JPH03282101A - Steam generating device - Google Patents

Steam generating device

Info

Publication number
JPH03282101A
JPH03282101A JP8450590A JP8450590A JPH03282101A JP H03282101 A JPH03282101 A JP H03282101A JP 8450590 A JP8450590 A JP 8450590A JP 8450590 A JP8450590 A JP 8450590A JP H03282101 A JPH03282101 A JP H03282101A
Authority
JP
Japan
Prior art keywords
heat
heat storage
heat transfer
steam
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8450590A
Other languages
Japanese (ja)
Other versions
JP3153867B2 (en
Inventor
Tetsuyoshi Ishida
哲義 石田
Koujirou Yamada
山田 紘二郎
Ikuo Kotaka
高鷹 生男
Tadayuki Fujiwara
忠幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP08450590A priority Critical patent/JP3153867B2/en
Publication of JPH03282101A publication Critical patent/JPH03282101A/en
Application granted granted Critical
Publication of JP3153867B2 publication Critical patent/JP3153867B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a steam generating device which is suitable when the consumption of steam largely varies by filling a heat medium in liquid phase in the air layers which are generated among a heat accumulating material, heater, and heat transfer pipe. CONSTITUTION:A subject device is mainly constituted of a heat accumulating layer 11 and an expansion tank 18. In the heat accumulating layer 11 an electric heater 14 and a heat transfer pipe 13 are installed, and a magnesia first matter, and a mixture of sodium nitrate, sodium nitrite, and potassium nitrate (HITEC) or a mixture of sodium nitrate and potassium nitrate (Draw Salt) as a heat medium second matter which is liquid at the heat accumulation temperature are filled. The weight ratio of sodium nitrate, sodium nitrite, and potassium nitrate which constitute HITEC is 6.9%, 48.9%, 44.2% or ratio values near them, and they are in stable liquid state in the range of 142 deg.C- about 600 deg.C, and they fill the air spaces among the heat accumulating material and the heater and the heat transfer pipe so that the heat accumulating material is excellent in heat transfer and it meets the use such as sterilization, etc., which are intermittent or concentrated. The DRAW-SALT also has the temperature characteristics which are the same as HITEC.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、蒸気使用量が大きく変動する場合に好適な蒸
気発生装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a steam generator suitable for use when the amount of steam used varies greatly.

〔従来の技術〕[Conventional technology]

蒸気は、一般にボイラを使用し、化石燃料の燃焼、又は
電力によって水を加熱することによって、発生されてい
る。この蒸気は、加熱用、暖房用、殺菌用、洗浄用等に
利用される。
Steam is commonly generated using boilers, either by burning fossil fuels or by heating water with electricity. This steam is used for heating, space heating, sterilization, cleaning, etc.

しかし、ボイラで代表される従来の蒸気発生装置は、蒸
気使用量が時間的に大きく変動するような運転方法につ
いては、配慮がされておらず、このような場合は、第8
図に示すような蒸気アキュムレータ52の追設が必要で
あった。このため、従来の蒸気発生装置は、大きさおよ
び価格の点で経済的な装置となっていなかった。特に、
殺菌用又は洗浄用の蒸気使用の場合は、極端な間歇的、
集中的な蒸気使用となっており、従来の蒸気発生装置で
は、特に経済的に問題があった。
However, conventional steam generators, such as boilers, do not take into account operating methods where the amount of steam used fluctuates greatly over time, and in such cases, the
It was necessary to additionally install a steam accumulator 52 as shown in the figure. For this reason, conventional steam generators have not been economical in terms of size and price. especially,
When using steam for sterilization or cleaning, extremely intermittent
The use of steam is intensive, and conventional steam generators are particularly economically problematic.

たとえば、130℃〜150℃で数十秒間加熱するよう
な食品の殺菌、数分間加熱すような食品容器や試験用サ
ンプリング容器等の殺菌に蒸気を使用するような短期間
の蒸気使用においては、特に、大容量の蒸気アキュムレ
ータ52を設置することとなり、消費蒸気量に対して大
がかりな装置となっていた。また、第8図において蒸気
57の供給を行わない時間も蒸気アキュムレータ52へ
蒸気56を供給する必要からボイラ51を運転する必要
があった。この蒸気アキュムレータ52内は高温高圧の
温水・蒸気を保有する必要がら、運転操作においては安
全上についても十分注意を払う必要があった。
For example, when using steam for a short period of time, such as sterilizing food by heating it at 130°C to 150°C for several tens of seconds, or sterilizing food containers or test sampling containers by heating it for several minutes, In particular, a large-capacity steam accumulator 52 has to be installed, resulting in a large-scale device with respect to the amount of steam consumed. Furthermore, in FIG. 8, it was necessary to operate the boiler 51 even when the steam 57 was not being supplied because it was necessary to supply the steam 56 to the steam accumulator 52. Since the steam accumulator 52 needs to contain hot water and steam at high temperature and high pressure, it is necessary to pay sufficient attention to safety during operation.

