JPH0328393B2 - - Google Patents

Info

Publication number
JPH0328393B2
JPH0328393B2 JP59069554A JP6955484A JPH0328393B2 JP H0328393 B2 JPH0328393 B2 JP H0328393B2 JP 59069554 A JP59069554 A JP 59069554A JP 6955484 A JP6955484 A JP 6955484A JP H0328393 B2 JPH0328393 B2 JP H0328393B2
Authority
JP
Japan
Prior art keywords
mold
ceramic
whiskers
alumina
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59069554A
Other languages
Japanese (ja)
Other versions
JPS60215566A (en
Inventor
Tadashi Kawabe
Minoru Tanaka
Kazuhisa Niwano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tateho Chemical Industries Co Ltd
Original Assignee
Tateho Chemical Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tateho Chemical Industries Co Ltd filed Critical Tateho Chemical Industries Co Ltd
Priority to JP6955484A priority Critical patent/JPS60215566A/en
Publication of JPS60215566A publication Critical patent/JPS60215566A/en
Publication of JPH0328393B2 publication Critical patent/JPH0328393B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非鉄金属用の鋳型材料に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to mold materials for non-ferrous metals.

(従来技術) 従来、例えば、鋳物の製造における鋳型の材質
は、鋳込む金属が、鉄、非鉄金属にかかわらず製
品および作業性に対して多大な影響をもたらすこ
とから、永年にわたつて研究されてきた。
(Prior art) Conventionally, for example, the material of the mold used in the manufacture of castings has been studied for many years because it has a great effect on the product and workability, regardless of whether the metal being cast is ferrous or non-ferrous. It's here.

この分野において、これまでに、耐火断熱材
料、一般セラミツクス等の接着剤、成形剤、充填
剤として用いられる、セラミツクフアイバーとコ
ロイド水分散液からなるセラミツクフアイバー調
合物(特開昭48−79815号)、 主に自動車の排気ガス浄化装置用セラミツク繊
維質断熱材として用いられる、セラミツク繊維と
無機質コロイド性結合材からなる断熱用セラミツ
ク繊維成形体(特開昭51−63812号)、及び窒化珪
素ウイスカーを主成分とした耐熱タイル(特開昭
59−35081号)等が提案されている。
In this field, ceramic fiber compositions consisting of ceramic fibers and colloidal aqueous dispersions have been developed (Japanese Patent Application Laid-Open No. 79815/1983), which are used as fireproof insulation materials, adhesives, molding agents, and fillers for general ceramics, etc. , a heat-insulating ceramic fiber molded body made of ceramic fibers and an inorganic colloidal binder (Japanese Patent Application Laid-open No. 1983-63812), which is mainly used as a ceramic fiber heat insulating material for automobile exhaust gas purification devices, and silicon nitride whiskers. Heat-resistant tile as the main ingredient (JP-A-Sho
59-35081) etc. have been proposed.

これら従来技術は、いずれも断熱効果もしくは
それに付随する効果しか期待できず、とりわけ耐
熱衝撃性ならびに酸腐食等に対する耐蝕性に関し
ては何らかの改善索も提案されていなかつた。
In all of these conventional techniques, only a heat insulation effect or an effect associated therewith can be expected, and no improvement has been proposed in particular with respect to thermal shock resistance and corrosion resistance against acid corrosion and the like.

(発明が解決しようとする問題点) しかしながら、これまで、鋳型の材質は鋳物砂
なる名称が一般的であるごとく、珪砂が主成分の
ものであり、研究内容は砂自体の組成、砂の粒
度、珪砂の硬化剤、硬化方法などが研究の主題で
あつた。
(Problem to be solved by the invention) However, up until now, the main component of the material for molds has been silica sand, as generally referred to as foundry sand, and the research has focused on the composition of the sand itself, the grain size of the sand, etc. Research topics included hardening agents and hardening methods for silica sand.

