JPH03284139A - Driving supporting mechanism for rotor - Google Patents

Driving supporting mechanism for rotor

Info

Publication number
JPH03284139A
JPH03284139A JP2082096A JP8209690A JPH03284139A JP H03284139 A JPH03284139 A JP H03284139A JP 2082096 A JP2082096 A JP 2082096A JP 8209690 A JP8209690 A JP 8209690A JP H03284139 A JPH03284139 A JP H03284139A
Authority
JP
Japan
Prior art keywords
rotor
magnetic
motor
radial
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2082096A
Other languages
Japanese (ja)
Inventor
Shigeo Nishimura
成生 西村
Hitoshi Yamaguchi
均 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2082096A priority Critical patent/JPH03284139A/en
Publication of JPH03284139A publication Critical patent/JPH03284139A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/048Active magnetic bearings for rotary movement with active support of two degrees of freedom, e.g. radial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0459Details of the magnetic circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

PURPOSE:To miniaturize and simplify it while securing the precision of control by taking such magnetic pole arrangement structure that the rotating field and the magnetic field for radial floating do not interfere with each other. CONSTITUTION:The magnetic pole 3 for a motor has projections 3a on all sides, and the tops are arranged opposite at a small distance to the inside periphery 2a of a rotor 2. Moreover, magnetic poles 5 for radial bearings are U-shaped ones each of which has a pair of projections 5a, and are arranged at regular angles at four places along the circular projection provided at the periphery 2b of the rotor, and the top of each projection 5a is arranged opposite at a small distance to the projection 2c. Both the rotating field H1 by a motor 4 and the magnetic field H2 by a radial magnetic bearing 6 pass inside the rotor 2, but do not overlap each other, so the problems of interference and magnetic saturation can be avoided.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ターボ分子ポンプ、回転陽極X線管、工作機
械用スピンドル、遠心分離機、ロボット等の各種回転機
械に係り、特に磁気軸受を利用する場合に好適なる回転
体の駆動支持機構に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to various rotating machines such as turbo molecular pumps, rotating anode X-ray tubes, spindles for machine tools, centrifugal separators, and robots, and particularly relates to magnetic bearings. The present invention relates to a drive support mechanism for a rotating body that is suitable for use.

[従来の技術] 第7図は、磁気軸受を利用した回転機械に一般に採用さ
れている従来の駆動支持機構を示しており、シャフト1
01の中央にインダクションモタ102が構成され、該
シャフト101の両軸端部近傍にラジアル磁気軸受10
3.103が構成されてなる。インダクションモータ1
02は、シャフト101に固設されたロータ104と、
このロータ104の外周に近接配置されたモータ用磁極
105と、このモータ用磁極105に巻回されたコイル
106とを具備してなり、コイル106に三相交流を流
すことでロータ104を回転させるための回転磁界を発
生し得るようになっている。
[Prior Art] Fig. 7 shows a conventional drive support mechanism generally employed in rotating machines using magnetic bearings.
An induction motor 102 is configured in the center of the shaft 101, and radial magnetic bearings 10 are installed near both ends of the shaft 101.
3.103 is configured. induction motor 1
02 is a rotor 104 fixed to a shaft 101;
The rotor 104 includes a motor magnetic pole 105 disposed close to the outer periphery of the rotor 104 and a coil 106 wound around the motor magnetic pole 105. The rotor 104 is rotated by flowing three-phase alternating current through the coil 106. It is designed to generate a rotating magnetic field for

また、ラジアル磁気軸受103は、シャフト101に固
設されたロータ107と、このロータ107の外周等角
位置に近接配置された4個のラジアル軸受用磁極108
と、これらのラジアル軸受用磁極108にそれぞれ巻回
されたコイル109とを具備してなり、各コイル109
に直流を流すことでロータ107を半径方向に磁気浮上
させるための磁界を四方において個別に発生し得るよう
になっている。この際、各ラジアル軸受用磁極108の
近傍には軸受間の微少隙間を検出する位置センサが付帯
して設けてあり、これらの位置センサから取り出される
信号を入力した制御回路が各コイル109に通電すべき
直流電流の大きさをフィトバック制御するようにしてい
る(図示省略)。
The radial magnetic bearing 103 includes a rotor 107 fixed to the shaft 101 and four radial bearing magnetic poles 108 disposed close to each other at equiangular positions on the outer circumference of the rotor 107.
and coils 109 respectively wound around these radial bearing magnetic poles 108.
By flowing a direct current through the magnetic field, a magnetic field for magnetically levitating the rotor 107 in the radial direction can be generated individually in all four directions. At this time, a position sensor is provided near each radial bearing magnetic pole 108 to detect a minute gap between the bearings, and a control circuit inputting signals extracted from these position sensors energizes each coil 109. The magnitude of the direct current to be applied is controlled via phytoback (not shown).