この問題を解決する手段として、従来においても蓄熱材
を用いてその中に加熱源及び水が導入される伝熱管が配
設された蒸気発生器がある(実願昭63−125986
号)。しかし、この蓄熱材を用いた蒸気発生器は、蓄熱
温度、蓄熱方法、出熱方法が明確でなく、また、十分な
蓄熱及び出熱が行われない欠点があった。例えば、蓄熱
材に代表的なマグネシアを用いたものは、蓄熱時におい
ては、加熱源である電気ヒータで蓄熱材を加熱する際、
該電気ヒータから蓄熱材へ熱が十分な速度で伝わらず、
電気ヒータが焼損する問題が見られた。また、出熱時に
おいて、蓄熱材が十分な高温であっても、蒸気を発生で
きなくなる問題が見られた。その理由は、蓄熱材とヒー
タ及び蓄熱材と伝熱管の間に空気層が生じており、この
空気層によってヒータと蓄熱材の間の熱伝達が低下して
いることによると思われる。
As a means to solve this problem, there is a steam generator that uses a heat storage material and is equipped with a heat transfer tube into which a heating source and water are introduced (Utility Model Application No. 63-125986).
issue). However, the steam generator using this heat storage material has the disadvantage that the heat storage temperature, heat storage method, and heat release method are not clear, and that sufficient heat storage and heat release are not performed. For example, when magnesia is used as a typical heat storage material, during heat storage, when the heat storage material is heated with an electric heater as a heating source,
Heat is not transferred from the electric heater to the heat storage material at a sufficient speed,
There was a problem with the electric heater burning out. Furthermore, there was a problem in which steam could not be generated when heat was released even if the heat storage material was at a sufficiently high temperature. The reason for this is thought to be that an air layer is formed between the heat storage material and the heater and between the heat storage material and the heat transfer tube, and this air layer reduces the heat transfer between the heater and the heat storage material.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術のうち、ボイラで代表される蒸気発生装置
は殺菌用等の蒸気使用量が時間的に太きく変動する使用
に対して十分な配慮がされておらず、このような使用の
蒸気発生装置としては、経済上の問題があった。また蓄
熱材を用いた蒸気発生装置は蓄熱材内の熱移動について
十分な配慮がされておらず、十分な蓄熱・出熱が行われ
ない問題があった。
Among the conventional technologies mentioned above, steam generation devices such as boilers do not have enough consideration for uses where the amount of steam used for sterilization etc. fluctuates greatly over time, and the steam generation equipment for such uses is There was an economic problem with the device. In addition, steam generators using heat storage materials do not give sufficient consideration to heat transfer within the heat storage material, resulting in the problem of insufficient heat storage and heat output.

つまり、従来技術の蒸気発生器は、蒸気使用量が時間的
に大きく変動する殺菌用、洗浄用等の蒸気発生装置には
適しない問題があった。
In other words, the conventional steam generators have a problem that they are not suitable for steam generators for sterilization, cleaning, etc. where the amount of steam used varies greatly over time.

本発明の目的は、蓄熱材とヒータ又は伝熱管と間の熱移
動を促進し、時間的に大きく変動する蒸気使用において
も、十分な蓄熱・出熱が行われる蓄熱材を用いた蒸気発
生装置を提供することにある。
An object of the present invention is to provide a steam generator using a heat storage material that promotes heat transfer between the heat storage material and a heater or heat exchanger tube, and that allows sufficient heat storage and heat output even when using steam that fluctuates greatly over time. Our goal is to provide the following.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、蓄熱材とヒータ及び伝熱管との間に生じる
空気層に、液相の熱媒体を充填させることにより、達成
される。
The above object is achieved by filling the air layer formed between the heat storage material and the heater and heat transfer tube with a liquid phase heat medium.

すなわち、本発明は、蓄熱材を備えた蓄熱槽と、この蓄
熱槽内に配設された加熱源及び液体が導入される伝熱管
と、を備えた蒸気発生装置において、前記蓄熱材は固体
より成る第1物質と蓄熱温度域で液体となる第2物質と
を備えていることを特徴とする蒸気発生装置である。こ
こで、第1物質はマグネシアを主成分とする物質である
のがよい。
That is, the present invention provides a steam generation device including a heat storage tank provided with a heat storage material, and a heat transfer tube into which a heat source and a liquid are introduced arranged in the heat storage tank, in which the heat storage material is more solid than solid. This is a steam generation device characterized by comprising a first substance that becomes liquid in a heat storage temperature range and a second substance that becomes liquid in a heat storage temperature range. Here, the first substance is preferably a substance containing magnesia as a main component.

また、第2物質は硝酸ナトリウム、亜硝酸ナトリウム及
び硝酸カリウムの混合物、又は、硝酸ナトリウム及び硝
酸カリウムの混合物であるのがよい。
Further, the second substance is preferably a mixture of sodium nitrate, sodium nitrite and potassium nitrate, or a mixture of sodium nitrate and potassium nitrate.

前記蒸気発生装置において、蓄熱槽出口側の伝熱管外表
面に伝熱フィンが設けられ、伝熱管の単位長さ当りの伝
熱面積は蓄熱槽出口側が蓄熱槽入口側より大きく形成さ
れているものがよい。また。
In the steam generator, heat transfer fins are provided on the outer surface of the heat transfer tube on the heat storage tank outlet side, and the heat transfer area per unit length of the heat transfer tube is larger on the heat storage tank outlet side than on the heat storage tank inlet side. Good. Also.

伝熱管はCrが14重量%以上、Cが0.03重量%以
下のオーステナイト系ステンレス鋼であるものがよい。
The heat exchanger tube is preferably made of austenitic stainless steel containing 14% by weight or more of Cr and 0.03% by weight or less of C.

また、蓄熱槽入口の伝熱管内部が二重管に形成されてい
るものがよい。
Moreover, it is preferable that the inside of the heat transfer tube at the inlet of the heat storage tank is formed into a double tube.

〔作用〕[Effect]

蓄熱材の構成要素であるマグネシア等から成る第1物質
と電気ヒータ等の加熱源との間、及びこの第1物質と伝
熱管との隙間に生じている空気層に加熱されて液体とな
った熱媒体である第2物質が供給されると、この部分の
熱伝達は、熱媒体が供給されない場合の数倍〜数十倍に
増加する。
It is heated into a liquid by the air layer that is created between the first substance, which is a component of the heat storage material such as magnesia, and a heating source such as an electric heater, and between the first substance and the heat transfer tube. When the second substance, which is a heating medium, is supplied, the heat transfer in this part increases several times to several tens of times as much as when no heating medium is supplied.

それによって、蓄熱時においては、ヒータから蓄熱材へ
の熱伝達が良好となるので、ヒータの焼損がなくなる。
As a result, during heat storage, heat transfer from the heater to the heat storage material is improved, so burnout of the heater is eliminated.

