JPH0328492A - Method and device for controlling excavating direction for shield excavator - Google Patents

Method and device for controlling excavating direction for shield excavator

Info

Publication number
JPH0328492A
JPH0328492A JP1986089A JP1986089A JPH0328492A JP H0328492 A JPH0328492 A JP H0328492A JP 1986089 A JP1986089 A JP 1986089A JP 1986089 A JP1986089 A JP 1986089A JP H0328492 A JPH0328492 A JP H0328492A
Authority
JP
Japan
Prior art keywords
pressure
target value
attitude angle
deviation
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1986089A
Other languages
Japanese (ja)
Other versions
JPH0696943B2 (en
Inventor
Akira Nishi
明良 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tobishima Corp
Original Assignee
Tobishima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tobishima Corp filed Critical Tobishima Corp
Priority to JP1019860A priority Critical patent/JPH0696943B2/en
Publication of JPH0328492A publication Critical patent/JPH0328492A/en
Publication of JPH0696943B2 publication Critical patent/JPH0696943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

PURPOSE:To improve excavation precision without oscillation of a segment and being influenced by disturbance and to facilitate control by a method wherein the pressure of a propulsion jack is automatically detected by propulsion, and a horizontal and a vertical direction are independently controlled. CONSTITUTION:The position and the orientation angle of a shield excavator 1 are detected by means of a position sensor 3 and an orientation angle sensor 4. A position target value on a plan and a detection position are compared with each other by a command part 6 to determine a position deviation, and orientation angle target values in a horizontal and a vertical direction are computed. The orientation angle target value is compared with a detecting orientation angle to determine a deviation between orientation angles in a horizontal and a vertical direction. A pressure target value to correct the deviation at each of four or more propulsion jacks 2 or at each group thereof is computed by a control part 12. A fluid pressure is regulated according to a pressure target value by means of pressure regulators 10... as a pressure exerted on the propulsion jack 2 is detected by pressure sensors 11... to control a direction.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、シールド掘進機の現在の位置及び姿勢角を検
出しながらその掘進方向を計画路線に正確に沿うように
自動制御する方法及びその装置に関する.
The present invention relates to a method and apparatus for automatically controlling the direction of excavation of a shield tunneling machine so as to accurately follow a planned route while detecting the current position and attitude angle of the shield tunneling machine.

【従来の技術】[Conventional technology]

一Cに、シールド掘進機の自動による方向制御は、その
位置と姿勢角を自動位置計測装置等により常時計測し、
計画路線との偏差を修正するように推進ジャッキを自動
的に操作して行う。 従来、その操作は、推進ジャッキをT4磁切換弁により
作動させるか停止させるかにより行っていた.すなわち
、複数の推進ジャッキのうちから修正動作に適した作動
ジャッキを過去の掘進データ等を参照して選択し、さら
に偏差の修正には水平方向及び鉛直方向の偏差を同時に
修正できるようなジャッキを選択し、それを作動・停止
させることにより行っていた. この方法を、第6図に示すように8台の推進ジャッキを
有するシールド掘進機を例にして説明する。いま全推進
ジャッキの作動によって直進させた結果、水平方向θX
.鉛直方向θyの姿勢角偏差が生じ、これを修正するも
のとする.この場合、その修正動作に最も適したと思わ
れる第8番目の推進ジャッキを圧力解放して停止させ、
シールド掘進機の動作をra認する.この結果、操作量
が少なく、希望通りの修正が行えなかったとき、例えば
水平方向θIの修正が十分でないときは、その方向の操
作量を増加させるためにさらに第7番目または第6番目
の推進ジャッキも停止させる.逆に操作量が多く希望の
修正値を超えた場合には、停止させた第8番目の推進ジ
ャッキを再び作動させることによって操作量を減少させ
る.
1C, the automatic direction control of the shield tunneling machine involves constantly measuring its position and attitude angle using an automatic position measuring device, etc.
This is done by automatically operating the propulsion jack to correct deviations from the planned route. Conventionally, this operation was performed by operating or stopping the propulsion jack using a T4 magnetic switching valve. In other words, from among a plurality of propulsion jacks, the operating jack suitable for corrective action is selected by referring to past excavation data, etc., and furthermore, for correcting deviations, a jack that can correct horizontal and vertical deviations at the same time is selected. This was done by making selections and activating and deactivating them. This method will be explained using a shield tunneling machine having eight propulsion jacks as shown in FIG. 6 as an example. Now, as a result of moving straight by operating the full propulsion jack, the horizontal direction θX
.. It is assumed that an attitude angle deviation in the vertical direction θy occurs, and this is to be corrected. In this case, the eighth propulsion jack, which seems to be the most suitable for the corrective action, is released and stopped,
Check the operation of the shield tunneling machine. As a result, when the amount of operation is small and the desired correction cannot be made, for example, when the correction in the horizontal direction θI is not sufficient, the seventh or sixth propulsion is performed to increase the amount of operation in that direction. Also stop the jack. On the other hand, if the amount of operation is large and exceeds the desired correction value, the amount of operation is reduced by restarting the stopped eighth propulsion jack.