鋳型に要求される点は(a)成形性と強度、(b)耐火
性、(c)通気性、(d)保温性、(e)可縮性、(f)型寿命で
あり、特に鋳型の生産性向上の観点からは反復使
用が可能であることが望まれる。
The requirements for molds are (a) formability and strength, (b) fire resistance, (c) air permeability, (d) heat retention, (e) shrinkability, and (f) mold life. From the perspective of improving productivity, it is desirable that the product be able to be used repeatedly.

この型寿命は連続鋳型、精密鋳造に加えてロボ
ツトなどによる省力化(無人化鋳造)が進むにつ
れて反復使用性の高いものの要望が強まつてきて
いる。
With the advancement of continuous molding, precision casting, and labor-saving technologies such as robots (unmanned casting), the demand for molds with high repeatability is increasing.

このような型寿命が長い鋳型は永久型、または
耐久型という名称で呼ばれるものである。
A mold with such a long mold life is called a permanent mold or a durable mold.

これら型材として金属もしくはセラミツクによ
つて検討されており、使用回数200〜300回の報告
があるものの、型の亀裂、縁欠けなど強度に起因
する物理的な欠陥のほか、溶着すくわれなど型材
と反応して離型しにくいなど化学的な欠陥も解消
されていないのが現状である。
Metals or ceramics are being considered for these mold materials, and although there are reports that they have been used 200 to 300 times, in addition to physical defects due to strength such as cracks in the mold and chipped edges, there are also problems with the mold materials such as welding and welding. At present, chemical defects such as reaction and difficulty in releasing from the mold have not been resolved.

(問題点を解決するための手段) 本発明は上述の点に鑑み、発明されたものであ
つて、前述の(a)〜(f)の事項についてすべて満足し
た鋳型材料を提供するとともに、アルミニウム合
金、銅合金などの非鉄金属工業における溶油ルツ
ボ、溶油ポンプリング、低圧鋳造用ストーク、溶
解炉の油道構成用のレンガに使用しうる非鉄金属
用鋳型材料を提供しようというものである。
(Means for solving the problems) The present invention was invented in view of the above points, and provides a mold material that satisfies all of the above-mentioned items (a) to (f). The present invention aims to provide a molding material for non-ferrous metals that can be used for oil crucibles, oil pump rings, low-pressure casting stalks, and bricks for forming oil channels in melting furnaces in the non-ferrous metal industry such as alloys and copper alloys.

以下、本発明の構成について説明する。 The configuration of the present invention will be explained below.

すなわち、本発明の構成要旨とするところはガ
ラス質、ムライト質、アルミナ質、チタン酸カリ
ウム質等のセラミツク繊維、あるいはセラミツク
ウール等を細断して得られるセラミツク短繊維の
うち1種もしくは2種以上、及び窒化珪素、炭化
珪素、アルミナなどのセラミツクウイスカーと成
形バインダーが配合されたことを特徴とする非鉄
金属用鋳型材料である。
That is, the gist of the present invention is to use one or two types of ceramic fibers such as glass, mullite, alumina, and potassium titanate, or ceramic short fibers obtained by shredding ceramic wool. This is a mold material for non-ferrous metals, which is characterized in that it contains ceramic whiskers such as silicon nitride, silicon carbide, alumina, etc., and a molding binder.

以下に、本発明の型材の場合を例として具体的
に説明する。
The case of the mold material of the present invention will be specifically explained below as an example.

本発明による鋳型材は、特別な場合を除き、原
則として鋳物砂を主材料としていないことを特徴
としている。
The molding material according to the present invention is characterized in that, in principle, it does not contain foundry sand as its main material, except in special cases.

従来、鋳型に砂を用いることは先に述べた鋳型
の条件(c)通気性を保持せしめるためであり、この
通気性によつて(d)保温性も具備されるわけである
が、本発明ではこの鋳物砂が作り出すこの二つの
特性はセラミツク短繊維を用いることによつて満
足される。鋳型の(e)可縮性はセラミツク短繊維の
質と量との選定によつて達成されるし、(a)成型性
と強度はむしろ鋳物砂使用の場合よりもはるかに
広範囲の成形バインダーの選定が可能であり、こ
れによつて(b)耐火性と(f)型寿命をも具現すること
ができる。
Conventionally, sand is used in the mold to maintain the mold condition (c) air permeability mentioned above, and this air permeability also provides (d) heat retention, but the present invention These two properties produced by this foundry sand can be satisfied by using ceramic short fibers. (e) Contractibility of the mold is achieved by selecting the quality and quantity of ceramic short fibers, and (a) moldability and strength are achieved by selecting a much wider range of molding binders than when using foundry sand. This makes it possible to achieve (b) fire resistance and (f) type life.