また、出熱時においては、蓄熱材から伝熱管への熱伝達
が良好となるので、十分な熱量を蓄熱材から取り出せる
ようになり、従来装置において見られた蓄熱材が高温状
態でも蒸気が発生しないという問題がなくなる。
In addition, when heat is released, the heat transfer from the heat storage material to the heat transfer tubes is improved, so a sufficient amount of heat can be extracted from the heat storage material, and steam is generated even when the heat storage material is at a high temperature, which was the case with conventional equipment. The problem of not doing it disappears.

〔実施例〕〔Example〕

本発明の一実施例は、蓄熱材とヒータ及び蓄熱材と伝熱
管の間の空気層に、硝酸塩、亜硝酸塩を供給するもので
ある。
One embodiment of the present invention supplies nitrates and nitrites to the air space between the heat storage material and the heater, and between the heat storage material and the heat transfer tubes.

この蓄熱材を用いた蒸気発生装置は、第1図に示した如
く、蓄熱槽11及び膨張タンク18から主に構成される
。蓄熱槽11内には、電気ヒータ14及び伝熱管13が
設置され、蓄熱材12の構成要素である固体の第1物質
としてマグネシア、蓄熱温度域で液体となる第2物質す
なわち熱媒体として硝酸ナトリウム/亜硝酸ナトリウム
/硝酸カリウムの混合物(俗称HITEC)又は硝酸ナ
トリウム/硝酸カリウムの混合物(俗称D rawSa
lt)が充填されている。
A steam generation device using this heat storage material is mainly composed of a heat storage tank 11 and an expansion tank 18, as shown in FIG. Inside the heat storage tank 11, an electric heater 14 and a heat transfer tube 13 are installed, and magnesia is used as a solid first substance that is a component of the heat storage material 12, and sodium nitrate is used as a second substance that becomes liquid in the heat storage temperature range, that is, a heat medium. / Sodium nitrite/potassium nitrate mixture (commonly known as HITEC) or sodium nitrate/potassium nitrate mixture (commonly known as DrawSa)
lt) is filled.

本発明の一実施例に要いるHITECは、硝酸ナトリウ
ム、亜硝酸ナトリウム、硝酸カリウムの三成分の混合剤
であり、これら三成分の重量比率は、それぞれ6.9%
、48.9%、44.2%。
HITEC required in one embodiment of the present invention is a mixture of three components: sodium nitrate, sodium nitrite, and potassium nitrate, and the weight ratio of each of these three components is 6.9%.
, 48.9%, 44.2%.

または、その近傍の値である。これら三成分から成るH
ITECは、融点が142℃、熱分解開始温度が約60
0℃である。上記三成分の重量比率が上記数値よりずれ
ると、融点が次第に上昇し、熱分解温度が次第に低下す
る。極端な場合として、硝酸ナトリウム、亜硝酸ナトリ
ウムまたは硝酸カリウムの単一成分にすると、融点は、
それぞれ、308℃、270℃、333℃となる。また
、熱分解開始温度は、それぞれ、380”C1320℃
、333℃となる(共立出版、化学大辞典より)。
Or a value near it. H consisting of these three components
ITEC has a melting point of 142°C and a thermal decomposition onset temperature of approximately 60°C.
It is 0°C. When the weight ratio of the three components deviates from the above values, the melting point gradually increases and the thermal decomposition temperature gradually decreases. In the extreme case, for a single component of sodium nitrate, sodium nitrite, or potassium nitrate, the melting point is
The temperatures are 308°C, 270°C, and 333°C, respectively. In addition, the thermal decomposition start temperature is 380"C1320℃, respectively.
, 333℃ (from Kyoritsu Publishing, Chemistry Dictionary).

したがって、HITECのように上記三成分の混合剤に
すると、単一成分より、融点が130℃以上低下し、熱
分解開始温度が約330℃上昇する。
Therefore, when a mixture of the above three components is used, such as HITEC, the melting point is lowered by 130°C or more, and the thermal decomposition initiation temperature is increased by about 330°C, compared to a single component.

本発明の一実施例の第2物質(熱媒体)にHITECを
用いるとこの熱媒体は142℃から約600℃の範囲で
、安定した液体状態にあって、蓄熱材とヒータ及び蓄熱
材と伝熱管との間の空気層を埋めることができる。これ
により、この部分の熱伝達が良好となって間歇的、集中
的な使用となる殺菌用等の蒸気使用に応えることができ
る。
When HITEC is used as the second substance (heating medium) in an embodiment of the present invention, this heating medium is in a stable liquid state in the range of 142°C to about 600°C, and is able to communicate with the heat storage material, the heater, and the heat storage material. It can fill the air space between the heat pipes. This improves heat transfer in this part, making it possible to use steam for intermittent or intensive purposes such as sterilization.

殺菌用には、150℃程度(圧カニ5ata)の蒸気を
使用することから、150℃以上の温度域で液体となる
HITECは、有効な熱媒体となりえる。
For sterilization, steam at about 150°C (pressure: 5ata) is used, so HITEC, which becomes liquid in a temperature range of 150°C or higher, can be an effective heat medium.

熱媒体としては、ダウサムで代表される有機系熱媒体が
よく知られている。しかし、この有機系熱媒体は350
〜400℃以上になると、熱分解が発生するため、蓄熱
材の温度は350〜400以下にする必要がある。
As a heat medium, an organic heat medium represented by Dowsome is well known. However, this organic heating medium has a
If the temperature exceeds ~400°C, thermal decomposition occurs, so the temperature of the heat storage material needs to be 350-400°C or lower.

硝酸ナトリウムと硝酸カリウムの混合物(DRAW−8
ALT)もHITECと同様に硝酸塩であることから、
HITECと同等の温度特性を有している。
Mixture of sodium nitrate and potassium nitrate (DRAW-8
Since ALT) is also a nitrate like HITEC,
It has the same temperature characteristics as HITEC.