【発明が解決しようする課題】[Problem to be solved by the invention]

このような従来の方法によると、一旦停止させた推進ジ
ャッキは既設のセグメントから外れるため、その停止し
た推進ジャッキを再び作動させて掘進作業を続行する場
合には、その推進ジャッキが既設のセグメントに当たる
まで待ってから掘進を再開しなければならず、作業能率
が非常に悪かった. これを改善するため、無負荷追従ジャッキ方式によるも
のが提案された.この方法は、推進ジャッキを完全に圧
力解放しないでシールド掘進機本体に対して無負荷状態
になるような低い圧力をかけた状態で停止させ、シール
ドmi1機本体に迅速に追従できるようにしたものであ
る. しかし、この方法とても、推進ジャッキをシールド掘進
機本体に対して負荷作動状態にするか無負荷作動状態に
するかの2段階の切換であり、作動・停止による場合と
同様に水平及び鉛直の両方向の操作量が同時に変化する
ため、その独立した@御を行えず、高い掘進精度を期待
できなかった.また、操作量が単にオン・オフの2{a
lとなるため、PID演3!E(比例・積分・微分)等
による円滑かつ連続的な追従制御ができず、土質等の外
乱の影響を受け易かった. 本発明は従来のこのような問題点を解決することを目的
とする。
According to this conventional method, once the propulsion jack is stopped, it comes off the existing segment, so when the propulsion jack that has been stopped is activated again to continue excavation work, the propulsion jack hits the existing segment. The work efficiency was extremely poor because the excavation had to be restarted after waiting until To improve this, a no-load following jack method was proposed. This method stops the propulsion jack with a low pressure applied to the main body of the shield machine without completely releasing the pressure, so that it can quickly follow the main body of the shield machine. It is. However, this method requires two-step switching of the propulsion jack to the shield excavator body, either with a load operating state or with a no-load operating state. Since the amount of operation changes at the same time, independent @ control cannot be performed, and high excavation accuracy cannot be expected. In addition, the amount of operation is simply on/off 2{a
PID performance 3 to become l! It was not possible to perform smooth and continuous follow-up control using E (proportional, integral, differential), etc., and it was easily affected by disturbances such as soil quality. The present invention aims to solve these conventional problems.

【課題を解決するための手段】[Means to solve the problem]

本発明では、シールド掘進機の現在の位置及び姿勢角を
それぞれ位置センサ及び姿勢角センサによって検出し、
位置センサの検出値と位置目標値とから位置偏差を求め
た後、その偏差を修正するような姿勢角目標値を演算す
る.次にこの姿勢角目標値と姿勢角センサの検出値とか
ら姿勢角偏差を求め、その偏差を修正するような圧力目
標値を複数の推進ジャッキの個々についてまたはグルー
プごとに演算する。そしてこれら推進ジャッキに作用す
る圧力を圧力センサによって検出しながらそれに印加す
る流体圧を上記圧力目標値に従って調整する.
In the present invention, the current position and attitude angle of the shield tunneling machine are detected by a position sensor and an attitude angle sensor, respectively,
After determining the positional deviation from the detected value of the position sensor and the positional target value, the attitude angle target value is calculated to correct the deviation. Next, an attitude angle deviation is obtained from this attitude angle target value and the detected value of the attitude angle sensor, and a pressure target value that corrects the deviation is calculated for each of the plurality of propulsion jacks individually or for each group. Then, while the pressure acting on these propulsion jacks is detected by a pressure sensor, the fluid pressure applied thereto is adjusted according to the above pressure target value.