なお、シャフト101の軸端部にはスラスト磁気軸受1
10が構成され、シャフト101に固着したスラスト盤
111をその両側に対設したコイル112により形成さ
れるスラスト方向への浮」−のための磁界によって支持
し得るようにしている。
Note that a thrust magnetic bearing 1 is provided at the end of the shaft 101.
10 is constructed so that a thrust disk 111 fixed to a shaft 101 can be supported by a magnetic field for floating in the thrust direction formed by coils 112 provided oppositely on both sides thereof.

[発明が解決しようとする課題] このように、回転機械に磁気軸受を採用するメリットは
、接触抵抗を無くして回転の高速化を実現でき、同時に
オイルフリーを達成できる点にある。しかし、このよう
な構成はボールベアリング等を利用した回転機械に比べ
て大形化(特に軸方向)や重量増加、コスト高等が避け
られないものとなり、その」二に、両ラジアル磁気軸受
とモータが空間的に離間するためモータの発生振動を抑
止する場合の調整も難しくなる等の課題を抱える。
[Problems to be Solved by the Invention] As described above, the advantage of employing magnetic bearings in rotating machines is that contact resistance can be eliminated to achieve high-speed rotation, and at the same time, oil-free operation can be achieved. However, such a configuration inevitably requires larger size (especially in the axial direction), increased weight, and higher cost than a rotating machine that uses ball bearings.Secondly, both radial magnetic bearings and motor Since the motors are spatially separated from each other, it becomes difficult to make adjustments to suppress the vibrations generated by the motor.

これに対して、本発明者等は特願平1−162885号
において、回転機械に組み込むべき新たなモータ一体型
磁気軸受を提案した。この軸受け、図示しないが、シャ
フトを半径方向に磁気浮上させるための吸引コイルと、
前記シャフトを回転方向に付勢するためのモータコイル
とを共通のステタ磁極に巻装して構成される。これによ
れば、回転機械を構成する際にその構成要素の数を低減
して構造の小形簡略化、特に軸方向の短寸化を図ること
ができ、低コスト化も可能で、その上にモタの発生振動
に対する抑止力を増大させ、ラジアル軸受制御も容易と
なる効果を期することができる。
In response to this, the present inventors proposed a new motor-integrated magnetic bearing to be incorporated into rotating machines in Japanese Patent Application No. 1-162885. This bearing includes an attraction coil (not shown) for magnetically levitating the shaft in the radial direction,
A motor coil for urging the shaft in the rotational direction is wound around a common stator magnetic pole. According to this, when configuring a rotating machine, it is possible to reduce the number of components and make the structure smaller and simpler, especially shorter in the axial direction, and it is also possible to reduce costs. The effect of increasing the deterrent force against vibrations generated by the motor and facilitating radial bearing control can be expected.

しかしながら、この構成では、磁界が干渉し合うため非
線形制御が必要となり、しかも磁気飽和を来たした時に
制御不能に陥る恐れがある。また、磁界を重畳させるた
めの機構や回路が新たに必要となる。さらに、このよう
な構成においても、スラスト磁気軸受はやはり別途に取
付けなければならないため、軸方向の短寸化にはある程
度限界がある。
However, in this configuration, nonlinear control is required because the magnetic fields interfere with each other, and furthermore, there is a risk of loss of control when magnetic saturation occurs. In addition, a new mechanism and circuit for superimposing magnetic fields are required. Furthermore, even in such a configuration, since the thrust magnetic bearing must be separately installed, there is a certain limit to the shortening of the shaft in the axial direction.