上記蓄熱材12は、ヒータ14からの加熱によって高温
となる。伝熱管13への通水は、蒸気発生の要求が生じ
たときに行われる。伝熱管13へ供給された水15は、
高温の蓄熱材12から加熱され、蒸気16となって排出
される。
The heat storage material 12 is heated to a high temperature by the heater 14 . Water is supplied to the heat exchanger tubes 13 when a request for steam generation occurs. The water 15 supplied to the heat exchanger tubes 13 is
The high temperature heat storage material 12 is heated and discharged as steam 16.

水15の供給量によって蒸気16の乾き度、過熱度が変
化する。水15の供給量が、蓄熱材12からの加熱量に
対して、少ないならば、発生蒸気16は過熱蒸気となる
。水15の供給量を増加するにしたがって、飽和蒸気、
湿り蒸気となる。
The degree of dryness and degree of superheating of the steam 16 changes depending on the amount of water 15 supplied. If the amount of water 15 supplied is smaller than the amount of heating from the heat storage material 12, the generated steam 16 will be superheated steam. As the supply amount of water 15 increases, saturated steam,
It becomes wet steam.

本発明の一実施例によれば、蓄熱材12とヒータ14及
び蓄熱材12と伝熱管13の間の空気層を第2物質が液
体となった熱媒体が埋めるため、熱伝達が良好となる。
According to one embodiment of the present invention, the air layer between the heat storage material 12 and the heater 14 and between the heat storage material 12 and the heat transfer tube 13 is filled with the heat medium in which the second substance is a liquid, so that heat transfer is improved. .

このため、蓄熱時においては、蓄熱材12に対する急速
加熱が可能となる。
Therefore, during heat storage, rapid heating of the heat storage material 12 is possible.

また、出熱時においては、蓄熱材12から伝熱管13へ
の急速熱伝達が可能となる。
Further, when heat is output, rapid heat transfer from the heat storage material 12 to the heat transfer tubes 13 is possible.

第2図に、本発明に係る蓄熱槽11内に熱媒体を供給し
た場合と供給しない場合の発生蒸気量の比較を示し、第
3図に、このときの蓄熱槽11内蓄熱材の温度変化を示
す。蓄熱材の容積は400Qであり、蓄熱温度は450
℃、発生蒸気の圧力は5ataで、蒸気流量は50kg
/hの条件において比較した。第2図より本発明では5
0kg/hの蒸気流量で140分間運転を継続できるの
に対し従来は3分間で蒸気流量が低下してしまうことが
わかる。また、第3図より、本発明では蓄熱材の熱が有
効に使われたことが解る。すなわち、蓄熱槽内に熱媒体
を供給すると蒸気発生量を数十倍増加できる。
FIG. 2 shows a comparison of the amount of steam generated when a heat medium is supplied and not supplied into the heat storage tank 11 according to the present invention, and FIG. 3 shows the temperature change of the heat storage material in the heat storage tank 11 at this time. shows. The volume of the heat storage material is 400Q, and the heat storage temperature is 450Q.
℃, the pressure of the generated steam is 5ata, and the steam flow rate is 50kg.
The comparison was made under the condition of /h. From Fig. 2, in the present invention, 5
It can be seen that while operation can be continued for 140 minutes at a steam flow rate of 0 kg/h, the steam flow rate decreases after 3 minutes in the conventional system. Moreover, from FIG. 3, it can be seen that the heat of the heat storage material is effectively used in the present invention. That is, by supplying a heat medium into the heat storage tank, the amount of steam generated can be increased several tens of times.

本発明の他の実施例を第4図に示す、本実施例は、伝熱
管の伝熱面積を水の流れ方向にしたがって、伝熱フィン
20等の設置により、増加させるようにするものである
。伝熱面積の増加は、連続的でもステップ状に変化して
もよい。
Another embodiment of the present invention is shown in FIG. 4. In this embodiment, the heat transfer area of the heat transfer tube is increased in the water flow direction by installing heat transfer fins 20, etc. . The increase in heat transfer area may be continuous or stepwise.

本実施例の効果は、蓄熱材12に生じる温度分布の大き
な偏差(下流側が高温になりやすい)をなくし、これに
より、蓄熱材12からの加熱によって発生する蒸気量を
増加することができる。
The effect of this embodiment is to eliminate large deviations in temperature distribution that occur in the heat storage material 12 (the downstream side tends to become high temperature), thereby increasing the amount of steam generated by heating from the heat storage material 12.

伝熱管13に供給された水15は、蓄熱材12から加熱
され、順次温水、湿り蒸気、乾き蒸気と変化しながら昇
温する。このため、伝熱面積が一定の場合は、蓄熱材1
2からの加熱量は、水の流れにしたがって減少し、蓄熱
材12の温度分布に大きな偏差が生じる。上記実施例で
は下流側程伝熱性が高い構造であるため、この偏差が縮
少する。
The water 15 supplied to the heat exchanger tubes 13 is heated by the heat storage material 12, and its temperature increases while changing sequentially into hot water, wet steam, and dry steam. Therefore, if the heat transfer area is constant, the heat storage material 1
The amount of heat from the heat storage material 12 decreases as the water flows, and a large deviation occurs in the temperature distribution of the heat storage material 12. In the above embodiment, since the structure has higher heat conductivity toward the downstream side, this deviation is reduced.

そして1、蓄熱材12の平均温度が従来技術より低温ま
で、蒸気16の発生が可能となるため、従来技術よりも
多くの蒸気発生が可能となる。
1. Since the steam 16 can be generated even when the average temperature of the heat storage material 12 is lower than that of the conventional technique, it is possible to generate more steam than the conventional technique.