【作  用】[For production]

本発明によれば、水平方向及び鉛直方向をそれぞれ独立
してしかも完全なフィードバック制御系により方向制御
できる。
According to the present invention, the horizontal and vertical directions can be controlled independently and by a complete feedback control system.

【実 施 例】【Example】

以下、本発明の一実施例を図面を参照して詳細に説明す
る. 第1図は本発明によるti進方向制御装置のシステム構
成図である.シールド掘進機本体1は放射状に配置した
4台以上の推進ジャッキ2(同図では2台のみ図示)に
より公知のように推進され、また従来公知の位置センサ
3及び姿勢角センサ4によって現在の位置及び姿勢角を
検知される.その検知した位置データ及び姿勢角データ
は信号変換器5により信号変換されてパーソナルコンピ
ュータ等による地上の指令部6へ伝送され、後述のよう
にデータ処理される.全推進ジャッキ2は油圧供給系を
介して共通の油圧ポンプ7に接続され、該油圧ポンプ7
からの油圧によって作動される.油圧ポンブ7からの油
圧は圧力センサ8によって検知され、流量調整器9によ
り流量調整された後、分岐して各推進ジャッキ2ごとに
圧力調整器(例えば比例電磁弁)lOにより圧力調整さ
れるとともに、各推進ジャッキ2ごとの圧力を圧力セン
サl1によって検知される.圧力センサ8,1lによっ
て検知された圧力データは演算機能を有する制御部12
を介しまた上記信号変換器5で信号変換されて指令部6
へ伝送される.制御部12は指令部6からの指令に従い
流量調整器9及び各推進ジャッキ2ごとの圧力調整器l
Oを制御する.各推進ジャッキ2を圧力調整HfOで調
整することによりシールド掘進機本体1の方向が制御さ
れる。 その制御にあたり本実施例では、シールド掘進機本体l
に放射状に配設されたN個の推進ジャッキ2をシールド
掘進機本体lの円周方向に4つのグループに分割、すな
わちその圧力系統を4分割したものとして説明する.第
2図においてある点のX軸及びY軸の座標値(設定{1
11)a,bが与えられた場合、4分割されたIIL進
ジャソキ2の圧力分担Pll〜p1tはこれから次の計
算によって求められる. P++=J(x   a)b P,g=J  a b ?■=J (x − a)(y − b)Ptt−Ja
(y   b) 第3図に示すようにN個の推進ジャッキ21〜2Mには
、それぞれの圧力を調整する圧力調整器lO.〜10N
及びその圧力を検知する圧力センサHt〜l1エが接続
され、各推進ジャッキの圧力は個別に検知されるが、圧
力制11は指令部6からの指令に従い制御部12によっ
て上記のように4つのグループに分けて行われる.従っ
て同じグループの推進ジャッキは同じ圧力に調整される
.以下、その圧力制御について第4図のフローチャート
を参照して説明する. ■ 位置センサ3及び姿勢角センサ4でシールド′m進
機本体lの現在の位置及び姿勢角を検出し、そのデータ
を信号変換器5で指令部6用に変換してこれへ伝送する
. ■ 指令部6において計画路線の位置目標値と位置セン
サ3の検出位置とを比較して位置偏差を求め、その位置
偏差から水平方向及び鉛直方向の姿勢角目標値を演算す
る. ■ 指令部6において姿勢角目標値と姿勢角センサ4の
検出姿勢角とを比較し、水平方向及び鉛直方向の姿勢角
偏差を求める. ■ これら姿勢角偏差を信号変換器5で制御部l2用に
変換してこれへ伝送する. ■ 制御部12により流量調整器9を制御して流量調整
し、シールド掘進機本体lの掘進速度を適宜に設定する
. ■ 制御部l2において姿勢角偏差からその偏差を修正
するような各推進ジャッキの圧力目標値を演算し、その
演算結果から上記の計算式に従った圧力分担により最も
大きい圧力系統の推進ジャッキを選択する. ■ その圧力系統の圧力調整器10を制御部l2によっ
て最大圧力に設定する. ■ 圧力センサ8によって油圧ポンブ7の圧力を検出し
、制御部l2においてこのときのシールド掘進機本体l
の推力を演算する. ■ この推力と圧力分担とから新たに他の圧力系統の推
進ジャッキの圧力目標値を演算する.[相] 圧力セン
サ111−11Nによって各圧力系統の圧力を検出する
. ■ その検出圧力と上記■で求めた圧力設定値とを比較
して各圧力系統ごとの圧力偏差を演算する. ■ 各圧力系統ごとに上記圧力偏差を修正するような調
整値、つまり電流値または電圧値を演算し、これに従い
、上記■で最大圧力に設定した圧力調整器以外の各圧力
調整器10.〜lOHを操作して各推進ジャッキ2.〜
2,lの圧力を調整する。 ■ 推進ジャッキ2,〜2Nの作動によりシールド掘進
機本体1に回転モーメントが生じ、その掘進方向が制御
される. 以上の動作を繰り返すことによりシールド掘進機本体1
は実時間で連続的にかつ水平及び鉛直両方向について円
滑に方向制御される. なお、上記の実施例では、N個の推進ジャッキ2,〜2
Nを説明の便宜上第2図に示すようにX軸及びY軸と平
行に4分割したが、シール−ド掘進機本体1にとっては
第5図のような態様に分割した方が方向転換が容易であ
る.また分割しないでN個の推進ジャッキ2,〜2Hを
個々に圧力調整しても良い.
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a system configuration diagram of a ti advance direction control device according to the present invention. The shield tunneling machine main body 1 is propelled in a known manner by four or more propulsion jacks 2 (only two are shown in the figure) arranged radially, and the current position is detected by a conventionally known position sensor 3 and attitude angle sensor 4. and attitude angle are detected. The detected position data and attitude angle data are converted into signals by a signal converter 5, and transmitted to a command unit 6 on the ground such as a personal computer, where the data is processed as described below. All propulsion jacks 2 are connected to a common hydraulic pump 7 via a hydraulic supply system, and the hydraulic pump 7
It is operated by hydraulic pressure from. The oil pressure from the hydraulic pump 7 is detected by a pressure sensor 8, the flow rate is adjusted by a flow rate regulator 9, and then branched and the pressure is regulated by a pressure regulator (for example, a proportional solenoid valve) lO for each propulsion jack 2. , the pressure of each propulsion jack 2 is detected by a pressure sensor l1. The pressure data detected by the pressure sensors 8 and 1l is sent to a control unit 12 having a calculation function.
The signal is converted by the signal converter 5 and sent to the command unit 6.
will be transmitted to. The control unit 12 operates a flow rate regulator 9 and a pressure regulator l for each propulsion jack 2 according to instructions from the command unit 6.
Control O. The direction of the shield tunneling machine main body 1 is controlled by adjusting each propulsion jack 2 with pressure adjustment HfO. In order to control this, in this embodiment, the main body of the shield excavator is