本発明は、このような課題に着目してなされたものであ
って、制御の適確性を確保しつつ、回転機器の一層の小
型・簡略化を図ることのできる駆動支持機構を提供する
ことを目的としている。
The present invention has been made with attention to such problems, and it is an object of the present invention to provide a drive support mechanism that can further downsize and simplify rotating equipment while ensuring accuracy of control. The purpose is

[課題を解決するための手段] 本発明は、かかる目的を達成するために、次のような構
成を採用したものである。
[Means for Solving the Problems] In order to achieve the above object, the present invention employs the following configuration.

すなわち、本発明に係る回転体の駆動支持機構は、筒状
ロータと、このロータを回転させるための磁界を発生さ
せるモータ用磁極と、前記ロータを半径方向に磁気浮I
−させるための磁界を発生させるラジアル軸受用磁極と
を具備してなり、同一スラスト位置において一方の磁極
をロータ内周に配設し他方の磁極をロータ外周に配設す
るとともに、ラジアル軸受用磁極と対面するロータ表面
に突部を周設したことを特徴とする。
That is, the drive support mechanism for a rotating body according to the present invention includes a cylindrical rotor, a motor magnetic pole that generates a magnetic field for rotating the rotor, and a magnetic floating I that radially moves the rotor.
radial bearing magnetic poles that generate a magnetic field to cause The rotor is characterized in that a protrusion is provided around the surface of the rotor facing the rotor.

[作用] このような構成によると、モータ用磁極に巻装されるコ
イルに多相交流を流すことで磁極とロタの間に回転磁界
が形成され、ラジアル軸受用磁極に巻装されるコイルに
直流を流すことで磁極とロータの間に半径方向へ浮上の
ための磁界が形成されることになる。ここで、これらの
磁界はともにロータ内を通るが、一方をロータの内面付
近に通過させ他方をロータの外面付近に通過させること
で2つの磁界が重なり合わないようにしておくことがで
きる。このため、両磁極を同一スラスト位置に配置して
も磁気的な干渉や磁気飽和を来たすことを防止し、適正
なモータ機能及びラジアル磁気軸受機能を発揮させるこ
とが可能になる。
[Operation] According to this configuration, a rotating magnetic field is formed between the magnetic poles and the rotor by flowing multiphase alternating current to the coils wound around the motor magnetic poles, and a rotating magnetic field is generated between the coils wound around the radial bearing magnetic poles. By flowing direct current, a magnetic field for levitation is created in the radial direction between the magnetic poles and the rotor. Here, both of these magnetic fields pass through the rotor, but by passing one near the inner surface of the rotor and the other near the outer surface of the rotor, it is possible to prevent the two magnetic fields from overlapping. Therefore, even if both magnetic poles are arranged at the same thrust position, magnetic interference and magnetic saturation can be prevented, and proper motor function and radial magnetic bearing function can be achieved.

しかも、ラジアル軸受用磁極と対面するロータ表面に突
部を周設しておくと、ロータのスラスト位置が変化した
際に、その変位を打消す方向のスラスト力が突部とラジ
アル軸受用磁極との間に発生し、このスラスト力でロー
タは常に一定のスラスト位置に復元される。このため、
この駆動支持機構によるとスラスト磁気軸受機能をも同
時に発揮できるものとなる。
Furthermore, by providing protrusions around the rotor surface facing the radial bearing magnetic poles, when the thrust position of the rotor changes, the thrust force in the direction of canceling the displacement is applied between the protrusions and the radial bearing magnetic poles. This thrust force always restores the rotor to a constant thrust position. For this reason,
According to this drive support mechanism, the thrust magnetic bearing function can also be performed at the same time.

[実施例] 以下、本発明の一実施例を第1図〜第6図を参照して説
明する。
[Example] Hereinafter, an example of the present invention will be described with reference to FIGS. 1 to 6.