型寿命は鋳型の強度と熱衝撃抵抗、湯との反応
がないこと、及び容易に離型することの三つの要
件によつて左右されるものであるが、本発明にお
いて使用するセラミツク短繊維はこれら三つの要
件すべてを満足し、最適である。
The lifespan of a mold is determined by three requirements: strength and thermal shock resistance of the mold, no reaction with hot water, and easy release from the mold.The ceramic short fibers used in the present invention It satisfies all three requirements and is optimal.

本発明において使用するセラミツク短繊維の種
類の選定については、適用する金属の種類によつ
て定まるが、G.A.Yasinskaya(Ornoupory、
Vol.30、p.20(1965))、及びJ.F.Collnsら(J.
Metals、7、612(1955))の報告にあるごとく、
特に非鉄金属に対しては酸化物に比べて、窒化
物、炭化物のセラミツク短繊維の方が耐蝕性に優
れているものが多いようである。
The selection of the type of ceramic short fiber used in the present invention is determined by the type of metal to be applied, but it is determined by the type of metal used.
Vol. 30, p. 20 (1965)) and JFColns et al. (J.
As reported in Metals, 7, 612 (1955),
Especially for non-ferrous metals, nitride and carbide ceramic short fibers seem to have better corrosion resistance than oxides.

特に、この両者の報告では窒化珪素はアルミニ
ウム、銅、鉛、錫、亜鉛に対して、高温において
も浸食されないことが実証されている。しかし、
窒化珪素はフアインセラミツクスの分野で多くの
研究者がその焼結に苦しんでいる現状からみて窒
化珪素を焼結して鋳造用の型材などに応用するこ
とはほとんど行われていない。
In particular, both reports demonstrate that silicon nitride does not corrode aluminum, copper, lead, tin, and zinc even at high temperatures. but,
Many researchers in the field of fine ceramics are having trouble sintering silicon nitride, and as a result, sintering silicon nitride and applying it to mold materials for casting, etc., is rarely done.

本発明は特に、窒化珪素をウイスカーとして使
用することで型材をはじめ非鉄金属用の鋳型材料
としての応用に現実性を与えたものである。
In particular, the present invention makes it practical to apply silicon nitride as a mold material for non-ferrous metals, including mold materials, by using silicon nitride as a whisker.

窒化珪素ウイスカーとしては、本願出願人の出
願にかかる特開昭57−196711号、特開昭57−
200299号、及び特開昭58−172298号に記載のウイ
スカーを使用することが望ましく、炭化珪素ウイ
スカーとしては、同じく本願出願人の出願にかか
る特開昭58−20799号、及び特開昭58−213698号
に記載のウイスカーを使用するのが望ましい。
As silicon nitride whiskers, Japanese Patent Application Laid-open No. 196711 filed by the applicant of the present application and Japanese Patent Application Laid-Open No. 57-1967-
It is preferable to use the whiskers described in JP-A-58-20799 and JP-A-58-172298, which are also filed by the present applicant. Preferably, the whiskers described in No. 213698 are used.

また、本発明で使用する成形バインダーとして
は、木節粘土、ベントナイトなどの粘土類、パル
プ廃液(リグニンスルホン酸)、油類、樹脂類な
どの有機質結合材、セメント、石膏、水ガラス−
炭酸ガスなども応用できるが、アルミナセメン
ト、燐酸アルミニウム、乳酸アルミニウムなどの
アルミニウム塩が成形性ならびに強度の点で特に
好ましい。
In addition, the molding binders used in the present invention include clays such as Kibushi clay and bentonite, organic binders such as pulp waste liquid (lignin sulfonic acid), oils, and resins, cement, gypsum, and water glass.
Carbon dioxide gas can also be used, but aluminum salts such as alumina cement, aluminum phosphate, and aluminum lactate are particularly preferred in terms of formability and strength.