第5図に伝熱管13にフィン20を付け、水の流れ方向
にしたがって、伝熱管の単位長さ当りの伝熱面積を3段
階に変化したときの、蓄熱材12の温度変化の一例を示
す。フィンなしの上流側は伝熱管1a11当たりの伝熱
面積が3.14a#であり、粗にフィンを設置した中間
部は伝熱面積が6.28aJであり、密にフィンを設置
した下流側は9.54aJである。
FIG. 5 shows an example of the temperature change of the heat storage material 12 when the heat transfer tube 13 is attached with fins 20 and the heat transfer area per unit length of the heat transfer tube is changed in three stages according to the water flow direction. . On the upstream side without fins, the heat transfer area per heat transfer tube 1a11 is 3.14a#, in the middle part where fins are loosely installed, the heat transfer area is 6.28aJ, and on the downstream side with densely installed fins, the heat transfer area is 3.14aJ. It is 9.54aJ.

その結果、図示のとおり、フィン20を付けると伝熱管
入口近傍の温度と出口近傍の温度差は縮少しく一点鎖線
)、また、平均温度も約70℃低下した(同図aとbと
の差)。そして、蒸気発生量は25%増加した。なお、
このときの蓄熱槽の条件は、第2図、第3図と変わらな
い。
As a result, as shown in the figure, when the fins 20 were attached, the temperature difference between the temperature near the inlet and the outlet of the heat exchanger tube decreased (dotted chain line), and the average temperature also decreased by about 70°C (difference between a and b in the figure). ). The amount of steam generated increased by 25%. In addition,
The conditions of the heat storage tank at this time are the same as in FIGS. 2 and 3.

本発明の他の実施例は、伝熱管の耐熱衝撃性を向上する
ため、伝熱管の材質を選択するものである。つまり、伝
熱管材質の主成分である鉄への添加成分元素を適宜選択
するものである。添加成分として、クロムが14重量%
以上、炭素が0.03重量%以下であるとよい。クロム
は30重量%以上になるとコストアップになるので、そ
れ以下とするのがよい。また、他に、ニッケルを80重
量%以下、ケイ素を3重量%以下、マンガンを5%以下
、リンを1%以下、イオウを1%以下、モリブデンを5
%以下、チタンを5%以下、ニオブを1%以下のうち複
数の成分を含むとよい。そして、この伝熱管はオーステ
ナイト系のステンレスであると熱衝撃に強い組織となる
のでよい。
In another embodiment of the present invention, the material of the heat exchanger tube is selected in order to improve the thermal shock resistance of the heat exchanger tube. In other words, the elements to be added to iron, which is the main component of the heat exchanger tube material, are appropriately selected. 14% by weight of chromium as an additive component
As mentioned above, it is preferable that the carbon content is 0.03% by weight or less. If the content of chromium exceeds 30% by weight, the cost will increase, so it is preferable to keep it below that amount. In addition, nickel is 80% by weight or less, silicon is 3% by weight or less, manganese is 5% or less, phosphorus is 1% or less, sulfur is 1% or less, molybdenum is 5% or less.
% or less, titanium at 5% or less, and niobium at 1% or less. The heat exchanger tube is preferably made of austenitic stainless steel because it has a structure that is resistant to thermal shock.

この実施例によれば、蓄熱材からの加熱により高温とな
った伝熱管へステップ状に水を供給しても伝熱管には割
れが生じなくなる。
According to this embodiment, even if water is supplied stepwise to the heat exchanger tube, which has become hot due to heating from the heat storage material, no cracks will occur in the heat exchanger tube.

上記した材質の伝熱管として、JIS−G3463で規
定された5US304LTB (C<0.03wt%、
S i < 1 、 OOw t%、Mn<2.00w
t%。
As a heat exchanger tube made of the above-mentioned material, 5US304LTB (C<0.03wt%,
S i < 1, OOw t%, Mn < 2.00w
t%.

P < 0 、04 w t%、S<0.030wt%
、Ni:9、OO〜13.00wt%、Cr: 18,
00〜20.00wt%)を用い、蓄熱温度が600℃
において、伝熱管内へ水を供給したときは、伝熱管に割
れが生じなかった。しかし、上記した条件を満たさない
伝熱熱管であるJIS−G3462で規定の5TB20
 (C: 0.10〜0.20wt%、S i : 0
.10〜0.5wt%、Mn:0.30〜0.60wt
%、P<0.035wt%。
P < 0, 04 wt%, S < 0.030 wt%
, Ni: 9, OO~13.00wt%, Cr: 18,
00~20.00wt%), the heat storage temperature is 600℃
When water was supplied into the heat exchanger tubes, no cracks occurred in the heat exchanger tubes. However, the 5TB20 heat transfer tube specified in JIS-G3462 does not meet the above conditions.
(C: 0.10-0.20wt%, Si: 0
.. 10-0.5wt%, Mn: 0.30-0.60wt
%, P<0.035wt%.

S<0.035wt%、 Cr : 0.50〜0.8
0wt%、No : 0.40”0.65wt%)を用
いた場合は、伝熱管に割れが生じた。
S<0.035wt%, Cr: 0.50-0.8
0wt%, No.: 0.40'', 0.65wt%), cracks occurred in the heat exchanger tube.

本発明の他の実施例を第6図に示す。本実施例は、伝熱
管13の水15の入口に、断熱管21を設置して二重管
構造にするものである。断熱管21には、セラミック、
ニッケルクロム鉄合金管等の耐熱衝撃性の材料を用いる
Another embodiment of the invention is shown in FIG. In this embodiment, a heat insulating tube 21 is installed at the inlet of the water 15 of the heat transfer tube 13 to form a double tube structure. The heat insulating pipe 21 is made of ceramic,
Use materials that are resistant to thermal shock, such as nickel-chromium iron alloy tubes.