The explanation will be given assuming that the N propulsion jacks 2 arranged radially are divided into four groups in the circumferential direction of the shield tunneling machine main body l, that is, the pressure system is divided into four. In Figure 2, the coordinate values of the X-axis and Y-axis of a certain point (setting {1
11) When a and b are given, the pressure sharing Pll to p1t of the IIL hexagonal system 2 divided into four parts can be found by the following calculation. P++=J(x a)b P,g=J a b? ■=J (x − a) (y − b) Ptt−Ja
(y b) As shown in FIG. 3, each of the N propulsion jacks 21 to 2M is equipped with a pressure regulator lO. ~10N
and pressure sensors Ht~l1d for detecting the pressure are connected, and the pressure of each propulsion jack is detected individually, but the pressure control 11 is controlled by the control unit 12 in accordance with the command from the command unit 6. This will be done in groups. Therefore, propulsion jacks in the same group are adjusted to the same pressure. The pressure control will be explained below with reference to the flowchart shown in FIG. (2) The position sensor 3 and the attitude angle sensor 4 detect the current position and attitude angle of the shield'm advancing machine main body l, and the signal converter 5 converts the data into data for the command unit 6 and transmits it thereto. ■ The command unit 6 compares the positional target value of the planned route with the detected position of the position sensor 3 to obtain a positional deviation, and calculates the horizontal and vertical attitude angle target values from the positional deviation. ■ The command unit 6 compares the attitude angle target value with the attitude angle detected by the attitude angle sensor 4, and determines attitude angle deviations in the horizontal and vertical directions. ■ These attitude angle deviations are converted by the signal converter 5 for use in the control unit l2 and transmitted thereto. (2) The flow rate regulator 9 is controlled by the control unit 12 to adjust the flow rate and set the excavation speed of the shield excavator main body l appropriately. ■ In the control unit l2, a pressure target value for each propulsion jack is calculated based on the attitude angle deviation to correct the deviation, and from the calculation result, the propulsion jack with the highest pressure system is selected by pressure sharing according to the above calculation formula. do. ■ The pressure regulator 10 of the pressure system is set to the maximum pressure by the control unit l2. ■ The pressure of the hydraulic pump 7 is detected by the pressure sensor 8, and the control unit l2 detects the shield excavator main body l at this time.
Calculate the thrust of. ■ New pressure target values for the propulsion jacks of other pressure systems are calculated from this thrust and pressure sharing. [Phase] The pressure of each pressure system is detected by pressure sensors 111-11N. ■ Compare the detected pressure with the pressure setting value obtained in (■) above to calculate the pressure deviation for each pressure system. ■ Calculate an adjustment value, that is, a current value or a voltage value, to correct the pressure deviation for each pressure system, and use this value for each pressure regulator 10 other than the pressure regulator set to the maximum pressure in (■) above. ~ Operate lOH to each propulsion jack 2. ~
2. Adjust the pressure of l. ■ The operation of the propulsion jacks 2 and 2N generates a rotational moment in the main body 1 of the shield excavator, and its direction of excavation is controlled. By repeating the above operations, the shield excavator main body 1
The direction is controlled continuously in real time and smoothly in both horizontal and vertical directions. In addition, in the above embodiment, N propulsion jacks 2, to 2
For convenience of explanation, N is divided into four parts parallel to the X and Y axes as shown in Fig. 2, but for the shield excavator main body 1, it is easier to change direction if it is divided into the form shown in Fig. 5. It is. Alternatively, the pressure may be adjusted individually for the N propulsion jacks 2, to 2H without dividing them.