この実施例に係る回転体の駆動支持機構は、第1図に示
すように、シャフト1に有底筒状ロータ2を固着し、こ
のロータ2の内周2aにモータ用磁極3を近接配置して
ロータ2との間にモータ4を構成するとともに、前記ロ
ータ2の外周2bにラジアル軸受用磁極5を近接配置し
てロータ2との間にスラスト磁気軸受を兼ねたラジアル
磁気軸受6を構成してなる。
As shown in FIG. 1, the drive support mechanism for a rotating body according to this embodiment includes a bottomed cylindrical rotor 2 fixed to a shaft 1, and motor magnetic poles 3 arranged close to the inner periphery 2a of the rotor 2. A motor 4 is configured between the rotor 2 and the rotor 2, and a radial magnetic bearing 6 which also serves as a thrust magnetic bearing is configured between the rotor 2 and the rotor 2 by arranging a radial bearing magnetic pole 5 close to the outer periphery 2b of the rotor 2. It becomes.

具体的に説明すると、モータ用磁極3は第2図に示すよ
うに四方に突極3aを有した珪素鋼板製のもので、中央
にはシャフト1を挿通させるための挿通孔3bが穿設さ
れている。そして、この挿通孔3bに非接触下にシャフ
ト1を挿通し、突極3aの先端をロータ2の内周2aに
対して微少隙間下に対向配置させている。突極3aには
一般的手法でコイル3cが巻回されているとともに、こ
れに対応してロータ内周2a付近には2誘導体2eが埋
設されており、コイル3cに三相交流電流を流すことに
よってロータ2を回転方向に付勢するための回転磁界を
発生し、これによりアウタロタ形のかご型誘導モータと
しての機能を発揮するようになっている。ロータ2に発
生した回転力はシャフト1を通じて取り出され、或いは
該ロータ2上においてポンプ作用等のために利用できる
ようにしである。
Specifically, as shown in FIG. 2, the motor magnetic pole 3 is made of a silicon steel plate with salient poles 3a on all sides, and has an insertion hole 3b in the center for inserting the shaft 1. ing. The shaft 1 is inserted into the insertion hole 3b without contact, and the tip of the salient pole 3a is disposed opposite to the inner circumference 2a of the rotor 2 with a slight gap therebetween. A coil 3c is wound around the salient pole 3a using a general method, and correspondingly, a two-inductor 2e is buried near the inner circumference 2a of the rotor, and a three-phase alternating current is passed through the coil 3c. This generates a rotating magnetic field for biasing the rotor 2 in the rotational direction, thereby functioning as an outer rotor type squirrel cage induction motor. The rotational force generated in the rotor 2 is taken out through the shaft 1 or is made available on the rotor 2 for pumping or the like.

また、ラジアル軸受用磁極5は一対の突極5aを有した
コ字形をなす珪素鋼板製のもので、ロタ外周2bに設け
た円環状の突部2cに沿って4箇所に等角装置され、各
突極5aの先端を前記ロタ突部2cに対して微少隙間下
に対向配置させている。各突極5aには個別にコイル5
bが巻回されており、これらのコイル5bにそれぞれ独
立した直流電流を流すことにより、ロータ2との間に吸
引力による浮上のための磁界を発生し、これにより該ロ
ータ2を軸心m上に保持するようにしている。その電磁
力の調整のために、第1図に示す如く各磁極5の近傍に
変位センサ8(例えば渦電流方式のもの)を配置してい
る。そして、これらの変位センサ8によって各ラジアル
位置でのロタ2の半径方向の変位を検出し、その検出値
を図示しない制御回路に入力して、該制御回路から対応
するコイル5bに流すべき直流電流の大きさをフィード
バック制御し得るようになっている。
The radial bearing magnetic poles 5 are U-shaped silicon steel plates having a pair of salient poles 5a, and are equiangularly arranged at four locations along an annular protrusion 2c provided on the outer circumference 2b of the rotor. The tip of each salient pole 5a is disposed opposite to the rotor protrusion 2c with a slight gap therebetween. Each salient pole 5a has a separate coil 5.
By passing independent DC currents through these coils 5b, a magnetic field is generated between the rotor 2 and the rotor 2 for levitation due to an attractive force, thereby aligning the rotor 2 with the axis m. Trying to hold it on top. In order to adjust the electromagnetic force, a displacement sensor 8 (for example, of an eddy current type) is arranged near each magnetic pole 5 as shown in FIG. The radial displacement of the rotor 2 at each radial position is detected by these displacement sensors 8, and the detected values are input to a control circuit (not shown), and the DC current to be passed from the control circuit to the corresponding coil 5b is determined. It is possible to feedback control the size of.