この実施例によれば、更に高温の蓄熱材からの加熱によ
り高温となった伝熱管へステップ状に水を供給しても伝
熱管には割れが生じなくなった。
According to this example, even if water was supplied stepwise to the heat exchanger tube, which had become hotter due to heating from the higher temperature heat storage material, no cracking occurred in the heat exchanger tube.

伝熱管13に外径15.9mm、肉厚1.2■の5US
304LTBを用い、この伝熱管13内に断熱管として
外径15+u+、肉厚0.3mmのニッケルクロム鉄合
金管を挿入した。その結果、蓄熱温度が700℃におい
て、伝熱管13内へステップ状に水を供給したが、伝熱
管に割れが生じなかった。しかし、上記同条件で、断熱
管を挿入しない場合は、伝熱管に割れが生じた。
Heat exchanger tube 13 has an outer diameter of 15.9 mm and a wall thickness of 1.2 mm.
304LTB was used, and a nickel-chromium iron alloy tube with an outer diameter of 15+u+ and a wall thickness of 0.3 mm was inserted into the heat transfer tube 13 as a heat insulating tube. As a result, when the heat storage temperature was 700° C., water was supplied into the heat exchanger tube 13 in a stepwise manner, but no cracks occurred in the heat exchanger tube. However, under the same conditions as above, when no heat insulating tube was inserted, cracks occurred in the heat exchanger tube.

前記した蓄熱材、伝熱管、伝熱フィン及び断熱管を有す
る蒸気発生装置において、この装置の蓄熱温度(最高温
度)を400〜600℃にする。
In the steam generator having the heat storage material, heat transfer tube, heat transfer fin, and heat insulating tube described above, the heat storage temperature (maximum temperature) of this device is set to 400 to 600°C.

蓄熱温度を高温にすると、単位容積当りの蓄熱量が増加
し、蒸気発生量を多くできるため、蓄熱槽を小型化でき
る。しかし、蓄熱温度が高くなると、伝熱管の耐熱性、
耐熱衝撃の問題、熱媒体の耐熱性の問題から、無1ti
II@に高くはできない。
When the heat storage temperature is set to a high temperature, the amount of heat stored per unit volume increases and the amount of steam generated can be increased, so the heat storage tank can be made smaller. However, as the heat storage temperature increases, the heat resistance of the heat exchanger tubes
Due to problems of thermal shock resistance and heat resistance of the heat medium, no 1ti
I can't make it higher than II@.

伝熱管に5US304LTBオーステナイトステンレス
鋼管を用いると、蓄熱温度は700V程度にできるが、
熱媒体にHITECを用いると蓄熱温度は600℃以下
にする必要がある。
If 5US304LTB austenitic stainless steel tube is used as the heat transfer tube, the heat storage temperature can be around 700V, but
When HITEC is used as a heat medium, the heat storage temperature needs to be 600°C or less.

入熱時のヒータ近傍の熱媒体の温度は、ヒータからの加
熱によって、熱媒体の平均温度より数十℃高くなること
から、蓄熱温度は、熱媒体の耐熱温度より数十℃低い温
度が最高使用温度となる。
The temperature of the heat medium near the heater during heat input is several tens of degrees Celsius higher than the average temperature of the heat medium due to heating from the heater, so the maximum heat storage temperature is several tens of degrees Celsius lower than the heat resistance temperature of the heat medium. The operating temperature.

なお、ヒータ近傍の蓄熱材温度と蓄熱材の平均温度の差
は、ヒータの熱負荷によって変化することから、蓄熱温
度は400〜600℃とするのが妥当な温度である。
Note that since the difference between the temperature of the heat storage material near the heater and the average temperature of the heat storage material changes depending on the heat load of the heater, it is appropriate that the heat storage temperature is 400 to 600°C.

第7図に、本発明の一実施例及び他の一実施例である蓄
熱槽の蓄熱温度を変化したときの発生蒸気量を示す。発
生蒸気量は、蓄熱温度を高くするにしたがって増加する
FIG. 7 shows the amount of steam generated when the heat storage temperature of the heat storage tank according to one embodiment and another embodiment of the present invention is changed. The amount of generated steam increases as the heat storage temperature increases.

しかし、蓄熱温度が550℃以上になるとHITECが
分解し、二酸化窒素が発生した。電気ヒータへの印加電
圧を200Vから140vに低下し、入熱速度を10k
wにしたところ、蓄熱温度が570℃以下では、二酸化
窒素を示す臭気がしなかった。一方、印加電圧を200
■から280Vにし、入熱速度を40kwにしたところ
、蓄熱温度が510℃を越え、二酸化窒素の臭気がした
However, when the heat storage temperature reached 550° C. or higher, HITEC decomposed and nitrogen dioxide was generated. The voltage applied to the electric heater was lowered from 200V to 140V, and the heat input rate was reduced to 10k.
When the heat storage temperature was 570° C. or lower, no odor indicating nitrogen dioxide was emitted. Meanwhile, the applied voltage is 200
When the voltage was changed from (1) to 280V and the heat input rate was increased to 40kW, the heat storage temperature exceeded 510°C and the odor of nitrogen dioxide was emitted.