【発明の効果】【Effect of the invention】

本発明によれば次のような効果がある.(1)  水平
方向及び鉛直方向をそれぞれ独立して方向制御ができる
ため、従来よりも掘進精度が向上する. (2)完全なフィードバック制御系によって方向制御で
きるため、従来問題になっていた土質等の外乱の影響を
受けない. (3)自動運転の確立により人件費の削減及び出来形向
上等が図れる.
According to the present invention, there are the following effects. (1) Since the horizontal and vertical directions can be controlled independently, excavation accuracy is improved compared to conventional models. (2) Since the direction can be controlled by a complete feedback control system, it is not affected by disturbances such as soil quality, which was a problem in the past. (3) Establishment of automated driving will reduce labor costs and improve performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による掘進方向制御装置のシステム構威
図、第2図は推進ジャッキの圧力分担を説明する説明図
、第3図はそれを制御する制御系のブロック図、第4図
は本発明の方法の手順を説明するフローチャート、第5
図は上記圧力分担の念の例の説明図、第6図は従来の方
法を説明する説明図である. l・・・・・・シールド掘進機本体、2・・・・・・推
進ジャッキ、3・・・・・・位置センサ、4・・・・・
・姿勢角センサ、10・・・・・・圧力調整器、1l・
・・・・・圧力センサ.手 続 釘け 正 書 全文補正明細書 l 発明の名称 シールド掘進機の掘進方向制御方法及び装置l. 事件の表示 2 特許請求の範囲 特願平l 19860号 1. 複数の流体圧式推進ジャノキを使用して推進2. 発明の名称 させるシールド掘進機において、炎豊隻旦盪菫シールド
掘進機の掘進方向制御方法及び装置3, 補正をずる者 事件との関係
Fig. 1 is a system configuration diagram of the excavation direction control device according to the present invention, Fig. 2 is an explanatory diagram explaining the pressure sharing of the propulsion jack, Fig. 3 is a block diagram of the control system that controls it, and Fig. 4 is Flowchart explaining the steps of the method of the present invention, No. 5
The figure is an explanatory diagram of an example of the above-mentioned pressure sharing concept, and Figure 6 is an explanatory diagram illustrating the conventional method. l...Shield excavator main body, 2...Propulsion jack, 3...Position sensor, 4...
・Attitude angle sensor, 10...Pressure regulator, 1l・
...Pressure sensor. Procedural nailing formal document full text amendment specification l Name of the invention Excavation direction control method and device for a shield excavator l. Case Description 2 Claims Patent Application No. 19860 1. Propulsion using multiple hydraulic propulsion tools 2. Method and device for controlling the excavation direction of the Enhosendanshi Sumire shield tunneling machine in the shield tunneling machine entitled as the invention 3. Relationship with the case of a person who cheats on amendments