(実施例) 実施例 1 シリカ−アルミナ系のセラミツクフアイバー
(Al2O347.3%、SiO252.3%、比重2.6g/cm3、融
点1760℃、繊維径平均2.5μm)50重量部、窒化珪
素ウイスカー(α−Si3N4、直径0.5〜1.0μm、長
さ50〜100μm)50重量部を秤量し、エタノール
中で超音波振動撹拌を加えて混合し、乾燥してエ
タノールを揮発させた。この乾燥混合物95重量部
に対し、成形バインダーとして塩基性乳酸アルミ
ニウム(Al2O332.5%、乳酸50%)を5重量部加
え、少量の水を加えて撹拌し、石膏型に手押しし
て鋳型を成形した。そして、乾燥後、空気中で、
温度1300℃で、3時間焼成した。
(Example) Example 1 50 parts by weight of silica-alumina ceramic fiber (Al 2 O 3 47.3%, SiO 2 52.3%, specific gravity 2.6 g/cm 3 , melting point 1760°C, average fiber diameter 2.5 μm), silicon nitride Fifty parts by weight of whiskers (α-Si 3 N 4 , diameter 0.5 to 1.0 μm, length 50 to 100 μm) were weighed, mixed in ethanol with ultrasonic vibration stirring, and dried to volatilize the ethanol. To 95 parts by weight of this dry mixture, 5 parts by weight of basic aluminum lactate (32.5% Al 2 O 3 , 50% lactic acid) was added as a molding binder, a small amount of water was added, the mixture was stirred, and the mold was pressed by hand into a plaster mold. was molded. After drying, in the air,
It was baked at a temperature of 1300°C for 3 hours.

焼成後、得られた焼成物の物性は、カサ比重
0.44、圧縮強度12.46Kg/cm2、焼成収縮率0.3%で
あつた。
After firing, the physical properties of the obtained fired product are bulk specific gravity.
0.44, compressive strength was 12.46 Kg/cm 2 , and firing shrinkage was 0.3%.

この鋳型にアルミニウム溶湯の注入、硬化、離
型を100回繰り返したところ、型にはほとんど損
傷はみられず、しかもアルミニウムの溶着は皆無
に近かつた。
After pouring molten aluminum into the mold, curing it, and releasing it 100 times, there was almost no damage to the mold and almost no aluminum welding.

比較例 1 アルミナ粉末のみを原料として95重量部、成形
バインダーとして塩基性乳酸アルミニウム5重量
部を使用し、実施例1と同様に鋳型を作成した。
Comparative Example 1 A mold was prepared in the same manner as in Example 1 using 95 parts by weight of alumina powder alone as a raw material and 5 parts by weight of basic aluminum lactate as a molding binder.

この場合、アルミニウム溶湯の注入、離型の繰
り返し回数14回で亀裂が入り、15回以後は亀裂中
に溶湯が侵入して亀裂が拡大し20回くらいで使用
不可の状態となり、型表面にアルミニウム溶湯と
の反応と溶着が認められた。
In this case, a crack appeared after 14 repetitions of pouring molten aluminum and releasing the mold, and after 15 times, the molten metal penetrated into the crack and the crack expanded, and after about 20 times, the mold became unusable, and the surface of the mold was covered with aluminum. Reaction with molten metal and welding were observed.

比較例 2 セラミツクフアイバーだけを95重量部、成形バ
インダーその他の実施例1と同様にして鋳型を作
つた。得られた鋳型の物性はカサ比重0.47、圧縮
強度4.6Kg/cm2、曲げ強度4.2Kg/cm2、焼成収縮率
4.7%であり、アルミニウム注入鋳造テストでは、
45回で溶湯との反応が認められ、使用限界となつ
た。
Comparative Example 2 A mold was made in the same manner as in Example 1 except for using 95 parts by weight of ceramic fiber and a molding binder. The physical properties of the obtained mold were: bulk specific gravity 0.47, compressive strength 4.6Kg/cm 2 , bending strength 4.2Kg/cm 2 , and firing shrinkage.
4.7% and in aluminum injection casting test,
Reaction with molten metal was observed after 45 cycles, reaching the limit of use.