しかして、このような磁極配置構造によると、モータ4
による回転磁界H1は第3図中破線で示すようにモータ
用磁極3とロータ内周2aとの間に形成され、ラジアル
磁気軸受6による浮上のための磁界H2は同図中実線で
示すようにそれぞれラジアル軸受用磁極5とロータ突部
2cとの間に形成されることになり、両磁界H1、F2
はともにロータ2内を通るが互いに重なり合わないよう
にしておくことができる。このため、磁気的な干渉や磁
気飽和を来たすことを有効に防止し、モタ4の機能とラ
ジアル磁気軸受5の機能とをそれぞれ適正に発揮させる
ことが可能になる。
However, according to such a magnetic pole arrangement structure, the motor 4
A rotating magnetic field H1 is formed between the motor magnetic poles 3 and the rotor inner periphery 2a as shown by the broken line in FIG. They are formed between the radial bearing magnetic pole 5 and the rotor protrusion 2c, and both magnetic fields H1 and F2
Both pass through the rotor 2, but they can be made so that they do not overlap each other. Therefore, magnetic interference and magnetic saturation can be effectively prevented, and the functions of the motor 4 and the radial magnetic bearing 5 can be properly performed.

しかも、ラジアル方向へロータ2を浮上させるための磁
界H2は第4図に示すように主としてロータ突部2cと
ラジアル軸受用磁極5との間に形成されるため、例えば
同図に示す如きバランス状態下のスラスト位置2゜から
第5図に示すようにロータ2がZ+力方向変位した時や
、逆に第6図に示すようにZ一方向に変位した時には、
磁界H2の分布状態が変化してその変位量を打消す方向
のスラスト力F1、F2を発生させ、これらのスラスト
力F1、F2によりロータ2を常に元のスラスト位置Z
。に復元させようとする。このため、この駆動支持機構
は能動形のラジアル磁気軸受6によって受動形のスラス
ト磁気軸受をも兼用できることになり、特に大きなスラ
スト調整を必要としない場合に別設のスラスト軸受機構
を不要にすることができる。
Moreover, since the magnetic field H2 for levitating the rotor 2 in the radial direction is mainly formed between the rotor protrusion 2c and the radial bearing magnetic pole 5 as shown in FIG. When the rotor 2 is displaced from the lower thrust position 2 degrees in the Z+ force direction as shown in Figure 5, or conversely in the Z direction as shown in Figure 6,
The distribution state of the magnetic field H2 changes to generate thrust forces F1 and F2 in the direction of canceling the amount of displacement, and these thrust forces F1 and F2 keep the rotor 2 at the original thrust position Z.
. I'm trying to restore it to . Therefore, this drive support mechanism can also be used as a passive thrust magnetic bearing by using the active radial magnetic bearing 6, which eliminates the need for a separate thrust bearing mechanism when a particularly large thrust adjustment is not required. I can do it.