Claims (1)

【特許請求の範囲】 1、複数の流体圧式推進ジャッキを使用して推進させる
シールド掘進機において、その現在の位置及び姿勢角を
それぞれ位置センサ及び姿勢角センサによって検出する
過程と、位置センサの検出値と位置目標値とから位置偏
差を求める過程と、その位置偏差を修正するような姿勢
角目標値を演算する過程と、この姿勢角目標値と姿勢角
センサの検出値とから姿勢角偏差を求める過程と、その
偏差を修正するような圧力目標値を上記複数の推進ジャ
ッキの個々についてまたはグループごとに演算する過程
と、これら推進ジャッキに作用する圧力を圧力センサに
よって検出しながらにそれに印加する流体圧を上記圧力
目標値に従って調整する過程とからなることを特徴とす
るシールド掘進機の掘進方向制御方法。 2、複数の流体圧式推進ジャッキを使用して推進させる
シールド掘進機において、その現在の位置を検出する位
置センサと、現在の姿勢角を検出する姿勢角センサと、
位置センサの検出値と与えられた位置目標値とから位置
偏差を求める演算部と、その位置偏差を修正するような
姿勢角目標値を演算する演算部と、この姿勢角目標値と
上記姿勢角センサの検出値とから姿勢角偏差を求める演
算部と、その偏差を修正するような圧力目標値を上記複
数の推進ジャッキの個々についてまたはグループごとに
演算する演算部と、これら推進ジャッキに作用する圧力
をそれぞれ検出する圧力センサと、これら推進ジャッキ
にそれぞれ印加する流体圧を上記圧力目標値に従って調
整する圧力調整器とを備えてなることを特徴とするシー
ルド掘進機の掘進方向制御装置。
[Claims] 1. In a shield excavator propelled using a plurality of hydraulic propulsion jacks, a process of detecting its current position and attitude angle by a position sensor and an attitude angle sensor, respectively, and detection by the position sensor. A process of calculating the positional deviation from the positional target value and the positional target value, a process of calculating the attitude angle target value that corrects the positional deviation, and a process of calculating the attitude angle deviation from the attitude angle target value and the detected value of the attitude angle sensor. a process of calculating a pressure target value that corrects the deviation for each of the plurality of propulsion jacks individually or for each group; and applying the pressure acting on these propulsion jacks while being detected by a pressure sensor. A method for controlling the direction of excavation of a shield excavator, comprising the step of adjusting fluid pressure according to the pressure target value. 2. In a shield tunneling machine that is propelled using a plurality of hydraulic propulsion jacks, a position sensor that detects its current position, an attitude angle sensor that detects its current attitude angle,
A calculation section that calculates a positional deviation from the detected value of the position sensor and a given positional target value, a calculation section that calculates a posture angle target value that corrects the positional deviation, and a calculation section that calculates the posture angle target value and the above posture angle. a calculation unit that calculates the attitude angle deviation from the detected value of the sensor; a calculation unit that calculates a pressure target value for correcting the deviation for each of the plurality of propulsion jacks individually or for each group; and a calculation unit that operates on the propulsion jacks. An excavation direction control device for a shield excavator, comprising: a pressure sensor that detects pressure, and a pressure regulator that adjusts the fluid pressure applied to each of the propulsion jacks according to the pressure target value.
JP1019860A 1989-01-31 1989-01-31 Method and device for controlling excavation direction of shield machine Expired - Lifetime JPH0696943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1019860A JPH0696943B2 (en) 1989-01-31 1989-01-31 Method and device for controlling excavation direction of shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1019860A JPH0696943B2 (en) 1989-01-31 1989-01-31 Method and device for controlling excavation direction of shield machine

Publications (2)

Publication Number Publication Date
JPH0328492A true JPH0328492A (en) 1991-02-06
JPH0696943B2 JPH0696943B2 (en) 1994-11-30

Family

ID=12010980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1019860A Expired - Lifetime JPH0696943B2 (en) 1989-01-31 1989-01-31 Method and device for controlling excavation direction of shield machine