〔発明の効果〕 本発明によれば、時間的に大きく変動する蒸気使用にお
いても、十分な蓄熱・8熱が行われる蓄熱材を有する蒸
気発生装置を提供できる。したがって、本発明によれば
、蒸気発生量を時間的に大きく変動できる経済的な蒸気
発生装置を提供でき把効果かえられる。
[Effects of the Invention] According to the present invention, it is possible to provide a steam generator having a heat storage material that can store sufficient heat even when using steam that varies greatly over time. Therefore, according to the present invention, it is possible to provide an economical steam generating device that can greatly vary the amount of steam generated over time, and the clamping effect can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例の蓄熱材を有する蒸気発生
装置の構成図、第2図及び第3図は、本発明の一実施例
の蓄熱材を有する蒸気発生装置の性能を示す図、第4図
は、本発明の他の一実施例である伝熱管にフィンを取り
付けた蓄熱材を有する蒸気発生装置の構成図、第5図は
1本発明の他の一実施例である伝熱管にフィンを取り付
けた効果を示す図、第6図は、本発明の他の一実施例で
ある伝熱管内への断熱管の取り付けを示す断面図、第7
図は、本発明の蓄熱材を有する蒸気発生装置の蓄熱温度
と蒸気発生量の関係を示す図、第8図は、従来技術の一
例であるボイラと蒸気アキュムレータを組み合わせた負
荷変動に適した蒸気発生装置の構成を示す図である。 11・・・蓄熱槽、12・・・蓄熱材、13・・・伝熱
管、14・・・電気ヒータ、20・・・伝熱フィン、2
1・・・断熱管。
FIG. 1 is a block diagram of a steam generator having a heat storage material according to an embodiment of the present invention, and FIGS. 2 and 3 show the performance of a steam generator having a heat storage material according to an embodiment of the present invention. 4 is a block diagram of a steam generator having a heat storage material in which fins are attached to heat transfer tubes, which is another embodiment of the present invention, and FIG. 5 is another embodiment of the present invention. FIG. 6 is a diagram showing the effect of attaching fins to a heat exchanger tube, and FIG.
The figure shows the relationship between the heat storage temperature and the amount of steam generated in a steam generator having the heat storage material of the present invention, and Figure 8 shows the steam generator suitable for load fluctuations that combines a boiler and a steam accumulator, which is an example of the conventional technology. It is a diagram showing the configuration of a generator. DESCRIPTION OF SYMBOLS 11... Heat storage tank, 12... Heat storage material, 13... Heat transfer tube, 14... Electric heater, 20... Heat transfer fin, 2
1...Insulated pipe.

Claims (1)

【特許請求の範囲】 1、蓄熱材を備えた蓄熱槽と、この蓄熱槽内に配設され
た加熱源及び液体が導入される伝熱管と、を備えた蒸気
発生装置において、前記蓄熱材は固体より成る第1物質
と蓄熱温度域で液体となる第2物質とを備えていること
を特徴とする蒸気発生装置。 2、請求項1において、第1物質はマグネシアを主成分
とする物質である蒸気発生装置。 3、請求項1又は2において、第2物質は硝酸ナトリウ
ム、亜硝酸ナトリウム及び硝酸カリウムの混合物、又は
、硝酸ナトリウム及び硝酸カリウムの混合物である蒸気
発生装置。 4、請求項1〜3のいずれかにおいて、蓄熱槽出口側の
伝熱管外表面に伝熱フィンが設けられ、伝熱管の単位長
さ当りの伝熱面積は蓄熱槽出口側が蓄熱槽入口側より大
きく形成されている蒸気発生装置。 5、請求項1〜4のいずれかにおいて、伝熱管はCrが
14重量%以上、Cが0.03重量%以下のオーステナ
イト系ステンレス鋼である蒸気発生装置。 6、請求項1〜5のいずれかにおいて、蓄熱槽入口の伝
熱管内部が二重管に形成されている蒸気発生装置。
[Claims] 1. A steam generation device comprising a heat storage tank provided with a heat storage material, and a heat transfer tube into which a heating source and liquid are introduced arranged in the heat storage tank, wherein the heat storage material is A steam generator comprising a first substance that is solid and a second substance that becomes liquid in a heat storage temperature range. 2. The steam generator according to claim 1, wherein the first substance is a substance whose main component is magnesia. 3. The steam generator according to claim 1 or 2, wherein the second substance is a mixture of sodium nitrate, sodium nitrite, and potassium nitrate, or a mixture of sodium nitrate and potassium nitrate. 4. In any one of claims 1 to 3, heat transfer fins are provided on the outer surface of the heat transfer tube on the heat storage tank outlet side, and the heat transfer area per unit length of the heat transfer tube is larger on the heat storage tank outlet side than on the heat storage tank inlet side. A large steam generator. 5. The steam generator according to any one of claims 1 to 4, wherein the heat transfer tube is made of austenitic stainless steel containing 14% by weight or more of Cr and 0.03% by weight or less of C. 6. The steam generator according to any one of claims 1 to 5, wherein the inside of the heat transfer tube at the inlet of the heat storage tank is formed into a double tube.
JP08450590A 1990-03-30 1990-03-30 Steam generator Expired - Lifetime JP3153867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08450590A JP3153867B2 (en) 1990-03-30 1990-03-30 Steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08450590A JP3153867B2 (en) 1990-03-30 1990-03-30 Steam generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP08610399A Division JP3165961B2 (en) 1990-03-30 1999-03-29 Heat storage device

Publications (2)

Publication Number Publication Date
JPH03282101A true JPH03282101A (en) 1991-12-12
JP3153867B2 JP3153867B2 (en) 2001-04-09

Family

ID=13832502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08450590A Expired - Lifetime JP3153867B2 (en) 1990-03-30 1990-03-30 Steam generator

Country Status (1)