この結果、ラジアル磁気軸受、スラスト磁気軸受、並び
に、モータが各々独立した要素部品として配置されてい
る従来のものに比べて軸方向を大巾に短寸化でき、モー
タの発生振動を同一スラスト位置において直接抑止でき
るため振動制御が容0 易になり、ロータ等の構成部品が少なくなって信頼性の
向上と軽量化とを有効に図り得るものとなる。勿論、浮
上のための磁界と回転磁界とが干渉し合うことなく独立
に形成されるためそれらを重畳させるための回路や機構
等が不要になり、磁界の干渉がなくなると非線形制御を
行う必要もなくなる。また、かご形誘導モータにおいて
オープンスロット構造がとれる利点も伴う。
As a result, compared to conventional systems in which the radial magnetic bearing, thrust magnetic bearing, and motor are each arranged as independent components, the axial direction can be made much shorter, and the vibration generated by the motor can be moved to the same thrust position. Since vibration can be directly suppressed, vibration control becomes easy, and the number of components such as rotors is reduced, making it possible to effectively improve reliability and reduce weight. Of course, since the magnetic field for levitation and the rotating magnetic field are formed independently without interfering with each other, there is no need for circuits or mechanisms to superimpose them, and once there is no interference between the magnetic fields, there is no need to perform nonlinear control. It disappears. There is also the advantage that the squirrel cage induction motor can have an open slot structure.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば、ロータ外周にモータ用磁極を配設しロータ内周
に軸受用磁極を配設することもできる。モータの方式は
かご形誘導モータに限らず、他の方式の誘導モータや同
期モータ等、非接触式のモータであればどのような方式
でもよい。また、磁気軸受の方式は直流吸引型に限らず
、交流反発型など他の方式でもよい。さらに、磁気軸受
用の磁極数は4個に限らず、3個以上であれば何個でも
よい。モータ及び軸受用磁極の祠料は珪素鋼板に限定さ
れるものではなく、種々の祠料が使用可能である。さら
にまた、磁気軸受の制御はフィ1 ドパツク制御に限らず、フィードフォワード制御を併用
することもできる。
For example, it is also possible to arrange the motor magnetic poles on the outer circumference of the rotor and the bearing magnetic poles on the inner circumference of the rotor. The motor type is not limited to the squirrel-cage induction motor, and any type of non-contact type motor may be used, such as other types of induction motors or synchronous motors. Further, the magnetic bearing type is not limited to the DC attraction type, but may be other types such as the AC repulsion type. Further, the number of magnetic poles for the magnetic bearing is not limited to four, but may be any number as long as it is three or more. The abrasive material for the motor and bearing magnetic poles is not limited to silicon steel plates, and various abrasive materials can be used. Furthermore, the control of the magnetic bearing is not limited to feedpack control, but feedforward control can also be used in combination.

[発明の効果] 本発明に係る回転体の駆動支持機構は、以上説明した如
く、回転磁界とラジアル方向への浮上のための磁界とが
干渉しないような磁極配置構造をとったため、モータ一
体型磁気軸受のような磁気干渉や磁気飽和の問題を生じ
ることがなく、適正な制御を通じた回転体に対する安定
的な駆動支持が可能になり、磁界を重畳させるだめの機
構や回路も不要となる効果が得られる。そして、このよ
うに制御の適確性を確保した上でモータ用磁極及び軸受
用磁極を同一スラスト位置に配設し、そのヒさらにラジ
アル軸受用磁極にスラスト軸受機能を兼ねさせることが
できることで、それらの磁極が軸方向に離間して配設さ
れる従来の駆動支持構造に比べて軸方向の短寸化を大巾
に達成でき、モタの振動制御が容易となり、構成部品が
少なくなることによる信頼性向上や軽量化促進の効果等
も有効に果たし得るものとなる。
[Effects of the Invention] As explained above, the drive support mechanism for a rotating body according to the present invention has a magnetic pole arrangement structure that prevents interference between the rotating magnetic field and the magnetic field for levitation in the radial direction. It does not cause the problems of magnetic interference and magnetic saturation that occur with magnetic bearings, enables stable drive support for rotating bodies through proper control, and eliminates the need for mechanisms and circuits to superimpose magnetic fields. is obtained. In this way, after ensuring the accuracy of control, the motor magnetic pole and the bearing magnetic pole can be arranged at the same thrust position, and furthermore, the radial bearing magnetic pole can also serve as a thrust bearing function. Compared to the conventional drive support structure in which the magnetic poles are spaced apart in the axial direction, it is possible to achieve a much shorter axial dimension, making it easier to control vibration of the motor, and increasing reliability due to fewer component parts. It is also possible to effectively achieve the effects of improving properties and promoting weight reduction.

2

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明の一実施例を示し、第1図は概
略的な構成を示す断面図、第2図は第1図における■−
■線断面図、第3図は作用を説明するための第2図に対
応する断面図、第4図〜第6図は作用を説明するための
第1図の部分拡大図である。第7図は従来例を示す第1
図相当の断面図である。 2・・・ロータ      2a・・・ロータ内周2b
・・・ロータ外周   2c・・・突部3・・・モータ
用磁極 5・・・ラジアル軸受用磁極 Hl、H2・・・磁界
1 to 6 show one embodiment of the present invention, FIG. 1 is a sectional view showing a schematic configuration, and FIG. 2 is a
3 is a sectional view corresponding to FIG. 2 for explaining the operation, and FIGS. 4 to 6 are partially enlarged views of FIG. 1 for explaining the operation. Figure 7 shows the first example of a conventional example.
It is a sectional view corresponding to the figure. 2... Rotor 2a... Rotor inner circumference 2b
...Rotor outer circumference 2c...Protrusion 3...Magnetic pole for motor 5...Magnetic pole for radial bearing Hl, H2...Magnetic field