Country Status (1)

Country Link
JP (1) JPH0696943B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116590U (en) * 1989-03-07 1990-09-18
DE112011102635T5 (en) 2010-11-17 2013-06-27 The Yokohama Rubber Co., Ltd. tire
CN104632239A (en) * 2015-01-12 2015-05-20 天津大学 Method for determining vertical partitioning pressure matching ratio of shield machine propulsion cylinders in stratified geology
CN114135300A (en) * 2021-11-22 2022-03-04 中铁工程装备集团有限公司 Method, device, equipment and medium for distributing thrust of synchronous pushing and splicing system of shield tunneling machine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332931A (en) * 1976-09-08 1978-03-28 Hitachi Construction Machinery Shield excavator
JPS5833695A (en) * 1981-08-25 1983-02-26 鹿島建設株式会社 Automatic drilling method of tunnel by shield machine
JPS61104219A (en) * 1984-10-27 1986-05-22 Sato Kogyo Kk Posture controller of tunnel excavator
JPS6389796A (en) * 1986-09-30 1988-04-20 鉄建建設株式会社 Method and device for controlling direction of shield excavator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5332931A (en) * 1976-09-08 1978-03-28 Hitachi Construction Machinery Shield excavator
JPS5833695A (en) * 1981-08-25 1983-02-26 鹿島建設株式会社 Automatic drilling method of tunnel by shield machine
JPS61104219A (en) * 1984-10-27 1986-05-22 Sato Kogyo Kk Posture controller of tunnel excavator
JPS6389796A (en) * 1986-09-30 1988-04-20 鉄建建設株式会社 Method and device for controlling direction of shield excavator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116590U (en) * 1989-03-07 1990-09-18
DE112011102635T5 (en) 2010-11-17 2013-06-27 The Yokohama Rubber Co., Ltd. tire
CN104632239A (en) * 2015-01-12 2015-05-20 天津大学 Method for determining vertical partitioning pressure matching ratio of shield machine propulsion cylinders in stratified geology
CN114135300A (en) * 2021-11-22 2022-03-04 中铁工程装备集团有限公司 Method, device, equipment and medium for distributing thrust of synchronous pushing and splicing system of shield tunneling machine
CN114135300B (en) * 2021-11-22 2024-04-12 中铁工程装备集团有限公司 Method, device, equipment and medium for distributing propelling force of synchronous pushing and splicing system of shield machine

Also Published As

Publication number Publication date
JPH0696943B2 (en) 1994-11-30

Similar Documents

Publication Publication Date Title
CN106438591B (en) The high-precision propulsion hydraulic system of balancing earth-pressure shielding machine ratio control and control method
KR100231757B1 (en) Method and device for controlling attachment of construction machine
CN102102522A (en) Track and posture composite control method in shield tunneling process
CN112585321B (en) Construction machine
CN103742467B (en) It is a kind of that there is the principal and subordinate's hydraulic cylinder synchronous control system and its control method for fixing potential difference
JPH07103781B2 (en) How to operate a small diameter underground machine
JPH0328492A (en) Method and device for controlling excavating direction for shield excavator
JPH0979206A (en) Control method of engine speed of hydraulic working machinery
JPH07119551B2 (en) Driving support device for excavation type underground excavator
JPS61253298A (en) Method and device for steering aircraft
JPS6380307A (en) Speed control method for industrial robot
JP2000303492A (en) Front controller for construction machinery
JP3240448B2 (en) Propulsion jack pressure control method for shield machine
JPS61266740A (en) Control of excavation by oil-pressure shovel
US4924754A (en) Circuit arrangement for a hydraulic drive in a position control circuit
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPS6275104A (en) Controlling method of hydraulic actuation type working machine
JPS62246403A (en) Control device for spindle axial center
JPH06240979A (en) Automatic control method of position and attitude in broken type shield tunneling machine
JPH0257774A (en) Output control device of proportional solenoid valve
JPH0791844B2 (en) Work machine control device
JP2798748B2 (en) Automatic setting device for attitude of work attachment
Xie et al. Theoretical analysis and experimental study on automatic trajectory tracking control of a shield tunneling machine under pressure regulation working mode
JPH0786243B2 (en) Excavator ultra-low speed controller
KR19990047627A (en) Automatic Excavator and Method of Excavator

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081130

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091130

Year of fee payment: 15