus
CA2252183C (en) An imaging apparatus with dynamic range expanded, a video camera including the same, and a method of generating a dynamic range expanded video signal
US5767899A (en) Image pickup device
US5068718A (en) Image quality correcting system for use with an imaging apparatus
JPH03204281A (en) Image pickup device
JPS6245285A (en) Video signal processing circuit
US5075778A (en) Backlight correction system
US5010393A (en) Method and apparatus for adjusting chroma
JPH03285470A (en) Video camera
JP2990732B2 (en) Imaging device
JP2504939B2 (en) Imaging device
JP2990733B2 (en) Imaging device
JP2557620B2 (en) Imaging device
JPS601989A (en) Image pickup device
JPH04107083A (en) Variable gamma correcting circuit and picture signal processing circuit using the same
JPH0131356B2 (en)
JPH03289274A (en) Video camera
JP3000576B2 (en) Imaging device
JP4145704B2 (en) White balance circuit
JP2609095B2 (en) Imaging method using solid-state imaging device
JPH04142177A (en) Video camera
JPH04140992A (en) Image pickup device
JPH0657067B2 (en) Color temperature compensation device for color television cameras
JPH03285477A (en) Video camera
JPS6214584A (en) Image pickup device