Claims (1)

【特許請求の範囲】[Claims] 筒状ロータと、このロータを回転させるための磁界を発
生させるモータ用磁極と、前記ロータを半径方向に磁気
浮上させるための磁界を発生させるラジアル軸受用磁極
とを具備してなり、同一スラスト位置において一方の磁
極をロータ内周に配設し他方の磁極をロータ外周に配設
するとともに、ラジアル軸受用磁極と対面するロータ表
面に突部を周設したことを特徴とする回転体の駆動支持
機構。
It is equipped with a cylindrical rotor, a motor magnetic pole that generates a magnetic field to rotate the rotor, and a radial bearing magnetic pole that generates a magnetic field to magnetically levitate the rotor in the radial direction, and has the same thrust position. A drive support for a rotating body, characterized in that one magnetic pole is arranged on the inner circumference of the rotor, the other magnetic pole is arranged on the outer circumference of the rotor, and a protrusion is provided around the rotor surface facing the magnetic pole for radial bearing. mechanism.
JP2082096A 1990-03-29 1990-03-29 Driving supporting mechanism for rotor Pending JPH03284139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2082096A JPH03284139A (en) 1990-03-29 1990-03-29 Driving supporting mechanism for rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2082096A JPH03284139A (en) 1990-03-29 1990-03-29 Driving supporting mechanism for rotor

Publications (1)

Publication Number Publication Date
JPH03284139A true JPH03284139A (en) 1991-12-13

Family

ID=13764892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2082096A Pending JPH03284139A (en) 1990-03-29 1990-03-29 Driving supporting mechanism for rotor

Country Status (1)

Country Link
JP (1) JPH03284139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
WO2020075700A1 (en) * 2018-10-12 2020-04-16 コマツNtc株式会社 Main spindle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514924A (en) * 1992-04-30 1996-05-07 AVCON--Advanced Control Technology, Inc. Magnetic bearing providing radial and axial load support for a shaft
WO2020075700A1 (en) * 2018-10-12 2020-04-16 コマツNtc株式会社 Main spindle device
JP2020059101A (en) * 2018-10-12 2020-04-16 コマツNtc株式会社 Main spindle device

Similar Documents

Publication Publication Date Title
US6707200B2 (en) Integrated magnetic bearing
US8796894B2 (en) Combination radial/axial electromagnetic actuator
US5703423A (en) Energy storage flywheel system
US20030057784A1 (en) Magnetically levitated motor and magnetic bearing apparatus
US20100127589A1 (en) Bearing device having a shaft which is mounted magnetically such that it can rotate about an axis with respect to a stator, and having a damping apparatus
EP0876702A4 (en) Integrated magnetic levitation and rotation system
US7847453B2 (en) Bearingless step motor
JP3678517B2 (en) Radial force generator, coiled rotating machine, and rotating device
JP2001190045A (en) Magnetically levitated motor
Sugimoto et al. A vibration reduction method of one-axis actively position regulated single-drive bearingless motor with repulsive passive magnetic bearings
JP2860398B2 (en) Axial magnetic levitation rotating motor and rotating device using the same
JPH03107615A (en) Magnetic bearing
JPH0332338A (en) Magnetic bearing formed integrally with motor
JP3710547B2 (en) Disk type magnetic levitation rotating machine
JPH03284139A (en) Driving supporting mechanism for rotor
JPH10136622A (en) Homopolar reluctance motor
JPH03255221A (en) Drive supporting mechanism of rotating body
JP3930834B2 (en) Axial type magnetic levitation rotating equipment and centrifugal pump
JP2001041237A (en) Magnetic bearing device
Ueno et al. A novel design of a Lorentz-force-type small self-bearing motor
JPS6399742A (en) Magnetic bearing integrating type motor
JP2003339136A (en) Annular type motor
JPH03284138A (en) Driving supporting mechanism for rotor
JPH09269007A (en) Passive magnetic bearing
JPS5854285B2 (en) Five-axis controlled magnetic bearing