実施例 2 実施例1と同じ窒化珪素ウイスカー45重量部、
アルミナ質フアイバー(市販商品名サフイル、
Al2O395%、SiO25%、繊維径平均3μm)10重量
部、アルミナセメント22.5重量部、塩基性乳酸ア
ルミニウム22.5重量部を用い、実施例1に準じて
鋳型を作成した。但し、焼成温度は1200℃、焼成
時間は2時間とした。この焼成物の物性はカサ比
重0.57、圧縮強度20.6Kg/cm2、曲げ強度17.5Kg/
cm2、焼成収縮率0.1%であつた。
Example 2 45 parts by weight of silicon nitride whiskers as in Example 1,
Alumina fiber (commercial product name: Safil,
A mold was prepared according to Example 1 using 10 parts by weight of 95% Al 2 O 3 , 5% SiO 2 , average fiber diameter 3 μm), 22.5 parts by weight of alumina cement, and 22.5 parts by weight of basic aluminum lactate. However, the firing temperature was 1200°C and the firing time was 2 hours. The physical properties of this fired product are bulk specific gravity 0.57, compressive strength 20.6Kg/cm 2 , and bending strength 17.5Kg/cm 2 .
cm 2 , and the firing shrinkage rate was 0.1%.

アルミニウム溶湯鋳造試験300回を経てもなん
らの損傷を認められず、溶着もほとんど皆無であ
つた。
No damage was observed even after 300 molten aluminum casting tests, and there was almost no welding.

実施例 3 炭化珪素ウイスカー(β−SiC、直径0.5μm、
長さ40〜70μm)30重量部、実施例1と同様の窒
化珪素ウイスカー30重量部、実施例2のアルミナ
フアイバー30重量部に対し、塩化マグネシウム
(MgCl2・6H2O)5重量部、ポリ塩化アルミニウ
ム(Al2(OH)5Cl・2.2H2O)5重量部により実施
例1と同様にして鋳型を作つた。但し、焼成温度
は1200℃、焼成時間は2時間とした。この焼成物
の物性はカサ比重0.71、曲げ強度17.0Kg/cm2であ
つた。
Example 3 Silicon carbide whiskers (β-SiC, diameter 0.5 μm,
30 parts by weight of the same silicon nitride whiskers as in Example 1, 30 parts by weight of the alumina fibers of Example 2, 5 parts by weight of magnesium chloride (MgCl 2 6H 2 O), A mold was made in the same manner as in Example 1 using 5 parts by weight of aluminum chloride (Al 2 (OH) 5 Cl.2.2H 2 O). However, the firing temperature was 1200°C and the firing time was 2 hours. The physical properties of this fired product were a bulk specific gravity of 0.71 and a bending strength of 17.0 Kg/cm 2 .

アルミニウム溶湯鋳造試験300回で以上は認め
られなかつた。
No results were observed in 300 molten aluminum casting tests.

実施例 4 窒化珪素ウイスカー95重量部、ポリカルボシラ
ン20%のトルエン溶液5重量部を加えて混合し、
プレス成形した後、揮発分を除去して硬化体を得
た。温度1200℃、窒化ガス雰囲気下で1時間、焼
成したものは次のような物性を示した。
Example 4 95 parts by weight of silicon nitride whiskers and 5 parts by weight of a toluene solution of 20% polycarbosilane were added and mixed,
After press molding, volatile components were removed to obtain a cured product. The material baked at a temperature of 1200°C for 1 hour in a nitriding gas atmosphere exhibited the following physical properties.