Country Link
JP (1) JP3153867B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256590A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Filling method for solid/liquid heat accumulating material
JPH05256591A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Heat accumulating tank using solid/liquid mixture heat accumulating material
JPH0771793A (en) * 1993-09-01 1995-03-17 Hokuriku Electric Power Co Inc:The Heat accumulation type cooling and heating device using midnight electric power
WO2000019154A1 (en) * 1998-09-25 2000-04-06 Hokuriku Electric Power Company High temperature heat storage tank
JP2002017825A (en) * 2000-07-11 2002-01-22 Chiyoda Manufacturing Co Ltd Steam sterilizing device
JP2002022101A (en) * 2000-07-11 2002-01-23 Chiyoda Manufacturing Co Ltd Saturated steam generating device
JP2002035090A (en) * 2000-07-28 2002-02-05 Chiyoda Manufacturing Co Ltd Steam sterilizing method and device
JP2003074801A (en) * 2001-08-31 2003-03-12 Chiyoda Manufacturing Co Ltd Saturated steam generator
JP2007032866A (en) * 2005-07-22 2007-02-08 Ishikawajima Inspection & Instrumentation Co Heat storage tank
DE102006062069A1 (en) * 2006-12-29 2008-07-03 BSH Bosch und Siemens Hausgeräte GmbH Steam generation device for e.g. steam baking oven, has pressure expansion unit arranged between feed pump and instantaneous water heater, and partially designed as container filled with gas or as one-sided closed plastic tube
JP2011012957A (en) * 2010-10-20 2011-01-20 Sakura Seiki Kk Saturated vapor generation apparatus
US8017074B2 (en) 2004-01-07 2011-09-13 Noxilizer, Inc. Sterilization system and device
JP2013199663A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2013224344A (en) * 2012-04-19 2013-10-31 Ihi Corp Method for selecting heat storage material
JP2013224343A (en) * 2012-04-19 2013-10-31 Ihi Corp Heat storage material, and heat storage system
US8703066B2 (en) 2004-01-07 2014-04-22 Noxilizer, Inc. Sterilization system and method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6612042B2 (en) * 2015-03-10 2019-11-27 三菱日立パワーシステムズ株式会社 Solar heat storage device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05256591A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Heat accumulating tank using solid/liquid mixture heat accumulating material
JPH05256590A (en) * 1992-03-10 1993-10-05 Chugoku Electric Power Co Inc:The Filling method for solid/liquid heat accumulating material
JPH0771793A (en) * 1993-09-01 1995-03-17 Hokuriku Electric Power Co Inc:The Heat accumulation type cooling and heating device using midnight electric power
WO2000019154A1 (en) * 1998-09-25 2000-04-06 Hokuriku Electric Power Company High temperature heat storage tank
JP2002017825A (en) * 2000-07-11 2002-01-22 Chiyoda Manufacturing Co Ltd Steam sterilizing device
JP2002022101A (en) * 2000-07-11 2002-01-23 Chiyoda Manufacturing Co Ltd Saturated steam generating device
JP2002035090A (en) * 2000-07-28 2002-02-05 Chiyoda Manufacturing Co Ltd Steam sterilizing method and device
JP4674011B2 (en) * 2001-08-31 2011-04-20 サクラ精機株式会社 Saturated steam generator
JP2003074801A (en) * 2001-08-31 2003-03-12 Chiyoda Manufacturing Co Ltd Saturated steam generator
US8017074B2 (en) 2004-01-07 2011-09-13 Noxilizer, Inc. Sterilization system and device
US8703066B2 (en) 2004-01-07 2014-04-22 Noxilizer, Inc. Sterilization system and method
US9180217B2 (en) 2004-01-07 2015-11-10 Noxilizer, Inc. Sterilization system and device
JP2007032866A (en) * 2005-07-22 2007-02-08 Ishikawajima Inspection & Instrumentation Co Heat storage tank
DE102006062069A1 (en) * 2006-12-29 2008-07-03 BSH Bosch und Siemens Hausgeräte GmbH Steam generation device for e.g. steam baking oven, has pressure expansion unit arranged between feed pump and instantaneous water heater, and partially designed as container filled with gas or as one-sided closed plastic tube
JP2011012957A (en) * 2010-10-20 2011-01-20 Sakura Seiki Kk Saturated vapor generation apparatus
JP2013199663A (en) * 2012-03-23 2013-10-03 Nisshin Steel Co Ltd Austenitic stainless steel excellent in molten nitrate corrosion resistance, heat collection tube and heat accumulation system using molten nitrate as heat accumulation medium
JP2013224344A (en) * 2012-04-19 2013-10-31 Ihi Corp Method for selecting heat storage material
JP2013224343A (en) * 2012-04-19 2013-10-31 Ihi Corp Heat storage material, and heat storage system

Also Published As

Publication number Publication date
JP3153867B2 (en) 2001-04-09

Similar Documents

Publication Publication Date Title
JPH03282101A (en) Steam generating device
Zhao et al. Experimental study on the thermodynamic performance of cascaded latent heat storage in the heat charging process
US8111072B2 (en) Steam cooker and related superheater
US7849692B2 (en) Segmented heat exchanger
CN103363690B (en) A kind of heat capacity heat exchange device
WO2017222476A9 (en) Waste-to-energy plant
JP3165961B2 (en) Heat storage device
US3731738A (en) Tube fins of outwardly-organized materials
CN110454854A (en) Heat reservoir and heat storage and heat supply system
JP2010096495A (en) Combined cycle power generation plant
Johnson et al. Large-scale high temperature and power latent heat storage unit development
RU2532811C2 (en) DEVICE FOR HCl (HYDROGEN CHLORIDE) SYNTHESIS WITH STEAM PRODUCTION
US3846986A (en) Geothermal plant cleaning system
JP4733612B2 (en) Boiler superheater for waste treatment equipment
JP2017133746A (en) Vacuum type water warmer with fire tube
CN206094536U (en) Middle and high voltage single -drum structure fast -assembling water tube boiler
RU2232937C1 (en) Method for cleaning and passivating working medium path of steam boiler and steam lines of power unit
JP2003232502A (en) Steam superheater
CN211084895U (en) Spiral coil type ascending pipe heat exchanger
WO2016192682A1 (en) Rapid high-temperature steam generator
CS205060B2 (en) Method of and apparatus for cooling splitting gases
CN217785862U (en) Calcium carbide furnace gas waste heat recovery system
GB2100408A (en) Method of and apparatus for regulating the temperature of heat exchanger supply gas
CN211716916U (en) Clean energy gas, electricity, heat, cold and combined supply system
CN218469054U (en) High-temperature molten salt energy storage combined heat and power system based on coal-fired unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110202

Year of fee payment: 10