主α−Si3N4、カサ比重0.66、曲げ強度13.0
Kg/cm2、熱伝導率0.32Kcal/mh℃(20℃)、熱
膨張率0.33(1000℃)。
Main α-Si 3 N 4 , bulk specific gravity 0.66, bending strength 13.0
Kg/cm 2 , thermal conductivity 0.32Kcal/mh℃ (20℃), thermal expansion coefficient 0.33 (1000℃).

耐熱衝撃性は1000℃から水中投入を20回繰り返
して亀裂などの破損はなく、これ以上の回数に耐
えることは明らかである。
As for thermal shock resistance, there was no cracking or other damage after being immersed in water at 1000°C 20 times, and it is clear that it can withstand many more cycles.

耐蝕性は濃塩酸、硝酸、硫酸、及び燐酸の中に
500時間入れて煮沸するも何らの浸食も認められ
なかつた。
Corrosion resistance in concentrated hydrochloric acid, nitric acid, sulfuric acid, and phosphoric acid
Even after boiling for 500 hours, no corrosion was observed.

ルツボ形状として、この中にアルミニウムの溶
湯を入れて700℃に1000時間保持した後、アルミ
ニウムを流し出したが、ルツボ内に異常は認めら
れなかつた。
Molten aluminum was poured into the crucible, held at 700°C for 1000 hours, and then the aluminum was poured out, but no abnormalities were observed inside the crucible.

(効果) このように、本発明の材料によれば、材料中に
配合された素材間の相互作用により、耐蝕性、耐
火性、ならびに断熱性の良好な材料を提供するも
のである。
(Effects) As described above, the material of the present invention provides a material with good corrosion resistance, fire resistance, and heat insulation properties due to the interaction between the materials blended in the material.

また、本発明の材料にセラミツク短繊維を導入
したことにより、鋳型に通気性、及び保温性を具
備せしめ、さらに導入するセラミツク短繊維の質
と量を調整することにより、可縮性と優れた成形
性と強度を備えた鋳型を実現するものである。
In addition, by introducing ceramic short fibers into the material of the present invention, the mold has breathability and heat retention, and by adjusting the quality and quantity of the ceramic short fibers introduced, it has excellent shrinkability and heat retention. This creates a mold with good formability and strength.

さらに、窒化珪素ウイスカーを少量でも材料に
混在することにより、特に耐熱衝撃性、耐蝕性の
点において、従来の断熱材にはみられない優れた
特性を発揮するところの、広く非鉄金属生産現場
で使用・応用が可能な材料を提供するものであ
る。
Furthermore, by incorporating even a small amount of silicon nitride whiskers into the material, it exhibits excellent properties not found in conventional insulation materials, especially in terms of thermal shock resistance and corrosion resistance, and is widely used in nonferrous metal production sites. It provides materials that can be used and applied.

Claims (1)

【特許請求の範囲】 1 ガラス質、ムライト質、アルミナ質、チタン
酸カリウム質などのセラミツク繊維、あるいはセ
ラミツクウール等を細断して得られるセラミツク
短繊維のうち1種もしくは2種以上、及び窒化珪
素、炭化珪素、アルミナ等のセラミツクウイスカ
ーが成形バインダーと配合されたことを特徴とす
る非鉄金属用鋳型材料。 2 前記セラミツクウイスカーが、窒化珪素ウイ
スカーであることを特徴とする特許請求の範囲第
1項に記載の非鉄金属用鋳型材料。 3 前記成形バインダーが、アルミナセメント、
アルミニウム塩のいずれか、または両者の混合物
が用いられることを特徴とする特許請求の範囲第
1項に記載の非鉄金属用鋳型材料。
[Scope of Claims] 1. One or more types of ceramic fibers such as glass, mullite, alumina, and potassium titanate, or ceramic short fibers obtained by shredding ceramic wool, etc., and nitrided ceramic fibers. A molding material for non-ferrous metals, characterized in that ceramic whiskers such as silicon, silicon carbide, and alumina are blended with a molding binder. 2. The mold material for non-ferrous metals according to claim 1, wherein the ceramic whiskers are silicon nitride whiskers. 3 The molded binder is alumina cement,
The mold material for non-ferrous metals according to claim 1, characterized in that one of aluminum salts or a mixture of both is used.
JP6955484A 1984-04-06 1984-04-06 Anticorrosive refractory heat-insulating material for non-ferrous metals Granted JPS60215566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6955484A JPS60215566A (en) 1984-04-06 1984-04-06 Anticorrosive refractory heat-insulating material for non-ferrous metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6955484A JPS60215566A (en) 1984-04-06 1984-04-06 Anticorrosive refractory heat-insulating material for non-ferrous metals

Publications (2)

Publication Number Publication Date
JPS60215566A JPS60215566A (en) 1985-10-28
JPH0328393B2 true JPH0328393B2 (en) 1991-04-18

Family

ID=13406069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6955484A Granted JPS60215566A (en) 1984-04-06 1984-04-06 Anticorrosive refractory heat-insulating material for non-ferrous metals

Country Status (1)

Country Link
JP (1) JPS60215566A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149039A (en) * 1986-12-12 1988-06-21 Taisei Shika Kogyo Kk Molding material
US5014763A (en) * 1988-11-30 1991-05-14 Howmet Corporation Method of making ceramic cores
JPH07115143B2 (en) * 1989-05-29 1995-12-13 株式会社クボタ Mold coating agent for centrifugal casting
JP7300921B2 (en) * 2019-07-25 2023-06-30 株式会社巴川製紙所 sheet for casting

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879815A (en) * 1972-01-29 1973-10-26
JPS5163812A (en) * 1974-11-30 1976-06-02 Toyota Motor Co Ltd DANNETSUYOSERAMITSUKUSENISEIKEITAI
JPS5935081A (en) * 1982-08-17 1984-02-25 太陽ケミカル株式会社 Super high temperature heat resistant tile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4879815A (en) * 1972-01-29 1973-10-26
JPS5163812A (en) * 1974-11-30 1976-06-02 Toyota Motor Co Ltd DANNETSUYOSERAMITSUKUSENISEIKEITAI
JPS5935081A (en) * 1982-08-17 1984-02-25 太陽ケミカル株式会社 Super high temperature heat resistant tile

Also Published As

Publication number Publication date
JPS60215566A (en) 1985-10-28

Similar Documents

Publication Publication Date Title
US4277539A (en) Refractory articles and composite metal-ceramic articles (cermets) prepared from a silicate-containing aluminum titanate
JP5453319B2 (en) Silicon carbide sintered refractory material containing silicon nitride binder
JP4658068B2 (en) Method for suppressing reaction between molten metal and heat-resistant material
JPS62265151A (en) Forming material
US4343989A (en) Magnesium oxide based heat storage device
JP2008081360A (en) Monolithic refractory molding material and monolithic refractory molded product
US5206191A (en) Method of producing refractory materials and their applications in the casting of corrosive alloys
JPH0328393B2 (en)
JPS6348828B2 (en)
JP2006514912A (en) Silicon carbide ceramic member having an oxide layer
JP2000119070A (en) Castable refractory and refractory brick using the same
JP2008247720A (en) Monolithic refractory forming material and monolithic refractory formed body
US3269849A (en) Fibrous refractory
JP2002519302A (en) Molding material for producing refractory lining and fired molded member, lining, and method for producing molded member
JP7034981B2 (en) Insulation material, its manufacturing method, and composition
JP2002274959A (en) Refractory material for aluminum and aluminum alloy
US4404292A (en) Refractory material intended especially for contacting molten aluminum and process for its manufacture
JPH0243701B2 (en)
JP4795754B2 (en) High thermal shock-resistant ceramic composite and manufacturing method thereof
JP2607963B2 (en) Pouring refractories
JP3944871B2 (en) Carbon-containing ceramic sintered body
JP4704263B2 (en) Amorphous refractory molding material and Amorphous refractory molding
RU2659104C1 (en) Method for repairing heat unit
JPH0699190B2 (en) Carbon-containing ceramic composite for non-ferrous molten metal
JPS63129065A (en) Ceramic burnt body